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GENERALIZATIONS OF ANALYTIC AND
STANDARD MEASURABLE SPACES

NEIL FALKNER

Summary.

The classical notions of analytic and of standard measurable spaces are
generalized to include certain non-separable spaces. These spaces enjoy many
of the same properties as the classical spaces and indeed are characterized by
some of these properties. Combining these characterizations with the fact that
a generalized analytic (respectively generalized standard) space which is
countably separated is analytic (respectively standard) yields new characteri-
zations of analytic (respectively standard) spaces. A simplified proof is given of
a characterization of standard spaces due to Christensen. A metrizable
topological space which is generalized analytic as a measurable space when
equipped with its Baire g-algebra is necessarily separable and is analytic as a
topological space.

Introduction.

In this paper we generalize the notions of analytic and of standard
measurable spaces to include certain spaces which are not countably
generated. The generalized analytic spaces are those we call smooth while the
generalized standard spaces are those we say have the extension property
(abbreviated EP). We show that these spaces have many of the same properties
that analytic or standard spaces enjoy and indeed are characterized by some of
these properties. We show that a countably separated smooth space is analytic
and a countably separated space having the extension property is standard.
Combining these facts with our characterizations of smooth spaces and of
spaces having the extension property gives some new characterizations of
analytic and of standard measurable spaces. In 1.15 we give a simplified proof
of a characterization of standard spaces due to Christensen [2]. Part of the
object of 1.2, 1.7(a), 1.10, and 1.13(b) is to point out the extent to which
countability conditions used in certain classical results are necessary.

Our definitions of smooth measurable spaces and of measurable spaces
having the extension property and our treatment of these spaces are non-
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topological and so perhaps more measure-theoretically illuminating than the
classical topological definitions and treatment of analytic and of standard
measurable spaces. In 4.4 we show that an analytic topological space is smooth
as a measurable space when equipped with its Baire g-algebra and in 4.6 we
show that a metrizable topological space which is smooth as a measurable
space when equipped with its Baire g-algebra is necessarily separable and is
analytic as a topological space.

0. Some Notation and Terminology.

0.1. Let (X, .o/) be a measurable space.

If x,y are elements of X which cannot be separated by an element of .o/, we
say x and y lie in the same fiber of <.

We say (X, &) is countably fibered iff some countable subset of o/ separates
the points of X as effectively as o/ does. In this case, the fibers of .« belong to
o,

We remark that if (X, o) is countably generated, then it is countably fibered.
We shall see (in 1.6) that the converse is true if (X,.o/) is “smooth”.

We say (X, .o) is separated iff o/ separates the points of X.

We say (X,.f) is countably separated iff some countable subset of .«
separates the points of X. In this case {x} € o« for all x € .

0.2. For any set J# of sets, Borelian # denotes the smallest set % of sets such
that the union and intersection of any non-empty countable subset of # are
elements of #, and # = 4.

0.3. If o7, & are sets of sets, then o/ O £ denotes {AxB: A € &/, B e #} and
o ®A denotes Borelian (of ©%). Note that if .o/ and &£ are rings, then &/ @ %#
is a g-ring.

0.4. For the basic theory of the Souslin operation and of analytic sets, we
refer the reader to Bressler and Sion [1].

F1. Smooth measurable spaces.

1.1. DEFINITION. Let us say that a measurable space (X, o) is smooth iff for
each countably generated sub-o-field # of .o, there exists a set Y containing X
and a semicompact class € of subsets of Y such that # < Souslin %.

(As 4 is countably generated, we can take € to be countable, so we get an
equivalent definition if we replace “semicompact” by “compact”.)

1.2. LEMMA. Let (X, o) and (Y, B) be measurable spaces and let f: X — Y be
measurable.
Then graph (f) € o/ @2 iff there exists a countable set ¥ = & such that for
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any y e range (f) and any z € Y with y#z, there exists S € & such that S
separates y and z.

In particular, if f is onto then graph (f) € A @B iff (Y,#) is countable
separated.

REMARK. For the forward implications in Lemma 1.2 it is not important that
fbe measurable; all that matters is that graph (f) € o/ ® % and in fact less than
this will do. For instance, it would be enough to have
graph (f) € Souslin (& ®4). Indeed it is sufficient that graph (f) belong to the
complete field generated by some countable subset of .o/ ®4%.

1.3. THEOREM. For a measurable space (X, o), the following are equivalent:

a) (X, o) is smooth.

b) For any measurable space (Y,2) and any F € Souslin («/ ® %), we have
ny[F] € Souslin 4.

