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A CHARACTERIZATION OF GORENSTEIN ORDERS
IN QUATERNION ALGEBRAS

JULIUSZ BRZEZINSKI

0. Introduction.

Let Q be a quaternion algebra over the field of fractions F of a Dedekind
ring A. Let Q, be the F-subspace of Q consisting of the quaternions with trace
equal to zero. An A-lattice L on Q, is a finitely generated A-module such that
FL=Q,, and an A-order A in Q is an A-algebra in Q finitely generated as a
module over A, containing the identity element of Q and such that FA=Q.
Each A-lattice L on Q, defines, in a natural way which we recall later, an A-
order O(L) in Q. The aim of this note is to characterize the class of orders in Q
which can be obtained in this way. The main theorem says that A =0(L) for an
A-lattice L on Q, if and only if A4 is a Gorenstein order. Recall that 4 is a
Gorenstein order if A, considered as a left (or right) A-module, is A-injective
(in the category of left A-lattices). Our main objective was to give a proof of
this result which was not limited by the assumption that the characteristic of F
is different from 2. If char (F)=2, it would be possible to deduce a proof from
some known results contained in [2], [4], and Proposition (2.3) of the present
paper. Unfortunately the relevant proofs in [4] do not generalize to arbitrary
characteristic, so we have to give new proofs in the general case. At the same
time we give a proof of Brandt’s invertibility criterion (Theorem (3.5.)) in which
we use orders instead of quadratic forms (as e.g. in [1] or [2, Theorem 10]).
This gives a natural generalization of the result to arbitrary characteristic.

1. Some computations.

Let Q be a quaternion algebra over a field F, that is, Q is a central simple F-
algebra of dimension 4. Q has an involution x — x* such that T(x)=x+x*
and N(x)=xx* are elements of F equal respectively to the reduced trace and
the reduced norm of x € Q. Let Qy={x € Q | T(x)=0}. Define:

{x4, %3, X3} = T((xyx;—%x,x)x3)  for xi,x;,x3€ Q,
and
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{x1,X3,X3}0 = T(x;X;x3) for x;,x,,x3 € Q.

Then {x,,x,,x3} and {x,,x,,x3}, are multilinear and alternating. Note that
{x1,X,,x3} =0 whenever some of the x; belongs to F.

If x4, x5,. . .,x, € Q, denote by d(x;,x,,. . ., X,) the determinant of the matrix
[T(xx})]. If x4,x5,x3 € Qo, let dy(x,,x,,x3)=(1/2)d(x,, x5, x3) which, in the
case of char (F)=2, will be understood as:

T(xx3) T (xx3) T (x3xF) + N (x) T (x2x3)? + N (x2) T(x3xF)* + N (x3) T (x, x3)?

(1.1) LEMMA. (@) {x,, X5, x3)*=d(1, X, X,, X3).
(B) {x1,%5, X335 =dg (X1, X2, X3) = {X X5, X2X3, X3%, }.

ProOF. Let F, be a splitting field of Q, that is Q®F F, is isomorphic to the
matrix algebra M, (F,). Let

|t o e—Ol e‘_OO ande—lo
“=lo 1] “*“Tlool “*T[1 of = lo of
If x,®1=3 a;ej, a;; € F,, then
{x1,x2x3) = {x;®L, x,®1, x;®1} = (det[a;;]){e;, ez €3}
and
d(1,x,,%3,x3) = (det [a;])*d(eo, €y, €5, €3)

where i, j=1. Since the equality {e,e,,e;}>=d(eo,e;,e,,e5) is evident, (a) is
proved. To prove the first equality in (b), it suffices to repeat similar

1 0
:I. The second equality in (b) can be

calculations using e,,e, and e’;,=[0 q

checked directly.
Note that e,,e,, €5 is a basis of Q,®Fr F, and d,(e,, e,,€3)=1. Hence we get

(1.2) CoRrOLLARY. If x4, X5, %3 is a basis of Q,, then dy(x,,X;, x3)=*0.

2. Locally principal lattices.

Let L be an A-lattice on Q, where A4 is a Dedekind ring with the field of
fractions F. Denote by N (L) the A-ideal in F generated by the norms N (x) for
x € L. By D(L) we denote the discriminant of L, that is, the A-ideal in F
generated by d(x,, x,, X3, x4), where x; € L. If A is a discrete valuation ring and
N(L)= (N (x)), where x € L, then Lx ™' =1, x,, x,,x3> ({a,,4a,,. . .,a,> denotes
the A-submodule of Q generated by g; € Q), and D(Lx™ )= ({x,, x,, x3}?) by
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(1.1) (a). Since' D(Lx~')=N(x)"*D(L), D(L) is a square of an A4-ideal in F. We
denote by d(L) the square-root of D(L).

If L and L' are A-lattices on Q, then [L:L'] denotes the product of the
invariant factors of L' in L, that is, if ¢; is a basis of Q over F such that L
=@ ae;, L'= @ ale;, where a;, a} are A-ideals in F, then [L: L']=]] aja;*. Note
that Lo L’ and [L:L"]=A imply L=L".

An A-lattice L on Q is (left) A-principal if L= Ax, where A is an order and
x € Q. L is locally (A-)principal if for each prime ideal p in A4 the localization
L, is A,-principal, where A={x € Q | xLeL}.

(2.1) ProOPOSITION. Let L be a left A-lattice. L is locally A-principal if and only
if [A:L]=N(L).

Proor. We may assume that A is local. For each x € L, we have the
equalities
22 [A:L][L: Ax] = [4:4x] = (N(x)?),
which prove the Proposition if we choose x € L such that N(L)=(N(x)).

