A CHARACTERIZATION OF GORENSTEIN ORDERS IN QUATERNION ALGEBRAS

JULIUSZ BRZEZINSKI

0. Introduction.

Let Q be a quaternion algebra over the field of fractions F of a Dedekind ring A. Let Q_0 be the F-subspace of Q consisting of the quaternions with trace equal to zero. An A-lattice L on Q_0 is a finitely generated A-module such that $FL = Q_0$, and an A-order Λ in Q is an A-algebra in Q finitely generated as a module over A, containing the identity element of Q and such that FA = Q. Each A-lattice L on Q_0 defines, in a natural way which we recall later, an Aorder O(L) in Q. The aim of this note is to characterize the class of orders in Q which can be obtained in this way. The main theorem says that $\Lambda = O(L)$ for an A-lattice L on Q_0 if and only if Λ is a Gorenstein order. Recall that Λ is a Gorenstein order if Λ , considered as a left (or right) Λ -module, is Λ -injective (in the category of left Λ -lattices). Our main objective was to give a proof of this result which was not limited by the assumption that the characteristic of F is different from 2. If char $(F) \neq 2$, it would be possible to deduce a proof from some known results contained in [2], [4], and Proposition (2.3) of the present paper. Unfortunately the relevant proofs in [4] do not generalize to arbitrary characteristic, so we have to give new proofs in the general case. At the same time we give a proof of Brandt's invertibility criterion (Theorem (3.5.)) in which we use orders instead of quadratic forms (as e.g. in [1] or [2, Theorem 10]). This gives a natural generalization of the result to arbitrary characteristic.

1. Some computations.

Let Q be a quaternion algebra over a field F, that is, Q is a central simple F-algebra of dimension 4. Q has an involution $x \mapsto x^*$ such that $T(x) = x + x^*$ and $N(x) = xx^*$ are elements of F equal respectively to the reduced trace and the reduced norm of $x \in Q$. Let $Q_0 = \{x \in Q \mid T(x) = 0\}$. Define:

$$\{x_1, x_2, x_3\} = T((x_1x_2 - x_2x_1)x_3^*)$$
 for $x_1, x_2, x_3 \in Q$,

and

$$\{x_1, x_2, x_3\}_0 = T(x_1x_2x_3)$$
 for $x_1, x_2, x_3 \in Q_0$.

Then $\{x_1, x_2, x_3\}$ and $\{x_1, x_2, x_3\}_0$ are multilinear and alternating. Note that $\{x_1, x_2, x_3\} = 0$ whenever some of the x_i belongs to F.

If $x_1, x_2, \ldots, x_n \in Q$, denote by $d(x_1, x_2, \ldots, x_n)$ the determinant of the matrix $[T(x_i x_j^*)]$. If $x_1, x_2, x_3 \in Q_0$, let $d_0(x_1, x_2, x_3) = (1/2)d(x_1, x_2, x_3)$ which, in the case of char (F) = 2, will be understood as:

$$T(x_1x_2^*)T(x_2x_3^*)T(x_3x_1^*) + N(x_1)T(x_2x_3^*)^2 + N(x_2)T(x_3x_1^*)^2 + N(x_3)T(x_1x_2^*)^2$$

(1.1) LEMMA. (a)
$$\{x_1, x_2, x_3\}^2 = d(1, x_1, x_2, x_3)$$
.

(b)
$$\{x_1, x_2, x_3\}_0^2 = d_0(x_1, x_2, x_3) = \{x_1x_2, x_2x_3, x_3x_1\}.$$

PROOF. Let F_s be a splitting field of Q, that is $Q \otimes_F F_s$ is isomorphic to the matrix algebra $M_2(F_s)$. Let

$$e_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad e_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \text{and } e_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

If $x_i \otimes 1 = \sum a_{ij}e_j$, $a_{ij} \in F_s$, then

$${x_1, x_2, x_3} = {x_1 \otimes 1, x_2 \otimes 1, x_3 \otimes 1} = (\det [a_{ij}]) {e_1, e_2, e_3}$$

and

$$d(1, x_1, x_2, x_3) = (\det [a_{ij}])^2 d(e_0, e_1, e_2, e_3)$$

where $i, j \ge 1$. Since the equality $\{e_1, e_2, e_3\}^2 = d(e_0, e_1, e_2, e_3)$ is evident, (a) is proved. To prove the first equality in (b), it suffices to repeat similar calculations using e_1, e_2 and $e_3' = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. The second equality in (b) can be checked directly.

