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NON-STANDARD CHARACTERIZATIONS
OF IDEALS IN C(X)

JEPPE CHRISTOFFER DYRE

The purpose of this paper is to show how non-standard methods can be
applied to the theory of C(X). Here C(X) is the ring of all realvalued
continuous functions on a completely regular Hausdorff topological space X.
The primary reference to the theory of C(X) is the book by Gillman and
Jerison [3]. In this book you can find the motivation for only considering
completely regular spaces.

In section 1 we give a brief introduction to non-standard analysis. In the
sections 2, 3, and 4 we give simple and intuitive non-standard characterizations
of maximal ideals, prime ideals, z-ideals, etc. These ‘characterizations lead to
the definition of a new class of ideals, the “local” ideals, which are studied in
section 5. Finally, in section 6, we prove that X is an F-space if and only if
every ideal in C(X) is local.

1. Non-standard analysis for pedestrians.

Non-standard analysis is an application of mathematical logic (the theory of
ultraproducts). The subject was founded by Abraham Robinson, his original
book [5] appeared in 1966. The method can be applied to any branch of
mathematics, however, the reader should keep in mind, that any standard
theorem proved by means of non-standard analysis can also be obtained by
standard methods. Below we shall present the two basic features of non-
standard analysis: the transfer principle and the concurrence principle.

In non-standard analysis to any set 4 corresponds the “*-transformed set”
*A. The *-transformed of a mathematical statement is by definition the same
statement with every non-quantized object replaced by its *-transformed
object. By a “mathematical statement” we here mean a “formula” in the strict
sense of mathematical logic (compare [1] and the examples below). The
transfer principle tells us that a statement is true iff the *-transformed statement
is true. Examples: “R is a field” implies that “*R is a field”. Or
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Vne N3dke N: n"<k is equivalent to
Vne *N ke *N: n"<k.

Strictly speaking we should have written * <, but because of the transfer
principle, * < is an ordering of *N and therefore the star is usually left out.

Some further remarks on the *-transformation: If x € 4 we get *x € *A.
Since x £y, iff *x % *y, we have a canonical inclusion 4 ¢, *A4 for any set 4. It
can be proved that A=*A4, iff A is finite [1].— An easy application of
the transfer principle shows that whenever f: 4 — B, *f is a mapping:
*f: ¥4 ~ *B.

The transfer principle tells us something about the *-transformed of an
object. Further information is gained from the concurrence principle: A relation
r< A x B is said to be concurrent if

Va,...,a,e A3beBVie{l,...,n}: (a,b)er.

The concurrence principle states that for any concurrent relation r& 4 x B
there exist b € *B such that

YVae A: (*a,b) e *r.

(*r< *(4 x B)=*A x *B by the transfer principle.) It should be noted, that this
b € *B is by no means uniquely determined. This is a typical feature of non-
standard analysis. As an example of the concurrence principle note that < on
R is concurrent. Therefore there exist M € *R such that x<M for any x € R,
that is M is infinitely great.—In the practical applications of non-standard
analysis the concurrence principle often replaces Zorns lemma.

We define the finite numbers F by

F={xe*R| IyeR,: x|Sy}.
Obviously R F< *R and F is a subring of *R. For any numbers x,y € *R we
write x~y (“x is infinitely close to y”) whenever
YneN: |x—yl < 1/n.

Any number x € F lies infinitely close to a (unique) real number denoted by
st (x), st: F ~ R is clearly a homomorphism.

I hope the above remarks have given you a feeling of what non-standard
analysis is. For further studying of the subject I warmly recommend [1].

2. The Stone-Cech compactification.

By C,(X) we understand the ring of all bounded continuous real functions
on the completely regular space X.
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THEOREM (2.1): For any x € *X, {f € C,(X) | *f(x)x 0} is a maximal ideal in
Cy(X) and any maximal ideal is of this form.