Let A*={x € Q | T(xA4)< A}. A is a Gorenstein order if and only if A* is A-
projective as a left (or right) A-module ([5, p. 252]).

(2.3) PROPOSITION. A is a Gorenstein order if and only if N(A*)d(A)=A.

PRroOF. In the case of quaternion algebras A* is A-projective if and only if A*
is locally A-principal ([2, Theorem 2]). Hence by Proposition (2.1), 4 is a
Gorenstein order if and only if [A4: A¥] = N (4% But [4: 4*]=d(A4) "2, which
proves our assertion.

(2.4) ReEMARK. Note that for each A-order 4 in Q, N(A*d(A)< A which
follows from (2.2) for L =A%

3. Orders defined by ternary lattices.

Let (V, q) be a quadratic space over a field F, that is, q: V — F is a mapping
such that g(ax)=a?q(x) for a € F, and

b(x,y) = q(x+y)—q(x)—q()
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is bilinear. The Clifford algebra C(V,q) of (V,q) is the F algebra T(V)/I, where
T(V)=@®;0 T'(V) is the tensor algebra of V, and I is the ideal of T(V)
generated by x®x—q(x), x € V. We denote by C,(V,q) the subalgebra of
C(V,q) generated by 1 € T°(V)=F and the images in C(V, q) of the products
X ®...8®x,, € T¥(V), for r>0, which we denote by [x,,...,x,,].

As earlier, assume that F is the field of fractions of a Dedekind ring 4. If L is
an A-lattice on V, denote by N(L) the norm of L, that is, the A-ideal in F
generated by g(x), x e L. We denote by O(L) the A-order in Cy(V,q)
corresponding to L, which is generated as an A-module by the elements 1 and
al[xi,...,x,.], where x; € L, a € F, and aN (L) < A.

If (V,q) is a half-regular ([3, (2.14)]) ternary quadratic space, then Cy(V,q)
=( is a quaternion algebra over F ([3, (5.21) and (6.11)]), and (V, q) is similar
to the quadratic space (Q,, N), where N is the reduced norm on Q ([3, (5,20)]).
Moreover, Q= Cy(Qo, N), where an isomorphism is given by [x,y] — xy*.
Since the order O(L) is the same if we replace the lattice L by a similar one, we
may restrict our investigation of orders O(L), where L is a lattice on (V,q), to
orders O(L) where L is a lattice on (Qo, N).

(3.1) ProrosiTioN. If L is an A-lattice on (Qq, N), then A=0(L) is a
Gorenstein order in Q.

Proor. We may assume that A is a discrete valuation ring (see e.g. (2.3)). Let
L={xy,x5,x3) and N(L)=(n). Then
A = 0(L) = <1, (1/n)x,x;, (1/m)x;%3, (1/n)x3%,) .
Hence by (1.1)
D(A) = N(L)™3{x,X3,X3%X3,X3%,} = N(L)"3{x;,x3,%3}3 .
One checks directly that
A* = {x,X5X3}¢ 1{X1X2X3, NX3, NX 1, 1X3) .

Since N(AH)=N(A*NQ,) ([4, p. 341]), we get N(A%)={x,, x5 X3}0 2N(L)%.
Hence N(A)d(A)=4, so A is a Gorenstein order by (2.3).

Following [2, p. 222], L is called a semi-order if 1 € L and N(L)= A. Note
that each element of a semi-order L is integral over A4, since N(x) e 4 and
N(1+x) € A imply that T(x) € A.

(3.2) PROPOSITION. If A is a semi-order such that N(A*)d(A)< A, then A is an
order. Moreover, A={1,d(A)A*A*).

PRroor. It suffices to prove the last equality, since N (A4%)"!4*A* is always an
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order ([2, Theorem 6]), and the assumption N(A"d(A)c A implies that
{1,d(A)A*A*> must be an order as well.

As earlier, we may assume that A4 is local. Let A={1,x,,Xx,,x;>. Then
A*= Yo, V1, Y2, 37, where ¥ T(x;x})y;=x; with xo=1. It is easy to check that

(33) x; = {y1.¥2.¥3}0 (T8 =y
where (i, j, k) is a cyclic permutation of (1,2,3). By Lemma (1.1)

d = {xy,X3,%3} = {J’p}’z’}b}o—3{)’1)’2,)’2)’3J3Y1} = {Yb)’z,}’s}(;l

is a generator of d(4). From (3.3) we get dyy,=x;—dT(y;yyg) Since
dD(A)A*A*S N(A%)~ 'A% A%, the products dy;y, are integral over A, so
dT(yy¢) € A. Hence

(34 A = (1,dy,y,,dy,ys,dysy,) .

But all the remaining products dyy,, j,k € {0,1,2,3} are also in A, which
follows easily from the equalities y?= — N (y)) for j=1,2,3, y5=y,— N(y,), and

3
YiYe = Z T(,Vj,VkYi*)xi, Xo=1.
i=0
Hence A={1,d(A)A*A*).

(3.4) THEOREM. A is a Gorenstein order if and only if A=O(L), where L is an
A-lattice on Q,.

Proor. If A is a Gorenstein order, then by Proposition (2.3), d(A)= N(A%)!
=N(L)™!, where L=A*NQ, Hence (3.4) says that A=0(L). The converse
was proved in Proposition (3.1).

(3.5) THEOREM. (Brandt’s invertibility criterion). Let L be an A-lattice on Q. L
is locally principal if and only if N(L*)d(L)< N(L).

ProoF. We may assume that A is discrete valuation ring. If N(L)= (N(x)),
x € L, we replace L by Lx~'. Then A=Lx"! is a semi-order such that

N(A*d(A)< A. Hence A is an order by (3.2), and L = Ax. The converse follows
from (2.1).
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