Note that e_1, e_2, e_3 is a basis of $Q_0 \otimes_F F_s$ and $d_0(e_1, e_2, e_3) = 1$. Hence we get

(1.2) COROLLARY. If
$$x_1, x_2, x_3$$
 is a basis of Q_0 , then $d_0(x_1, x_2, x_3) \neq 0$.

2. Locally principal lattices.

Let L be an A-lattice on Q, where A is a Dedekind ring with the field of fractions F. Denote by N(L) the A-ideal in F generated by the norms N(x) for $x \in L$. By D(L) we denote the discriminant of L, that is, the A-ideal in F generated by $d(x_1, x_2, x_3, x_4)$, where $x_i \in L$. If A is a discrete valuation ring and N(L) = (N(x)), where $x \in L$, then $Lx^{-1} = \langle 1, x_1, x_2, x_3 \rangle$ ($\langle a_1, a_2, \ldots, a_n \rangle$ denotes the A-submodule of Q generated by $a_i \in Q$), and $D(Lx^{-1}) = (\{x_1, x_2, x_3\}^2)$ by

(1.1) (a). Since $D(Lx^{-1}) = N(x)^{-4}D(L)$, D(L) is a square of an A-ideal in F. We denote by D(L) the square-root of D(L).

If L and L' are A-lattices on Q, then [L:L'] denotes the product of the invariant factors of L' in L, that is, if e_i is a basis of Q over F such that $L = \bigoplus \alpha_i e_i$, $L' = \bigoplus \alpha_i' e_i$, where α_i , α_i' are A-ideals in F, then $[L:L'] = \prod \alpha_i' \alpha_i^{-1}$. Note that $L \supseteq L'$ and [L:L'] = A imply L = L'.

An A-lattice L on Q is (left) Λ -principal if $L = \Lambda x$, where Λ is an order and $x \in Q$. L is locally (Λ -)principal if for each prime ideal p in A the localization L_p is Λ_p -principal, where $\Lambda = \{x \in Q \mid xL \subseteq L\}$.

(2.1) PROPOSITION. Let L be a left Λ -lattice. L is locally Λ -principal if and only if $[\Lambda:L] = N(L)^2$.

PROOF. We may assume that A is local. For each $x \in L$, we have the equalities

$$[\Lambda:L][L:\Lambda x] = [\Lambda:\Lambda x] = (N(x)^2),$$

which prove the Proposition if we choose $x \in L$ such that N(L) = (N(x)).

Let $\Lambda^{\sharp} = \{x \in Q \mid T(x\Lambda) \subseteq A\}$. Λ is a Gorenstein order if and only if Λ^{\sharp} is Λ -projective as a left (or right) Λ -module ([5, p. 252]).

(2.3) PROPOSITION. Λ is a Gorenstein order if and only if $N(\Lambda^*)\mathfrak{d}(\Lambda) = A$.

PROOF. In the case of quaternion algebras Λ^* is Λ -projective if and only if Λ^* is locally Λ -principal ([2, Theorem 2]). Hence by Proposition (2.1), Λ is a Gorenstein order if and only if $[\Lambda: \Lambda^*] = N(\Lambda^*)^2$. But $[\Lambda: \Lambda^*] = \mathfrak{d}(\Lambda)^{-2}$, which proves our assertion.

(2.4) REMARK. Note that for each A-order Λ in Q, $N(\Lambda^*)\mathfrak{d}(\Lambda) \subseteq A$ which follows from (2.2) for $L = \Lambda^*$.