Proor. The mapping f+ st(*f(x)) is a surjective homomorphism:
C,(X) ~R for any xe *X. From this it follows that the kernel
{fe C,,(X)| *f(x)~0} is a maximal ideal. Suppose M is maximal If
fis-- s fn€ M and ¢,,...,¢, € R, there exist x € X such that

Vie{l,..,n}: |fi(x)| < g

since otherwise f2+...+f2 is invertible. By the concurrence principle we
obtain an element x € *X such that

Vie MVYee R, : [*f(x)] <& thatis
M < {fe CX)| *f(x)=0}.

By the maximality of M we have equality.

The Stone-Cech compactification fX of X is the set of maximal ideals of
C,(X). By (2.1) we have BX =*X/~ where g is defined by

Vx,ye*X: x gy = [VfeC(X): *(x)=*f ()] .

It turns out to be advantageous to regard the points of X as subsets of *X
(compare 3.4, 3.5, and 6.1).

Let us just sketch how the topology on X may be constructed (compare
[4]): For fe Cy(X) we define f#: BX — R by

SPp) = st(*f(x), xep.

The topology on BX is the initial topology for the mappings 14, f € C,(X). The
Hausdorff property of fX is obvious. X is canonically a subset of X, by
complete regularity X is topologically a subspace of fX. By the transfer
principle X is dense in fX. Finally, a simple application of the concurrence
principle shows that fX is compact.

The relevance of X to the study of C(X) is shown by the fundamental
theorem of Gelfand and Kolmogoroff [3], which states that the maximal ideals
of C(X) are exactly the ideals M?, p € fX, where

M = {(feC(X)| peZ(f)}.

Here Z(f)ﬁ is the closure of Z(f)=f"'({0}) in BX. In the next section we
shall obtain a non-standard characterization of MP”.
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3. Prime ideals.

In the standard theory of C(X) it is difficult to construct examples of prime
ideals, that are not maximal. To illustrate the usefullness of non-standard
methods we start our investigation of prime ideals by giving an explicit example
of a chain of prime ideals.

ExamMpLE (3.1): Put X =[0,1]. For J € *R, infinite we define
m(J) = {xeF‘ JaeR,: x-JeF}.

It is easy to see that m(J) is a prime ideal in F. Choose d € *R , infinitely small.
For any x € R,, d * and thereby exp (d %) is infinite and we define

P(x) = {fe C([0,1]) | */(d) € m(exp (d~)} .

If fe C([0,1]), *f(d) € F by the continuity of f [1] and therefore P(x) is a
prime ideal in C([0,1]). Suppose x,y € R, and x<y. Then exp(d™%)
<exp (d7Y). From this we conclude that P(y)< P(x). In fact P(y) = P(x): Define
fe C([0,1]) by f()=exp(—t~%), (f(0)=0). Obviously fe P(x). For any
aeR,

*f(d)- (exp (d™)* = exp(~d *+a-d™?)

= exp(d *(a-d**-1)),

which is an infinite number. Therefore f4 P(y). Our conclusion is that
{P(x) I x € R,} is a chain of prime ideals of cardinality X in C([0,1]). Since
card (C([0,1]))=N it is impossible to construct larger chains.

We now return to the general theory of C(X).

THEOREM (3.2): If P is a minimal prime ideal in C(X), there exist x € *X such
that

= {feCX) | *(x)=0}.

ProOF: Suppose fi,. . .,f, € C(X)\ P. Since P is prime f;-...-f, %0, that is
JyeX: (MW FO0A ... ALK *0.
By the concurrence principle there exist x € *X obeying
Vfe C(X)\NP: *f(x) £ 0 or
{feCX)| =0} g P.

However the left hand side is a prime ideal. By the minimality of P we must
have equality.
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For any x € *X we define

P, = {feC(X)| */(x)=0}.

