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A GENERAL “IN BETWEEN THEOREM”

JORGEN HOFFMANN-JORGENSEN

Consider the following general “in between problem”: Let € be a class of real
functions on a set X, and let Y < ¢ be two given functions; when does there
exist a function g e & such that Yy <g<¢? We shall in this note give a
necessary condition, which includes many of the known “in between theorems”
and “extension theorems” in topology and analytic set theory.

The basis of an “in between theorem” is a separation property. Let € be a set
of real functions on X and let « and B be real functions on X. If K, and K, are
subsets of X we say that K, and K, are («, B)-separated by ¥, if there exist
g € %, so that a<g<p and g(x)=ua(x) for x e K, and g(x)=p(x) for x € K,.
Note that this notion is assymetric in (K,,K,). If K, and K, are (a,f)-
separated by €, then clearly we have

(1) a<p and KNK,s{x| a()=4(0)}.

Thus if a<f, then K,NK,=F.
If € is a set of real valued functions on X, we say that € is g-convex, if
> wAn8s € € Whenever g, € €Vn, 4, € [0,00[, Vn and ¥, 4,=1.

THEOREM 1. Let a, B, ¢ and § be functions: X — R, K and L two subsets of X
and € a set of real functions on X. Suppose that o and B are finite and
1.1) €@p) ={fe¥ I o= f<B} is o-convex,
(12) a(x)se(x) VxeK; Y(x)=p(x),Vxel,
(1.3) KN{p<u} and LN{>v} are (o,p)-separated by
€ if uve€y(,f) and v—u=i(f—a) for some 1>0,

where €, (a, B) is the convex hull of €(a, f)U{a, B}. Then there exist a function
g € (o, B), so that

(1.4) g(x) £ p(x) VxeK; ¥Y(x) £ g(x),VxelL.
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Note. Observe that (1.4) implies that Yy <g=<¢ on KNL, so the result is
certainly an “in between theorem”. And by (1) we find

) KNLN{p<ulN{y 20} = KNLN{a=f=p=y=u=0}

whenever a Su<v<f and u<v on {a<f}. In particular, we see that the two
sets, KN{@ <u} and LN{y >v}, in (1.3) are disjoint.

PRroOF. Clearly we may assume that a < g < f§ for all g € €. Then by (1.1) we
find that % is a convex set of functions. Now let us fix an s € ]0,3[. We shall
then show that there exist functions g,,g,,... € € so that

n—1

i) ex) = Y s(l-sy7'g;x)+(1—-9"'a(x)) VxeK,Vnxl

i=1

n—1
(i) Yx) £ ) sQ-sy'gi)+(1—s)""'f(x), Vxel,Vnzl
j=1
Note that (i) and (ii) hold for n=1 by (1.2). So assume that g,...g,-, € €
satisfies (i) and (ii) for some n=1. Then
n-1
u= Y s(l—sy'gj+(1—sya+s(l—s)" " 'fe%b,

j=1
n—1 .
= -21 s(1—sy 'g;+s(1—s) la+(1—-5)"B e %, ,
j=
since

n

Y s(l—sy™! =1-(1-9).

j=1
Moreover we have
v—u = (1= 1(1-25)(B—0).
Since 0<s <} we conclude from (1.3) that there exists g, € € with

_falx) VxeKN{p <u}
&nlx) = B(x) VxeLN{y > v}.

We shall then verify that {g,,...,g,} satisfies (i) and (ii). By induction
hypothesis we have

" . 1—s la—s(1—s)""'a on KN{p <u

T fo <u

u=y, s(l—sy~1g, on {pzu,
1
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and since g,<f we find

(1=s"ta—s(l—s""ta = (1—s)
u= 3 s(—s) g, = (I-sPats(—s' (B—g) = (1—s)a.
j=1
Thus (i) holds since K € KN {p <u}U{p=u}. Similarly
(1—s~1p—s(l—sf™'f on LN{y > v}

v— Y s(1—sy~'g; on {y < v},

1

1A

Y- ; s(1—s)™'g;

and since g,=o we have

(="' B—s(1—s)""'p = (1-9)"B

v— Y s(1—sylg; < (1-9)B.