¢) For any measurable space (Y,#) and any F e A @B, we have
ny[F] € Souslin 4.

d) For any countably separated measurable space (Y, %) and any measurable

map f: X — Y, we have f[ X] € Souslin 4.
¢) For any measurable map f: X — R, f[X] is analytic.

(In b) and c), ny denotes the projection of X x Y on Y.)

1.4. THEOREM. Any product (even uncountable) of smooth measurable spaces is
smooth.

1.5. THEOREM. Let (X,.«¢) and (Y,%B) be measurable spaces and let f be a
measurable map of X onto Y.
Suppose (X, .of) is smooth. Then:

a) ((Y, ) is smooth.

b) If (Y,#) is countably separated then f is a quotient map; that is,
#A={BcY:f'[B] e o}.

) If (Y, ) is countably separated and fis 1 — 1, then f'is a Borel isomorphism.

1.6. COrROLLARY. A countably separated (or just countably fibered) smooth
measurably space is countably generated.

1.7. ProposITION. Let (X,s/) be a measurable space, let YS X, and let
B=4oA\Y.

a) If (Y, %) is smooth, then Y e Souslin o, iff there exists a countable set
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& =.of such that whenever y € Y and z € X \ 'Y, there exists S € & such
that S separates y and z.
b) If (X, o) is smooth and Y € Souslin ./ then (Y, &) is smooth.

1.8. ProPOSITION. Let X be a Polish space and let of =Borel X.
Let YS X and let 8= |Y (which is also equal to Borel Y). Then (Y, %) is
smooth iff Y e Souslin «/.

1.9. THEOREM. For a measurable space (X, ), the following are equivalent:

a) (X, o) is Borel isomorphic to an analytic subset of R.
b) (X, o) is countably separated, and there is a set Y containing X and a
semicompact class € of subsets of Y such that o/ =Souslin €.

1.10. PROPOSITION. Let (X, .«/) be a measurable space. Let Y, Y, S X and let
Bi=A|Y; (i=1,2). Suppose (Y;, B, is smooth (i=1,2). Then the following are
equivalent:

a) There exist A, A, € o such that A,NA,= and Y, A; (i=1,2).
b) There exists a countable set & < .o such that whenever y, € Y, (i=1,2),
then there exists S € & such that S separates y, and y,.

1.11 ProrosiTiON. Let (X, /) and (Y,#B) be smooth measurable spaces,
and suppose (Y, ) is countably separated. Let € =/ ®%B. Consider any map
f: X — Y. Then the following are equivalent:

a) f is measurable.

b) graph (f) € €.

c) graph (f) € Souslin €.

d) For every B € #, f “'[B] € Souslin «/.

1.12. DEFINITION. Let (X, .o/) be a measurable space. A sub-o-field # of &
will be said to be determined by its fibers (relative to /) iff whenever 4 € &/
and A is a union of fibers of &, then 4 € &.

1.13. ProprosITION. Let (X, o) be a measurable space and let # be a sub-o-
field of o.

a) If (X, o) is smooth and & is the intersection of a family of countably
generated sub-o-fields of <, then ® is determined by its fibers.

b) If o is countably generated and # is determined by its fibers, then B is the
intersection of a family of countably generated sub-o-fields of .
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1.14. One might ask whether we can take Y=X in 1.9. The next result
implies that we cannot. It is due to Christensen [2], Theorem 3.5. We have a
proof which is significantly simpler than Christensen’s. Also, while his proof
uses the fact that a space on which ever ultrafilter converges is compact, and
thus depends on the full axiom of choice, our proof uses only the principle of
dependent choice. This is of some philosophical interest since most of the
theory of measurable spaces can be developed using only the principle of
dependent choice —even the measurable selection theorems. Now here is the
result.

1.15. THEOREM. Let (X, .o¢) be a countably separated measurable space, and
suppose there is a semicompact family A of subsets of X such that
o/ = Souslin 1.

Let Z={B< X : B, X\ B are both in Souslin "}.

Then:

a) o/ =Borelian ¥ =4%.
In particular, A" is necessarily contained in .of.

b) There is a Polish topology t on X such that each K in A is t-closed and .of
=Borel field t. Thus (X, ./) is standard.

2. Spaces with the extension property.
2.1. DEFINITION. Let us say that a measurable space (X, o) has the extension

property (more briefly, has EP) iff whenever (Y, #)is a measurable space, ZZ Y,
and f: Z — X is (#|Z, of)-measurable, there exists a measurable map g: Y
— X such that g|Z=f.