Obviously P, is a prime ideal. We now want to characterize the ideals of the
form P,. Remember that an ideal I is called a z-ideal [3] if

VfeC(X)Vgel: Z(g) = Z(f) = fel.
THEOREM (3.3): For any x € *X, P, is a prime z-ideal and any prime z-ideal is

of this form.

Proor: If f,g € C(X) and Z(g)c Z(f), then Z(*g)= Z(*f) by the transfer
principle. From this we conclude that P, is a prime z-ideal for any x € *X.
Now suppose conversely that P is a prime z-ideal in C(X). If f},. . ., f, € C(X)
are ordered such that f,..., f, € P and f,.,,..., f, € C(X)\ P, we put

f=+...+ff and g=fis1 - Su-
Since P is prime fe P and g ¢ P. Since P is a z-ideal we conclude that
IxeX: xeZ(f)Ax¢& Z(g or
IxeX: fi(x) = ... = fil(x) = 0A fis1(0) £0A ... A filx) £0.

The case k=0 is easily handled and in the case k =n we note that f € P implies
that f is not invertible, that is Z(f)+ . Now, by the concurrence principle,
there exist x € *X such that

VfieC(X): *f(x) =0< feP
or P=P..
In particular 3.2 and 3.3 tell us that any minimal prime ideal is a prime z-
ideal [3]. Note that none of the prime ideals P(x) in example (3.1) are z-ideals,

simply because Z(f,)={0} if f.(t)=exp (—t7%). L
Remember that for p € X, MP={fe C(X) | pe Z(f)ﬁ.

LeMMA (3.4): For any x € *X, P, < MP? implies that x € p.
ProoF: Suppose that x € g, g% p. Choose hy,h, and fin C,(X) with the
following properties:
ge (M)~'A-11D, peE)~'A-L1D
L)~ A-1,1D) = {0}
L)™' A-1,1D) = {1} .
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Obviously f ¢ M? and
VyeX: |lhhO)l <1 =f@=0.
By the transfer principle
Vye*X: |*h,(p) <1 = *() =0.

In particular *f(x)=0. This contradicts the assumption P, MP".

Since MP is itself a prime z-ideal, M? is union of the prime z-ideals contained

in M?. By 3.3 and 3.4 this gives us the following non-standard representation of
M?:

MP = {feC(X)| Ixep: *f(x)=0}.

If we define OP as the intersection of the prime ideals contained in M?, we can
write

07 = {feC(X)| Vxep: *f(x)=0}

since any prime ideal contains a minimal prime ideal by Zorns lemma
(compare 3.2). From the above results it is easy to prove the important
theorem by Gillman, Jerison, and Henriksen [3] that for any prime ideal P in
C(X) there exist a unique point p € fX such that

O’ < Pc MP.

The standard [3] and non-standard representations of M? and OP can be
summarized to

THeoReM (3.5): For p € BX
MP = (feC(X)| peZ(f)} = {feC(X)| Txep: *(x)=0}
07 = {feCX)| peZ(N’} = {feCX) | Vxep: *()=0}.

From this we obtain

CoRrOLLARY (3.6): For any fe C(X)
Z(N' = tpepx | pnZ(N+23},
Z(YV = e BX | psz(*N).
For any x € *X we define R, and i.: C(X) ~ R, by
R, = {*f(x)e *R| fe C(X)}, ii(f) = *(x).

Math. Scand. 50 — 4
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R, is of course C(X)/P, and i, is the quotient mapping: C(X) ~ C(X)/P,.

THEOREM (3.7): An ideal P in C(X) is a prime ideal if and only if there exist
x € *X and a prime ideal Q in R, such that

P={feCX)| *(x)eQ}.

Proor. Given P prime. Choose by 3.2, x € *X such that P, < P. Put Q
=i.(P). Q is a prime ideal in R, and

P={feCX)| *(x)eQ}.

The converse is trivial.

The above theorem tells us that the property of being a prime ideal is locally
determined. I think that (3.7) gives a picture of how prime ideals look.

