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A NOTE ON FUNCTORS THAT
VANISH ON INDECOMPOSABLE MODULES

ISTVAN BECK

Introduction.

For each module 4 whose endomorphism ring is local (Le-module) we
define a functor H4: g6 — 4,% that vanishes on indecomposable modules and

HA(ITl Mi> = l;[ H,(M))

for any family of left R-modules {M},.

Let € denote the category of left R-modules and .# its radical [5]. We use
the functors H, to show that A4 is an injective and projective object in a full
subcategory of € =%/.# whenever A4 is an Le-module. We also show that E is
an injective and projective object in % if E is an injective indecomposable
module.

We then apply the functors H, to study the property that a set of Le-
modules complements maximal summands. In [4] we introduced an
independence structure on the set £(M) of Le-modules that are direct
summands of the module M. We show in Theorem 3.4 that any basis for .# (M)
complements Le-maximal summands, and this generalizes an important part
of Azymaya’s theorem. We also discuss when a module has an Le-
decomposition that complements direct summands (Theorem 3.10).

The main purpose of the last section is to show that the functors H, may
differ from the zero functors. If R is a commutative local ring whose maximal
ideal is principal, we obtain a necessary condition on R so that the direct
product [T R is a direct sum of indecomposable modules.

Terminology.

The terminology follows [3] and [4]. We consider left modules over an
associative ring R with an identity. We let z% (€R) denote the category of left
(right) R-modules.

A module A is called an Le-module if A+ (0) and End 4 is a local ring. We
also assume that indecomposable modules are = (0).
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A module M has an Le-decomposition if M is a direct sum of Le-modules.

If M is an R-module we let J,, denote the Jacobson radical of End M.

The symbol @ is used for internal sum. The expression M=N,®N,
expresses that N, and N, are submodules of M, N,NN,=(0) and N, + N,
=M.

A decomposition M = @, M; complements direct summands, if for any direct
summand K of M, K®(®; M ;=M for some subset JI.

1

Let A be an Le-module and M an arbitrary R-module. Let J(A4, M) be the set
of R-homomorphisms from 4 to M which are not split monomorphisms. Then
J(A,M) is a submodule of the right End A-module Hompg (A, M) and
Homg (4, M)J 4= J(A, M). Hence F ,(M)=Homg (4, M)/J (A, M) is a right 4 ,4-
module where 4, denotes the division ring End A/J 4. The covariant additive
functor F,: g6 — %,, commutes with direct sums by Lemma 1.3 [4] and
Theorem 25 [3].

Let J(M, A) be the R-homomorphisms from M to A which are not split
epimorphisms. Then J(M,A4) is a submodule of the left End A-module
Hompg (M, A) and J,Homg (M, A)=J(M, A). Hence G, (M)=Homg (M, A)/
J(M, A) is a left 4,-module. We observe that G4: g€ — 4,% is an additive
contravariant functor.

1.1. LEmMmaA. Let A be an Le-module and {M,}; a family of R-modules. Let
{e;: M; — 11 M}, be the canonical injections. Then G 4(LI; M,) together with
the maps {G4(g;)}; is a direct product in 4,% of the vector spaces G 4(M,).

Proor. Let 0: G(I1; M;) - T];G(M,) be the map induced by the family
{G(e;)},, that is

0(f+J(L1 M, A) = (fe;+T(M;, ), .

It is trivially seen that 6 is surjective.

Assume that f: [I; M; — A is a split epimorphism. Let g: 4 — LI; M, have
the property that fg=1,. Let n;: [I; M; — M, be the canonical projections. By
Lemma 1.1 in [4], (fe;)(n; 8) ¢ J4 for some i, € I. Hence (f;)(m;,g) is an
isomorphism and therfore fe; is a split epimorphism. This proves that 0 is
injective.

Let ¥V be any right 44-module. Then Homy,(V,4,) has a canonical
structure as a left 44-module. Hence the functor Hom,,(—, 4,) takes right
4 4-modules to left 4 ,-modules. We let F} denote the contravariant functor
Homy, (—,4,4)oF 4. Hence
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F% g6 — 4,4 and %(M) = Homy, (F,(M),4,) .

Since F 4 commutes with direct sums, F¥ takes direct sums to direct products.

We shall define a natural transformation n4: G, — F%. For any R-module
M let niy: G4(M)— F%(M) be defined as follows: Given f: M — A and
g: A — M we let nf(f)(§)=fg. The bars on f, g, and fg denotes the images
modulo J(M, A), J(A, M), and J(A4, A)=J 4. It is easily seen that n%; is a 4,-
linear and that n* is a natural transformation. Moreover, we note that 5%y is a
monomorphism for all R-modules M. For if f+0, then f: M — A is a split
epimorphism and there exists some g: A - M such that fg=1, Hence

()@ +0 so nf(f)+0.