1
Thus (ii) holds since L < {¢ >v} U {y v}, and the induction is completed, i.e.
there exists {g,} < € satisfying (i) and (ii).
By assumption we have a<g,<f, Vn, hence from (1.1) we conclude that

g =2 s —s)7'g;e®

1

and o <g<p. Letting n — oo in (i) and (ii) we obtain ¢ =g on K and Yy <g on
L, which proves the theorem.

The crucial condition in Theorem 1 is of course the separation property
(1.3). So let us discuss this condition in some detail.
Let o < B be two real functions on X, then notice that
a iff S«
(fvoaBp=(frPpva=f fasf<p
p iffz8.
Thus if € contains (f'v ) A B for all f € €, then K and L are («, f)-separated
by & if there exists a function f € € satisfying
(03] f(x) £ ax),VxeK, f(x)z B(x),VxelL.

It is wellknown that compactness makes separation possible in many cases. If
% is a paving on X we say that K < X is ¥-compact if every covering of K with
sets from ¥ admits a finite subcovering. Note that by Alexandrow’s subbasis
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theorem (see e.g. [1, p. 139]) this is equivalent to compactness in the topology
generated by 4.
If € is a set of real functions on X, then % is said to be (A f)-stable if

frge¥, Vfge¥€.
Similarly € is (v f)-stable if

fvge¥ Vfge¥
and € is a lattice if € is (v f, A f)-stable.

2. PROPOSITION. Let o = 8 be two real functions on X, 4, and %, two pavings
on X, K, and K, two subsets of X and € a set of functions: X — R. Then K,
and K, are (o, f)-separated by € in each of the following cases:

2.1) % is (A f)-stable, K, is 9,-compact, and ¥ x, € K, 3G, € 4, so that
x; € G, and K, NG, and K, are (a, f)-separated by €.

2.2) % is (v f)-stable, K, is %,-compact, and ¥V x, € K, 3G, € 9, so that
X, € G,, and K, and K, NG, are (a, B)-separated by €.

(2.3) % is a lattice, K, is ¥,-compact, K, is %,-compact and ¥V (x,,x,) €
K, xK, 3(G,,G,) € 4, x%, so that (x,,x,) € G, xG, and K, NG,
and K,N G, are (a, B)-separated by €.

Proor. Suppose that (2.1) holds. Let 4} be the set of all G, € 4, so that
K,NG, and K, are (a, f)-separated by €. Then %} is a covering of K, by

assumption. And since K, is ¥,-compact, there exists G,,...,G, € %, and
fi> - > fy € € so that
0] K, UG,

=1 J

Letf= A }-,f; then fe & by assumption, and a < f < . Moreover, by (i)
and (ii) we have f=ua on K, and f=p on K,.
The other two cases follow similarly.

3. ExampLE. (Continuous functions). Let X be a topological space and put
a=0, f=1 and ¥ the set of all continuous functions: X — [0, 1]. Then clearly
% satisfies (1.1) and it is well-known (and easy to verify) that

(3.1) K, and K, are (0,1)-separated by ¢ if and only if there exist disjoint
zero-sets F, and F, with K;cF; for j=1,2.
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(F < X is a zero-set if F=f~" (0) for some continuous function f:X — R))

Now let K, L, ¢ and y satisfy (1.2) with («, §)= (0, 1). Then (1.3) holds, if and
only if we have

(3.2) KN{p < r}and LN{y = q} are separated by disjoint zero-sets for all
real numbers r<gq.

The necessity of (3.2) is evident. To see that (3.2) is sufficient we choose zero-
sets F,(r,q) and F,(r,q) so that

(i) K n{p =1}
(ii) K,N{y 2 q}
(iii) F(r,q)NF,(r,q) = O, Vr<gq.

Let D be a countable dense subset of R and let u,v € € so that u<v. If

Fo=(Uuzriu N Fieal
Fo= lesau ) Feal,

then F, and F, are zero-sets since the zero-sets evidently are closed under
countable intersections and finite unions. Moreover, it is easily verified that

(iv) KiN{e <u} = F,
v) K;,N{y >v} € F,.

in

Fi(r,q), Vr<gq

In

Fz('%‘]), Vr<q

A

In

Now let x € X. Since u(x) <v(x) there exist r,q € D so that u(x)<r<gq<wv(x). If
x € F;NF,, then x € F,(r,q) since x¢ {v<q}, and x € F,(r,q), since x¢ {u=r},
but this contradicts (iii), and so F,NF,=. Thus the sufficiency of (3.2)
follows from (3.1).