3. Orders defined by ternary lattices.

Let (V, q) be a quadratic space over a field F, that is, $q: V \to F$ is a mapping such that $q(ax) = a^2q(x)$ for $a \in F$, and

$$b(x,y) = q(x+y) - q(x) - q(y)$$

is bilinear. The Clifford algebra C(V,q) of (V,q) is the F algebra T(V)/I, where $T(V) = \bigoplus_{i \geq 0} T^i(V)$ is the tensor algebra of V, and I is the ideal of T(V) generated by $x \otimes x - q(x)$, $x \in V$. We denote by $C_0(V,q)$ the subalgebra of C(V,q) generated by $1 \in T^0(V) = F$ and the images in C(V,q) of the products $x_1 \otimes \ldots \otimes x_{2r} \in T^{2r}(V)$, for r > 0, which we denote by $[x_1, \ldots, x_{2r}]$.

As earlier, assume that F is the field of fractions of a Dedekind ring A. If L is an A-lattice on V, denote by N(L) the norm of L, that is, the A-ideal in F generated by q(x), $x \in L$. We denote by O(L) the A-order in $C_0(V,q)$ corresponding to L, which is generated as an A-module by the elements 1 and $a[x_1, \ldots, x_{2r}]$, where $x_i \in L$, $a \in F$, and $aN(L)^r \subseteq A$.

If (V,q) is a half-regular ([3, (2.14)]) ternary quadratic space, then $C_0(V,q) = Q$ is a quaternion algebra over F ([3, (5.21) and (6.11)]), and (V,q) is similar to the quadratic space (Q_0, N) , where N is the reduced norm on Q ([3, (5,20)]). Moreover, $Q \cong C_0(Q_0, N)$, where an isomorphism is given by $[x, y] \mapsto xy^*$. Since the order O(L) is the same if we replace the lattice L by a similar one, we may restrict our investigation of orders O(L), where L is a lattice on (V,q), to orders O(L) where L is a lattice on (Q_0, N) .

(3.1) PROPOSITION. If L is an A-lattice on (Q_0, N) , then $\Lambda = O(L)$ is a Gorenstein order in Q.

PROOF. We may assume that A is a discrete valuation ring (see e.g. (2.3)). Let $L = \langle x_1, x_2, x_3 \rangle$ and N(L) = (n). Then

$$\Lambda = O(L) = \langle 1, (1/n)x_1x_2, (1/n)x_2x_3, (1/n)x_3x_1 \rangle.$$

Hence by (1.1)

$$\mathfrak{d}(\Lambda) = N(L)^{-3} \{ x_1 x_2, x_2 x_3, x_3 x_1 \} = N(L)^{-3} \{ x_1, x_2, x_3 \}_0^2.$$

One checks directly that

$$\Lambda^{*} = \{x_{1}, x_{2}, x_{3}\}_{0}^{-1} \langle x_{1}x_{2}x_{3}, nx_{3}, nx_{1}, nx_{2} \rangle.$$

Since $N(\Lambda^{\sharp}) = N(\Lambda^{\sharp} \cap Q_0)$ ([4, p. 341]), we get $N(\Lambda^{\sharp}) = \{x_1, x_2, x_3\}_0^{-2} N(L)^3$. Hence $N(\Lambda^{\sharp}) b(\Lambda) = A$, so Λ is a Gorenstein order by (2.3).

Following [2, p. 222], L is called a semi-order if $1 \in L$ and N(L) = A. Note that each element of a semi-order L is integral over A, since $N(x) \in A$ and $N(1+x) \in A$ imply that $T(x) \in A$.

(3.2) PROPOSITION. If Λ is a semi-order such that $N(\Lambda^*)\mathfrak{d}(\Lambda) \subseteq A$, then Λ is an order. Moreover, $\Lambda = \langle 1, \mathfrak{d}(\Lambda)\Lambda^*\Lambda^* \rangle$.