1.2. DeFINITION. Let 4 be an Le-module. Let the functor H 4: g6 — 4,4 be
the cokernel of the natural transformation n4: G4 — F}%.

. 1.3. REMARK. H is a contravariant functor. For any R-homomorphism f:

N — M, we have a commutative diagram with exact rows
A

0= G4(M) —— F4o(M) 22 H4(M) — 0

lGA(f) Ln-m lHA(f)
A

0— G4(N) I, F4+(N) 225 H,(N) - 0.

1.4. THEOREM. Let A be an Le-module. The functor H 4: g€ — 4,% vanishes
on indecomposable modules and for any family of R-modules {M},,

HA(]T[ Mi> =~ [] Ha(M) .
1

ProoF, Let M be an mdecomposable module. If M A, G, (M)=F%(M)
=44 and it is easily seen that 57 is an isomorphism. Hence H 4(M)=0. If M is
indecomposable and not isomorphic to 4, then G ,(M)=F%(M)=0, and again
H,(M)=0.

Let {M;}; be a family of R-modules. We have a commutative diagram with
exact rows

0— G (LIM)— FX(1IM;) - H,(LIM) - 0
‘HGM ‘HFA.(s,) tnﬂm)
0-TIG«M) - [TF4(M) - [TH, (M) — 0.
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By Lemma 1.1, [TG,(g) is an isomorphism and by Theorem 25 in [3],
[1F 4+(¢) is an isomorphism. Hence []H,(g) is an isomorphism. This
completes the proof of Theorem 1.4.

The following two corollaries show that the functors H 4 vanish on a large
class of modules.

1.5. CorOLLARY. Let M be an R-module which is a direct summand of a module
with an indecomposable decomposition. Then H 4(M)=0 for all Le-modules A.

1.6. COROLLARY. If the R-module M has an Le-decomposition, then H 4,(M)=0
for all Le-modules A.

1.7. REMARk. We shall in section 4 show that the functors H 4 need not be the
zero-functors.

2

Let € = g% be the category of left R-modules, .# its radical and € =%/# the
quotient category. For any Le-module 4 we shall show that A is a projective
and injective object in a full subcategory of €.

2.1. DeriniTioN. For R-modules M,N let J(M,N) be the set of
f e Hompg (M, N) for which gf € J), for all g e Homg (N, M).

2.2. ReMARK. If M and N are Le-modules, Definition 2.1 coincides with the
earlier definitions of J(4, N) and J(M, A), see [3].
Let € be the category described by ob % =o0bg¥% and

€[M,N] = Homg (M,N) = Homg (M,N)/J(M,N) .

We use the bar to emphasize that M and N are considered as objects in €. The
category ¥ is additive and there exists a canonical functor T: g€ — € (see [3]
and [5]).

Let 2 be the full subcategory of € consisting of the objects M for which
H 4(M)=0 for all Le-modules A. Corollaries 1.5 and 1.6 give information about
the “size” of 2. We do not know when 2=4¢.

2.3. THEOREM. For any Le-module A the object A is projective and injective in

2.
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Proor, By Corollary 1.6, A € 9. Let f: X — Y be a morphism in 2 and
assume first that f is an epimorphism. Let 4 be an Le-module. We want to
show that

7* = Hom(4,]): 4[4, X]— €[4, Y]
is surjective. Let a=Hom (f*, 4,). By definition €[M, N]
=Hompg (M, N)/J(M, N). We have a commutative diagram
LY, 4] Homd A, @r%, 4]
ot &
Homy, (6[4,Y],44) % Homy, (4[4, X],4,) .
The map Hom (f, 4) is a 4 ,-monomorphism, since f is an epimorphism.

Since X,Ye 2, it follows that n4 and n$ are isomorphisms. We get that
a=Hom (* 4,) is a 4,-monomorphism and therefore the map

7*: 8[4,X] - @[A, Y]
is an epimorphism in €,,. Hence 4 is a projective object in 2.
Assume now that f: X — Yis a monomorphism in 2. Then

7* = Hom(4,7): 9[4,X] — %[4,7]

is a monomorphism of vectorspaces. Therefore a=Hom (f*,4,) is an
epimorphism in 4 €. Since the diagram is commutative, we see that Hom (£, 4)
is an epimorphism. This proves that 4 is an injective object and completes the
proof of Theorem 2.3.