Combining this with Proposition 2 gives the following corrolaries (cf. [2]):

4. COROLLARY. Let X be a topological space, K and L two subsets of X and ¢
and  functions: X — R satisfying

1) 0<e(x)VxeK: Y(x)<1l,Vxel,
4.2) KN{p=<r} and LN{Yy=q} are separated by disjoint zero-sets for
all real numbers r<gq.

Then there exists a continuous function f: X — [0,1] so that f<¢ on K and
fZy on L.

5. COROLLARY. Let K and L be closed subsets of X, and suppose that ¢ is lower
semicontinuous on K and \ is upper semicontinuous on L, and that
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(5.1) 0 o(x)VxeK; yY(x)£1Vxel,
(5.2) Y(x) £ p(x), VxeKNL.

Then there exists a continuous function f: X — [0,1], so that f<¢ on K and
SZV on L in either of the following three cases,

(5.3) K and L are compact, and X is completely Hausdorff (i.e. points are
separated by € (X)).

(5.4) Either K or L is compact, and X is completely regular (i.e. points and
closed sets are separated by € (X)).

(5.5) X is normal (i.e. closed sets are separated by € (X)).

6. ExampLE. (Uniformly continuous function). Let (X, %) be a uniform space
and put =0 and f=1 and ¥ the set of all uniformly continuous functions:
X — [0,1]. Then ¢ satisfies (1.1). Two sets, K, and K,, are said to be positively
separated if there exists U € % so that

U(Kl) n U(Kz) =g

where U(4)={x | 3ye A with (x,y)e U}. If K, and K, are positively
separated and U € % is as above, we can find a uniformly continuous pseudo-
metric d, so that

{xp]| dxy <1} g U
and 0<d<1. Then the function

f(x) = inf d(x,y)
yek,

clearly satisfies

(i) 0=sf=1

(i) )= fO)] £ d(x,y)

(iii) f(x) =0VxeK,, f(x)=1Vxek,.

Thus K, and K, are (0,1)-separated by €. The converse is evident, so we find

(6.1) K, and K, are (0,1)-separated by ¥ if and only if K, and K, are
positively separated.

Now let K, L, and y satisfy (1.2) with «=0 and f=1. Then (1.3) holds, if
and only if
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(6.2) Ve > 03U e with y(y)—p(x) £ &, V(x,y) e (KxL)NU .

The necessity of (6.2) follows from Theorem 1: Let g € ¥ be chosen so that
g<¢@ on K and g=y on L. Then

Y —e(x) £ lg(—gKx), V(x,y)e KxL.

Thus (6.2) follows by uniform continuity of g.
Conversely suppose that (6.2) holds and let u,v € € with v(x)-u(x)=4 for
some A>0. Then we choose U € % so that

(iv) u(x)—u@)| < 42 V(x,y)eU
v) YO -ex) < 42 V(xye(KxL)NU
and let We % so that W™ 'eWg U. Now put
Ky =KN{p <u}, K,=LN{Y >}

and suppose that x e W(K;) N W(K,). Then there exist x, € K, and x, € K,
with (x;,x) € W™! and (x,x,) € W. By definition of K, and K, we have

A < A—lu(x)—u(x)l £ A+u(x,)—u(x,)
= v(xy)—u(x;) £ Y(x))—o(xy).

But this contradicts (v), since (x;,x;)€ W loWg U and (x;,x,) €
K, xK,=KxL. Thus W(K,)NW(K,)= and (1.3) is then a consequence
of (6.1).