4. Some other types of ideals.
The non-standard characterization of z-ideals is the following:

THEOREM (4.1): An ideal I is a z-ideal if and only if there exist a nonempty set
A< *X such that

I={feCcXx)| ASZ(*N}.

The proof of 4.1 proceeds in a manner similar to the proof of 3.3.

Comparing 4.1 with 3.3, we get the well-known result [3] that any z-ideal is
an intersection of prime z-ideals, and also that the set 4 can be chosen as a
one-point set iff I is prime. Note also that O? is a z-ideal, and that in this case
the set 4 can be chosen as the “point” p € BX (3.5).

We recall that an ideal I is called pseudoprime [2] if I contains a prime ideal.
Analogous to 3.7 it is easy to prove the following theorem, which gives us a
non-standard characterization of pseudoprime ideals:

THEOREM (4.2): An ideal I is pseudoprime if and only if there exist x € *X and
an ideal A,< R, such that

I={feCX)| *(x)eAd,}.

ExavirLe: An ideal which is pseudoprime but not prime: Choose d € *R,
infir P

f(d)yd e Fy .
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I is easily seen to be an ideal and since P,<1, I is pseudoprime. The function
x| belongs to I. If I was prime then }/{x| € I but |/d/d=(}/d)"" ¢ F.

Finally, let us consider absolutely convex ideals:
An ideal I is called absolutely convex [3] if

VieCX)vVgel: |fl =gl = fel.

THEOREM (4.3): An ideal I is absolutely convex if and only if there exist a
mapping a: *X ~ *R, such that

I={feCX)| Vxe*X:|*(x)| < a(x)} .

The proof is left to the reader.

5. Local ideals.

We have seen that z-ideals, pseudoprime ideals and absolutely convex ideals
all somehow are locally determined (4.1, 4.2, and 4.3). This section contains a
complete description of locally determined ideals (5.2 and 5.3).

DEFINITION: An ideal I is called local if

VIeCX)Y finfoel: (f=f) ... -(f—f) =0= fel.

THEOREM (5.1): Any z-ideal, any pseudoprime ideal and any absolutely convex
ideal is local.

Proor: Suppose I is an ideal, fe C(X), fi,...,f, €I, and (f—f) ...-
(f=f)=0.

1) Iis pseudoprime: By 4.2 and the transfer principle we conclude that there
exist i € {1,...,n} such that f—f; e I. This implies that fe I.

2) I is absolutely convex: |fi|+ ... +|f,| € I, and from |f|Z|fi|+ ... +|f)
we conclude that fe I. Since any z-ideal is absolutely convex the proof is
finished.

The following two theorems justifies the name “local”.

THEOREM (5.2): If I is an ideal which can be written
I = (l{fe CX)| *(x)e A}

for suitable sets B€*X, (B+ ) and A, *R, I is local.
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PRrROOF: Suppose fi,.. ., f, € I, fe C(X) and (f—f,) .. (f—f,)=0. Then by
the transfer principle
Vxe*X Jie{l,...,n}: *f(x) = *fi(x).

But this implies that fe I.
Note that 5.2 in conjunction with 4.1, 4.2, and 4.3 in fact proves 5.1.

THEOREM (5.3): An ideal I is local if and only if
I={feCX)| VYxe*X: *(x) eill}.

ProoF: <= follows from 5.2. = The inclusion < is valid for any ideal. If

fe C(X)N\I and fi,. .., f, € I the locality of I implies that
IxeX: f(x) £ /i) A ... Af(X) *F f(x).

The concurrence principle now tells us that there exist a point x € *X such
that

Vgel: *f(x) + *g(x).

From this we conclude that f does not belong to the right hand side of 5.3.

THEOREM (5.4): An ideal I is local if and only if I is an intersection of
pseudoprime ideals.