2.4. REMARK. We observe that the proof of Theorem 2.3 only used that nj, is
an isomorphism for all R-modules M. Hence 4 is a projective and injective
object in € provided H,=0.

2.5. COROLLARY. Let R be a ring for which every left R-module is a direct sum
of indecomposable modules. Then A is a projective and injective object in € for
any Le-module A.

Proor. By Corollary 1.5, H,,=0 for any Le-module A. The corollary follows
now from Remark 2.4.

2.6. DEFINITION. (i) Let & (M) be the family of direct summands of M which
are Le-modules.

(ii) Let A be an Le-module. Then % ,(M) denotes the subset of ¥ (M)
consisting of the Le-modules isomorphic to A.
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In [4] we defined an independence structure on ¥ (M) and & 4(M). A subset
Ec % (M) is independent if for any finite subset {A4,,..., 4;} <E the sum 4,
+...+A, is direct and a direct summand of M. Shortly we write
A®D... A<M

Any independent set in an independence structure is contained in a maximal
independent set which is called a basis for the independence structure.

The next lemma is useful when discussing the vanishing of the functors H ,.

2.7. LEMMA. Let A be an Le-module and M any R-module. The following

properties are equivalent:
(i) Hy(M)=0.

(i) For any independent set {A;};=.% 4(M) and any map g: ®; A; — A there
exists a map §: M — A such that for all ie 1, | A;—g| A;: A; — A is not an
isomorphism.

(iii) There exists a basis {A;};< % 4(M) such that for any map g: @, 4; — A
there exists amap §: M — A such that forallie I, g§|A,—g|A;: A; — A is not
an isomorphism.

PRrOOF. (i) = (ii). By definition H ,(M)=0, iff #% is an isomorphism. Let
{A;}; be an independent set in ¥ 4(M). Let f;: A - M be a family of split
monomorphisms from A to M such that im f;= A, for all i € I. By Theorem 2.2
in [4], {fi+J(4, M)} is an independent set in the vector-space F,(M). Let
g2:®;A; - Aandlet g;=g| 4, Furthermorelet f/: 4 - A, be the isomorphism
induced by f;. Since {f;+J(4, M)}, are linearly independent over 4,, there
exists a 4 4-linear map 6: F 4(M) — 4, such that

0(fi+J(A M) = gfi+J,.

Since n4 is surjective there exists a map g§: M — A such that n5 (¢ +J (M, A))
=0. This implies that §f;—g,f: € J4for all i € I. It is then easily seen that §| A4;
—g| A; is not an isomorphism.

(il) = (iii) Trivial.

(iii) = (i) Let {4;}; be a basis for &£ 4(M) which satisfies condition (iii). Let
fii A — M be a family of split monomorphisms such that im f;=A;foralli e I.
By theorem 2.2 in [4], the family {f;+J(A4, M)}, is a basis for the vectorspace
F4(M). Let 0: F 4(M) — A4, be a A4-linear map and let 8(f;+J(4, M))=6,+J 4
where ; € End 4. Define an R-homomorphism

g: ®A, > A by g(fi(a) =da forallaeAdandiel.
By (iii) there exists a g: M — A such that
gl4;—glA;: 4, — 4



14 ISTVAN BECK

is not an isomorphism. One then easily verifies that 7 (g+J(M, 4)) and 6
agree on the basis {f;+J(A4, M)}, Hence n3y=0. This shows that nf is
surjective and therefore H 4,(M)=0.

2.8. COROLLARY. Let E be an injective indecomposable module. Then n% is an
isomorphism for all R-modules M.

Proor. If E is an injective Le-module, the equivalence between (i) and (ii) in
Lemma 2.7 implies that H;=0. Hence n% is an isomorphism for all R-modules
M.

2.9. THEOREM. If E is an injective indecomposable module, then E is an injective
and projective object in €.

PRrOOF. Let E be an injective indecomposable module. By Corollary 2.8, n&,
is an isomorphism for all modules M. Hence Hr=0 and by Remark 2.4 this
implies the theorem.

If J(M, N)=0 for any pair of R-Modules M, N then ¥ =%. Hence Theorem
2.9 implies that any injective indecomposable module is projective. We shall
show that R actually is a semisimple artinian ring.

2.10 THEOREM. The following statements are equivalent for a ring R:
(i) R is a semisimple artinian ring.

(i) For any pair of left R-modules M and N, J(M,N)=0.

(iii) For any left R-module M, J,;=0.

PROOF. (i) = (ii) Suppose that R is semisimple. Let f: M — N and suppose
that f30. Let ker f@M'=M. Then f(M')®@ N’ =N for some N'<= N and we can
define a map g: N — M such that gf (m')=m' for all m" € M. Then 1),—gfis
not an isomorphism and hence f'¢ J(M, N).