Thus we have the following in-between theorem for uniformly continuous
functions (cf. [2]):

7. COROLLARY. Let (X, %) be a uniform space, K and L subsets of X, and ¢ and
Y functions: X — R satisfying
(7.1) 0L p(x)VxeK, yYkx)s1,Vxel,
(7.2) Ve > 03U e with y(y))—o(x) £ ¢ V(x,y)e(KxL)YNU.
Then there exists a uniformly continuous function f: X — [0,1]. withf <@ on K
and fZy on L.
Putting K=X and ¥ =¢ on L we obtain the following extension theorem:
8. COROLLARY. Let (X,%) be a uniform space, L a subset of X and f,:
L — [0,1] a uniformly continuous function. If ¢: X — R satisfies

8.1) Ve > 03U e ¥ with p(x) = fo(y)—& V(x,y) e UN(X x L)
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then f, admits a uniformly continuous extension, f:X — [0,1], such that f< ¢ on
X.

REMARKS (a): If L is compact, ¢ is lower semicontinuous and ¢ = f, on L,
then (8.1) holds. To see this choose U, e # for y € L and U, € % so that

(UyoU)) € {x]| @) > fo0)—1e}
(UgoUg) N (LxL) € {(x,y) e LxXL| |fo(0)—fol)l < de},

and consider the covering {U y(y)| y e L} of L. Let {Uy(y)| y € } be a finite
subcovering, then

U=U0r]n UYE%

yen
works in (8.1).
(b): Note that f,(y)—e=<1—¢, so (8.1) holds whenever we have
(8.2) Ve >03U e with p(x) 2 1—-¢ VxeU(L).

(c): In particular we find that a bounded uniformly continuous function on
an arbitrary subset admits a uniformly continuous bounded extension. This is
not true for unbounded functions, e.g. if X =R and L=N and f,(x)=x? for
x € N, then f, has no uniformly continuous extension to all of R.

9. EXAMPLE. (&/- and €&/ -functions). Let 8 be a (&, Uc, N f)-stable paving on
X (i.e. 4 is closed under countable unions, finite intersections, and & € %). Let
% be the set of functions f: X — [0,1] of the form

f = Z A.'nlB,
where 4,20, 3,4,=1 and {B,} < #. Then clearly ¥ satisfies (1.1) and since &
is (Uc)-stable we have

9.1) K, and K, are (0,1)-separated by & if and only if there exists B € #
with BNK, = and K, < B.

If o/, and o/, are pavings on X we say that # separates &/, and &, if (9.1)
holds for all disjoint sets (K,,K,) € &, x o ,.

Let & be a (&, Nc,Uf)-stable paving on X. f K X and K - R is a
map, we say that fis an o/-function on K if

KN{fzaled, VaeR;
and fis a €/-function on K if (—f) is an o/-function on K, i.e. if
KN{f<a}leod, VaeR.
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Note that in both cases we have K € /. Note also that the «/-functions are
(A ¢, v f)-stable and the ¥.«/-functions are (A f, v c)-stable.

Let @:R" — R be an increasing function (i.e. @(x,...,x,)< Py, .- -» V) If
x;Sy;, V1£j<n). If @ is upper semicontinuous we have

clowza =00 x| x2za)

where the intersection is taken over all rational vectors g=(q;,...,4,)
satisfying: @(q)<a. Similarly if ¢ is lower semicontinuous we then have

{x| d>(x)._<.a}=ﬂj£)l{x| x; £ q;},

where the intersection is taken over all rational vectors g with @(g)>a. Thus
the (Nc¢,Uf)-stability of o/ implies

9.2) If @ is increasing and upper semicontinuous (lower semicontinuous)
on R" and f,,....f, are -functions (¥<«/-functions), then
®?(f,,....f,) is an Z-function (¥.«/-function).

In particular the «/-functions and the 4 «/-functions form a convex cone (put
D(x, Xz)=AXy +px;, 4, p20).
Let f=34, 15 be a member of ¥ and put

I = {n| nfinitecN, Y i; > a}.

jemn

We then have

{f>a} = AR:7

nel(a) jen

{(fga= N X\NB)

nel (a) jen

(fza = () (> a=tn}.

Thus by (Uc, Nf)-stability of & and (Nc)-stability of o/ we find

9.3) If KNBe o for all Be #, then f is an &/-function on K for
all fe%.

9.9 If K\Be .« for all Be 4, then fis a ¥./-function on K for all
fe¥.

We can now deduce the following corollary to Theorem 1.
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10. COROLLARY. Let # be a ({J,Uc,Nf)-stable paving and </, and o, two
(F, Uf, Nc)-stable pavings such that # separates o/, and «,. Now let K and L
be subsets of X and ¢ and { functions: X — R satisfying

(10.1) 0ZeponK,y <lonLandy £ ¢ on KNL.