2.2. A two point discrete measurable space has EP by the definition of 2| Z.

2.3. (R, Borel R) has EP since once we have proved something for measurable
sets (see 2.2) we can prove it for measurable functions.

2.4. Any product of spaces having EP has EP.
2.5. Any measurable subset of a space having EP has EP.

2.6. Suppose X is a Polish space. Then X is homeomorphic to a %, subset
(even a closed subset) of RN. Hence (X, Borel X) has EP by 2.3, 2.4, and 2.5.
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2.7. DEeFINITION. Let (X, o) and (Y, %) be measurable spaces.

We say (Y, ) is a retract of (X, ) iff there are measurable maps f: X —» Y
and g: Y— X such that fog=idy.

Observe that in this case:

a) f[X]=Yand #={B<Y:f '[B] e «}.

b) g is 1—1; indeed g is a Borel isomorphism between (Y,%) and (g[Y],
o | g[Y]).

c) glY]={gof=idx}.

Hence if (X, .o7) is countably separated, then g[Y] € /.

2.8. A measurable space (X, ./) is separated and has EP iff it is a retract of
{0, 1} for some set A. (Here {0,1}4 is endowed with the measurable structure
generated by the coordinate maps; also, we can take for A any set of generators
for o)

2.9. An arbitrary measurable space has EP iff the associated separated
measurable space has EP.

2.10. A measurable space which has EP is smooth.

2.11. If (X, ) has EP, (Y, %) is countably separated, and f: X — Yis 1—1
and measurable, then f[X] € 8.

2.12. A measurable space is Borel isomorphic to a Borel subset of R iff it is
countably separated and has EP.

2.13. ExaMPLE. Let X =R and let ./ be the o-field of Lebesgue measurable
subsets of R. Then (X, /) does not have EP.

2.14. For a measurable space (Y, %), the following are equivalent:

a) (Y, %) is separated and has EP.

b) Whenever (X,.o/) is a measurable space, Q a set, ¢: Q2 - X, &
=¢ (), and ¥: Q — Yis of'-measurable, there exists a measurable
map f: X — Ysuch that Yy =foq.

2.15. Let (2,%) be a smooth measurable space. (X,«/) a countably
separated measurable space, and (Y, %) a measurable space having EP.

Let o: Q — X and y: Q — Y be measurable maps. Suppose w, ' € Q, ¢ (w)
=¢(w') = Y(w)=y(w'). Then there is a measurable map f: X — Ysuch that

Yy=foop.
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3. Varadarajan spaces.

A logic is a g-complete orthomodular lattice. If & is a logic and (X, .#) is a
measurable space, then an (X,.of)-valued observable of % is an
orthocomplementation-preserving o-homomorphism of . into %.
Varadarajan [12] has shown that if (x;) is a countable family of “commuting”
real-valued observables of a logic & then the x;’s are all “functions” of a single
real-valued observable of . This generalizes a theorem of von Neumann
concerning commuting self-adjoint operators.

The main mathematical reason for restricting attention to real-valued
observables is that, as a measurable space, R has a certain nice property. We
abstract this property in the following definition.

3.1. DEFINITION. Let us say that a measurable space (X, &) is a Varadarajan
space (V-space, for short) iff whenever ¥ is a logic, x an (X, «/)-valued
observable of &, (Y, %) another measurable space, and y a (Y,%)-valued
observable of Z such that range (x) Srange (y), then x is a function of y; that is,
there is a measurable function f: Y — X such that x(4)=y(f ~![A4]) for all
Ae d.

32. THEOREM. Let (X,./) be a measurable space. Then the following
equivalent

a) (X, ) has EP.

b) (X, o) is a V-space.

¢) o is a projective object in the category of Boolean o-algebras, and every
two-valued probability measure on <« is a Dirac measure 8, for some
x e X.

REMARK ON PART c. The first part of c) refers only to the algebraic structure
of of. Note also that any projective object in the category of Boolean o-
algebras is necessarily isomorphic to a o-field of sets by the theorem of Loomis
[8]. As for the second part of c), it refers only to how .o sits on the space X ; we
can always make this part hold by adding points to X, and if &/ is countably
generated, it holds automatically.

3.3. LEMMA. Let & be a logic, let (X, o) and (Y, %) be measurable spaces, let x
be an (X, of)-valued observable of £, and let f,g: X — Y be measurable maps.

Suppose x(f "'[B])=x(g " '[B]) for all Be #, and (Y,%) is countably
separated.