PROOF. It suffices to prove the last equality, since $N(\Lambda^{\sharp})^{-1}\Lambda^{\sharp}\Lambda^{\sharp}$ is always an

order ([2, Theorem 6]), and the assumption $N(\Lambda^*)b(\Lambda) \subseteq A$ implies that $\langle 1, b(\Lambda)\Lambda^*\Lambda^* \rangle$ must be an order as well.

As earlier, we may assume that A is local. Let $A = \langle 1, x_1, x_2, x_3 \rangle$. Then $A^* = \langle y_0, y_1, y_2, y_3 \rangle$, where $\sum T(x_i x_j^*) y_j = x_i$ with $x_0 = 1$. It is easy to check that

$$(3.3) x_i = \{y_1, y_2, y_3\}_0^{-1} (T(y_i y_k y_0^*) - y_i y_k)$$

where (i, j, k) is a cyclic permutation of (1, 2, 3). By Lemma (1.1)

$$d = \{x_1, x_2, x_3\} = \{y_1, y_2, y_3\}_0^{-3} \{y_1y_2, y_2y_3, y_3y_1\} = \{y_1, y_2, y_3\}_0^{-1}$$

is a generator of $\mathfrak{d}(\Lambda)$. From (3.3) we get $dy_j y_k = x_i - dT(y_j y_k y_0^*)$. Since $\mathfrak{d}(\Lambda) \Lambda^* \Lambda^* \subseteq N(\Lambda^*)^{-1} \Lambda^* \Lambda^*$, the products $dy_j y_k$ are integral over A, so $dT(y_i y_k y_0^*) \in A$. Hence

(3.4)
$$\Lambda = \langle 1, dy_1 y_2, dy_2 y_3, dy_3 y_1 \rangle.$$

But all the remaining products $dy_j y_k$, $j, k \in \{0, 1, 2, 3\}$ are also in Λ , which follows easily from the equalities $y_j^2 = -N(y_j)$ for $j = 1, 2, 3, y_0^2 = y_0 - N(y_0)$, and

$$y_j y_k = \sum_{i=0}^3 T(y_j y_k y_i^*) x_i, \quad x_0 = 1.$$

Hence $\Lambda = \langle 1, \mathfrak{d}(\Lambda) \Lambda^* \Lambda^* \rangle$.

(3.4) THEOREM. Λ is a Gorenstein order if and only if $\Lambda = O(L)$, where L is an Λ -lattice on Q_0 .

PROOF. If Λ is a Gorenstein order, then by Proposition (2.3), $\mathfrak{d}(\Lambda) = N(\Lambda^{\sharp})^{-1} = N(L)^{-1}$, where $L = \Lambda^{\sharp} \cap Q_0$. Hence (3.4) says that $\Lambda = O(L)$. The converse was proved in Proposition (3.1).

(3.5) THEOREM. (Brandt's invertibility criterion). Let L be an A-lattice on Q. L is locally principal if and only if $N(L^*)b(L) \subseteq N(L)$.

PROOF. We may assume that A is discrete valuation ring. If N(L) = (N(x)), $x \in L$, we replace L by Lx^{-1} . Then $A = Lx^{-1}$ is a semi-order such that $N(\Lambda^*) \mathfrak{d}(\Lambda) \subseteq A$. Hence Λ is an order by (3.2), and $L = \Lambda x$. The converse follows from (2.1).

REFERENCES

- H. Brandt, Der Kompositionsbegriff bei den quaternären quadratischen Formen, Math. Ann. 91 (1924), 300-315.
- 2. I. Kaplansky, Submodules of quaternion algebras, Proc. London Math. Soc. 19 (1969), 219-232.
- 3. M. Kneser, Quadratische Formen, Göttingen 1973/74.
- M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionen-Algebren, Acta Arith. 15 (1969), 329-365.
- K. W. Roggenkamp, Lattices over Orders II (Lecture Notes in Mathematics 142), Springer-Verlag, Berlin - Heidelberg - New York, 1970.

DEPARTMENT OF MATHEMATICS CHALMERS UNIVERSITY OF TECHNOLOGY S-412 96 GÖTEBORG SWEDEN