(10.2) ¢ is a € ,-function on K, and  is an o ,-function on L.
(103) KNBe &, YVBe %.

(104) L\Be S, VBe A.

Then there exist {B,} € # and 4,20 with 3¥,A,=1, such that f=3,i,1p
satisfies

(10.5) f(x) £ o(x), VxeK
(10.6) yY(x) = f(x), Vxel.

PRrOOF. Let € be defined as above, then & satisfies (1.1) and (1.2) holds by
(10.1). So we only have to verify that (1.3) holds.

Let u,v € €, withv—u=4, where A € R,. Thenu=a+ (1-a)gand v=4+a
+ (1 —a)g for some g € ¥ and some a € [0,1]. From (9.2) and (9.3) we deduce
that ¢ —u is a ¥« ,-function, and (9.2) and (9.4) show that Y —v is an .o/,-
function. Thus

KN{p < u} cKN{p—u < 0}
LN{y > v} csLN{y-v 20} = 4, e o,

and since A;NA4,= by.(10.1) we see that (1.3) follows from (9.1) since #
separates ./, and &,.

A e o,

REMARKS. (a): If 4 is a o-algebra, then the set % consists of all measurable
functions: X — [0,1]. This follows from Theorem 1, but may be seen directly.
Actually, if {4,} is any fixed sequence of non-negative numbers satisfying

(10.7) Y ij=1, i< Y i, Vn21,

i=1 j=n+1

then any measurable function f: X — [0,1] is the form

3

f = Z A."nIB,,
n=1
for some sequence {B,} < #.
(b): If # is a o-algebra separating &/, and &/ ,, then # separates &/, and /.
Moreover, if # < o/, N, then (10.3) and (10.4) hold whenever K € o/, and
Led,
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(c): Let %, be an algebra on X, and let o/ = .o/, = o/, be the paving of all &,-
Souslin sets (see [2]). If

B ={B| Be o and X\ Be o},

then 4 is a o-algebra satisfying (10.3) and (10.4) for all K, L € ./, and by the
second separation theorem (see [3]) we have that # separates &/, and .

(d): Let X be a Hausdorff space and # a (J,N¢, Uc)-stable paving on X, so
that # < #(X) (the Borel g-algebra) and

(10.8) Vx; # x, 3B,,B, € # with x; € int (B)) for j=1,2 and B;NB,= .

If o, =9,=2f is the paving of all K-analytic subsets of X (see [3]), then
(10.3) and (10.4) hold if K, L € o/ and # separates &/, and &/, (see [3]).

(e): Let X be a Hausdorff space and 4 a (&, Nc,Uc)-stable paving, so that
# < B(X)NS(F(X)) (S(F(X)) is the Souslin sets over the closed sets). Suppose
that & satisfies

(109) Vxe X VU a neighbourhood of x 3B € 4, such that x e int Bg U.

If &/, =S(F(X)) and &, is the paving of all K-analytic sets, then % separates
o, and &/, (but not &/, and &, in general) and (10.3) and (10.4) hold
provided that K € o/, and L € o/, (see [3]).

(0): If # is a o-algebra on X, ./, is the paving of all Blackwell subsets of
(X, ) and , is the paving of all #-Souslin sets, then 4 separates &, and &/,
and (10.3) and (10.4) hold provided that K € o/, and L € «/,.

In [2] Preiss and Vilimovsky proves an “in between theorem” for uniformly
continuous R-valued functions. By choosing the uniformity appropriately one
easily obtains the corollaries in Example 3 and Example 6 from the results in
[2]. The “in between theorem” (Theorem 1) presented here and the “in between
theorem” presented in [2] are however not comparable. The main difference is
that in [2] the functions may be unbounded (and even infinite) whereas in our
setting the upper function ¢ is supposed to bounded from the below by o and
the lower function is supposed to be bounded from above by f, however in [2]
the “in between function” is chosen from a much larger class, viz. the set of
uniformly continuous functions, than in the case studied here, viz. an abstract
set of functions which is only supposed to be g-convex.
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