(i) = (iii) Trivial.

(iii) = (ii) By Kelly [5] or [3],

JIM®N,M®N) = J(M,M)®J(N,N)®J(M,N)®J(N, M) .

Hence (iii) implies (ii).

(ii) = (i) We assume (ii) and shall show that every left R-module M is
injective. Let M c E where E is injective and the extension M cE is essential.
We claim the canonical map f: E — E/M is in J(E, E/M). Let g: E/M — E be
an arbitrary map. Then kergf>M which is essential in E. Hence by
Proposition 18.20 in [1], gfe Jg. By Definition 2.1, this implies that
fe J(E,E/M)=0. Hence M=E.
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3.

In this section we apply the functors H 4 to study the property that a set of
Le-modules complements maximal summands.

Let K be a direct summand of a module M. If M/K is indecomposable we
say that K is a maximal summand in M, [2]. If M/K is an Le-module we say
that K is an Le-maximal summand. If A is an Le-module we say that K is an 4-
maximal summand if M/K =~ A.

3.1. DerFINITION. Let {4;}; = % (M). The family {A,}; complements Le-maximal

summands if for any Le-maximal summand K, K®A4,=M for some i € I.
Let A be an Le-module. The family {4,}; = ¥ (M) complements A-maximal

summands if for any A-maximal summand K, K®A4,=M for some i € I.

3.2. Remark. If a module M has an Le-decomposition then any
indecomposable summand of M is an Le-module (Azumaya). Hence a family
complements maximal summands if it complements Le-maximal summands.

3.3. THEOREM. Let A be an Le-module and let f;: A — M (i € I) be a family of
split monomorphisms from A to M. Let V be the subspace of F 4(M) generated by
the elements { f;+J(A, M)};. The following statements are equivalent:

(i) The family {f,(A)}; complements A-maximal summands.

(i) For any split epimorphism g: M — A, ni(g+J(M, A)) is not zero on all

of V.

PRrOOF. (i) = (ii) Assume that the family {f;(4)}; complements A-maximal
summands. Let f: M — A be a split epimorphism. Then ker g is an 4-maximal
summand. Hence ker g®f;(A)=M for some i € I. Hence gf;: A — A is an
isomorphism, so

(g +J (M, A)(fi+J(A,M)) + 0.

(i) = (i) Let K be an A-maximal summand and assume (ii). Let g: M — A4
be a split epimorphism such that ker g=K. By (ii)

nu(g+J(M, A)(f,,+J(4,M)) + 0 for some ipel.

Hence g f; ¢ J, and therefore gf;, is an isomorphism. This implies that im f,
is a complement of K. Hence the family {f;(4)}; complements A-maximal
summands.

3.4. THEOREM. Let M be an R-module. Let {A;} be a basis for &£ (M). Then the
Samily {A;}; complements Le-maximal summands. If A is an Le-module and {A;};
is a basis for £ ,(M), then {A;}; complements A-maximal summands.
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PRrOOF. Let 4 be an Le-module and assume that {4;}; is a basis for £ ,(M).
Let f;: A —» M be split monomorphisms such that f;(4)= 4;. By Theorem 2.2
in [4], the set {f;+J(A, M)}, is a basis for F,(M). Hence the vectorspace V in
Theorem 3.3 becomes F ,(M) and since n7 is injective, property (ii) is satisfied.
Hence {A4;};={/;(4)}; complements A-maximal summands.

By Proposition 2.1 in [4], a set E <. (M) is a basis for Z (M), iff EN % ,(M)
is a basis for £ ,4(M) for all Le-modules A. This completes the proof of
Theorem 3.4.

3.5. REMARK. If M =@, A, is an Le-decomposition, then {4}, is a basis for
£ (M). Hence Theorem 3.4 implies that the family {4,}, complements Le-
maximal summands.

3.6. THEOREM. Let {A;}; be a family of Le-modules that complements Le-
maximal summands. Then the family {A;}; contains an independent set which
complements Le-maximal summands.

ProoF. Let {4;}; be a family of Le-modules isomorphic to A4 that
complements A-maximal summands, and let {f;}; be a family of split
monomorphisms from A to M such that f;(4)= A4, for all i e I. Let V be the
vectorspace generated by the elements { f;+J (4, M)};.,. Let I' be a subset of I
such that {f;+J (4, M)}, is a basis for V. Since the elements {f;+J (4, M)},.;
and the elements {f;+J(4, M)}, ; generate the same vectorspace, it follows
from Theorem 3.3 that the family {4,}; complements 4-maximal summands.