ProoF. By 5.3 and 4.2 any local ideal is an intersection of pseudoprime
ideals. On the other hand any intersection of local ideals clearly is local. By 5.1
we then get the converse.

Theorem 5.4 should be compared with the well-known result in algebra, that
an ideal I in a commutative ring R is an intersection of prime ideals iff R/I
contains no nontrivial nilpotent elements.

The intersection of all local ideals that contains a given ideal I is denoted by
T- (“the local closure of I”). T* is the smallest local ideal that contains 1. Of
course I .is local iff I=T". The next two theorems give us non-standard and
standard characterizations of I* for an ideal I.

THEOREM (5.5): For any ideal 1
I = {feCX)| Vxe*X: *f(x)ei)}.
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Proor: The right hand side is a local ideal containing I. If H is a local ideal
and 1€ H we have by 5.3

{(feCX)| Yxe*X: *f(x)ei D)}
c {feC(X)| Vxe*X: *f(x) ei(H) = H.

THEOREM (5.6): For any ideal I,
I={feCX)| 3fy... fuel: (f=f) ..-(f—£)=0}.

PRrROOF: It is easy to see that the right hand side is a local ideal containing I.
On the other hand any local ideal containing I clearly contains the right hand
side.

ExampLE: Put X =R and consider the principal ideal generated by the
identical function (x). Since (|x|+x)- (Jx]—x)=0 and |x| ¢ (x), (x) is not local.
We leave it to the reader to verify that

Bc_)L = {fe C(R) | lim f(x)/x and lim f(x)/x exist} .
x—=0,x>0 x=0,x<0
If we however restrict ourselves to consider the topological space X =[0, ~o[
we shall find that (x) is local. This is an example of a local ideal that is not
absolutely convex (|x-sin (x 1) < |x|).

6. F-spaces and local ideals.

Recall the following definitions [3]: A point p € fX is called an F-point if O?
is prime. X is called an F-space if all points of fX are F-points.

THEOREM (6.1): For a point p € BX the following conditions are equivalent:

1) p is an F-point,
2)dxepVfeCX): *(x)=0 = [Vyep: *(=0],
) VSfeCX): (Yyep: *()20)v (Yyep: *f(»)=0).

PROOF: 1) <> 2): Since O” is a z-ideal, it is prime iff it is a prime z-ideal. By
3.3 we obtain the wanted equivalence.

2) = 3): Choose x according to 2). If fe C(X) and *f(x)=0, then
*(min { £,0})(x)=0. By 2) we get *f(y)=0 for any y € p. Similarly *f(x)<0
implies Vy € p: *f(»)<0.

3) = 1): Suppose f,g e C(X) and f-ge O". If (|*/|—1*g)(y)=0 for every
y € p we must have Yy € p: *g(y)=0 since otherwise there would exist y, € p
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such that *(fg)(yo) %0 (compare 3.5). Correspondingly Vy € p: (|*f]—1|*g]) ()
<0 implies f € O®.

Theorem 14.25 of [3] shows that there exist many characterizations of F-
spaces by means of the algebraic structure of C(X). For instance X is an F-
space iff every finitely generated ideal in C(X) is principal. In [2] Gillman and
Kohls gave another characterization of F-spaces: X is an F-space iff every ideal
in C(X) is.an intersection of pseudoprime ideals. By 5.4 we therefore have:

THEOREM (6.2). X is an F-space if and only if every ideal in C(X) is local.

It is possible to prove = in 6.2 by means of 3.6, 6.1, and a suitable finite
partition of unity on fX (compare [2]). <= in 6.2 can be proved by combining
6.1 with the fact that for any f e C(X) the principal ideal (f) contains |f]. In
particular we notice that 6.2 can be strengthened to: X is an F-space iff every
principal ideal in C(X) is local.

I would like to thank my teacher Anton Jensen and my friends Jens
Corfitzen and Lars Gerhard Jensen for stimulating conversations.
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