The passage from this “local” case to the global situation in Theorem 3.6 is
by Proposition 2.1 in [4], which says that a set E < % (M) is independent, iff
EN2 4(M) is independent for all Le-modules A. We leave the simple details to
the reader.

3.7. REMARK. Let E < ¥ (M) and suppose that E contains a basis for £ (M).
By Theorem 3.4, the set E complements Le-maximal summands. Let M be an
R-module such that H,4(M)=0 for all Le-modules A. Condition (ii) in
Theorem 3.3 then implies that V=F, (M), and hence a set Ec.¥(M)
complements Le-maximal summands, iff E contains a basis for Z(M). A
special case is the next theorem.

3.8. THEOREM. Let M be an R-module which is a direct summand of a module
with an Le-decomposition. A family E = ¥ (M) complements maximal summands
iff E contains a basis for ¥ (M).
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ProoF. Since any indecomposable summand of a module with an Le-
decomposition is an Le-module, a set Ec.#(M) complements maximal
summands, iff the set complements Le-maximal summands. Theorem 3.8
follows then from Remark 3.7.

" 3.9. REMARK. Let V be a vectorspace over a division ring D and let {4}, be a
family of one dimensional subspaces. If the family {4;}; complements maximal
summands then one easily proves that 3 ; 4,=V.

3.10. THEOREM. A module M # (0) has an Le-decomposition that complements
direct summands, iff for any family {A;}; of Le-modules that complements Le-
maximal summands we have that 3 ; A;=M.

ProoF. Assume that M has an Le-decomposition that complements direct
summands. Let {4;}; complement Le-maximal summands. Since any maximal
summand is an Le-maximal summand it follows from Theorem 3.8 that {4},
contains a basis {4}, for & (M). By Theorem 3.10 in [4], @, 4;= M and hence
Y1 A;=M whenever {4;}; complements Le-maximal summands. Let {4;}; be
any basis for #(M). By Theorem 3.4, {4;}; complements Le-maximal
summands. Hence @; 4,=M for any basis {4;}; for £ (M). By Theorem 3.10
in [4] it follows that M has an Le-decomposition that complements direct
summands.

4.

The purpose of this section is to show that the functors H , introduced in the
first section need not be identically zero. The results we prove can be made
considerably stronger, but since we only are interested in providing an example
of a functor H %0 we try to do this as economically as possible.

4.1. LEMMA. Let R be a commutative local ring where the maximal ideal P is a
principal ideal. Let M =[], R; where R,=R for i=1,2,. ... If there exists an
R-homomorphism f: M — R such that f|R;: R; = R is an isomorphism for all i
=1,2,..., then R is complete in the P-adic topology. (Our definition of complete
does not require the topology to be Hausdorff)

ProoF. Let P=(n) and assume that f:T]2,R; » R induces an
isomorphism on each R,. Since an automorphism on R is multiplication with a
unit, we may assume that

flr)=ri+...+r, if n,=0fork>n.

-

Math. Scand. 50 — 2
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Let {r;}?° be a Cauchy sequence. We claim that the series Y r; converge to
f({r,}). For any n=1 there exists an integer N such that r, € P"=(n") for all
k> N. Hence

fqra)=(ry+...4r8) = f£0,...,0,ry 41, PN 2. - -)

and since r,=n"r, for k>N we see that

frah)—=(ri+...+ry) e P".
This shows that Y. r,=f({r,}).

4.2. THEOREM. Let R be a commutative local ring whose maximal ideal P is
principal. Let M =TT R; (R;=R). If Hr(M)=0 then R is complete in the P-adic
topology.

PrOOF. Assume that Hg(M)=0. The family {R;}{° is an independent set in
ZLr(M) since any finite sum is direct and a direct summand of M. Let
g: @Y R; - R be an isomorphism on each R;. By Lemma 2.4 there exists a
map £: [IR; — Rsuchthat §|R;—g|R;: R; — R is not an isomorphism. Since
R is a local ring this implies that ¢|R, is an isomorphism for all i € I. The
theorem follows now from Lemma 4.1.

Since the functors H 4 vanish on any module which is a direct summand of a
module with an indecomposable decomposition we can conclude

4.3. THEOREM. Let R be a commutative local ring whose maximal ideal P is a
principal ideal. If the module [I° R is a direct summand of a module with an
indecomposable decomposition, then R is complete in the P-adic topology.

4.4. REMARK. If R is Noetherian and satisfies the conditions of Theorem 4.3,
then R is necessarily artinian. There are, however, non-Noetherian local rings
whose maximal ideal is principal, for instance valuation rings of rank greater
than one with discrete value group.
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