Let E={f%g}. Then:

Math. Scand. 49 - 19
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a) Ee o.
b) x is not in E; that is, x(E)=0.
In other words, f=g almost everywhere with respect to x.

It is now easy to prove the following result of von Neumann [9].

3.4. THEOREM. Let (X, o) and (Y, B) be standard measurable spaces. (By 2.12,
standard = countably separated + EP.)

Let £, ¢ be o-ideals in o, B, respectively.

Let @ be a o-isomorphism of /| F# onto B/ ¥.

Then there exist sets [ € #, J € ¢ and a Borel isomorphism ¢ of Y\ J onto
X\ I such that for all A € o,

(4)9) = ¢ '[4)/.5 .

If /S (and hence B/ f) is o-finite (i.c., every orthogonal family in oZ/ 9 is
countable) and not purely atomic, then we may take I and J to be empty.

REMARK. von Neumann actually proved 3.3 in the case where £, ¢ are the
collections of null sets of finite measures u, v on o7, 4, respectively and he even
assumed that @ carried u onto v. Next we give an example of a particular case
of 3.4 which cannot be deduced from the version involving measures, since if Z
is a separable topological space which has no isolated points and in which each
point is a %, set, then every finite Borel measure on Z lives on a set of the first
category (see Oxtoby [10], Theorem 1.6).

3.5. CorOLLARY. Let X and Y be uncountable Polish spaces. Let of =Borel X
and let #=Borel Y.

Let F (respectively #) be the collection of Borel sets of the first category in X
(respectively in Y).

Suppose @ is a g-isomorphism of 4 |F onto B/ F.

Then there is a Borel isomorphism ¢ of Y onto X such that for all A € o,

(4/F) =0 '[4)/ 5.

4. Some topological results.

4.1. NotaTion. For any topological space X, Baire X will denote the o-field
generated by the continuous real-valued functions on X.
Now here is the topological analogue of 1.10.
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4.2. THEOREM. Let A, B be analytic subsets of a topological space X. Then the
following are equivalent:
a) For every a € A and every b € B, there exists f € C(X,R) such that f(a)
1 (b).
(b) A and B can be separated by disjoint Baire sets.
¢) There exists @ € C(X,RN) such that p[A]1N @[B]= .

REMARK. a) = b) is a slight generalization of a result of Frolik [3].

4.3. COROLLARY. Let X be a topological space on which C(X,R) separates
points. Assume X is analytic. Then

Baire X = {Bc X : B and X\ B are analytic} .

4.4. PROPOSITION. Let X be an analytic topological space. Then (X, Baire X) is
a smooth measurable space.

4.5. Frolik [4] has shown that a metrizable space, which is the image of an
analytic topological space under a Baire measurable map, is analytic
(topologically).

By similar methods, one can prove the following more general result.

4.6. THEOREM. Let X be a metrizable space such that (X,Baire X)
(= (X, Borel X)) is a smooth measurable space.

Then X is homeomorphic to an analytic subset of RN. (In particular, X is
necessarily separable.)

5. Proofs.
Some of the simpler proofs are omitted or only commented on.

Proor oF 1.2 (<=). We may assume that Se€ % = Y\S e ¥. Then
graph ()= (X x )\ Usco fT'[SIx (Y\5).

(=) There are countable sets €, 2 contained in &, 2, respectively, such that
graph (f) € Borel field (¢©2). We can take ¥ =2.

PrOOF OF 1.3 (a) = b)). ¥=Borelian (F(O%), so by the idempotence of
the Souslin operation, F € Souslin (2 O &), where 2, £ are countable subsets of
o, B, respectively. As (X, o) is smooth, there is a set X'2X and a
semicompact class # of subsets of X' such that 2 <Souslin X#". Then
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F e Souslin (4" ©O&), by the idempotence of the Souslin operation. Now we
may assume ¢~ is closed under finite intersections. Thus there is a nested ¢ -
valued Souslin scheme (K,) and an &-valued Souslin scheme (E,) such that
F={ N K,xE,.
o s<o

(Here ¢ runs over infinite sequences of natural numbers, s runs over finite
sequences of natural numbers, and s < ¢ means s is a finite initial segment of ¢.)
Let n'y denote the projection of X' x Yon Y. Then

ny[F] = U n/y[ﬂ stEs]
= U n n’Y[KSXEs] s

6 s<a

where the second step follows from the fact that for any o, if K+ ¢ for all s
<o, then N, _, K.+ ¥, by the semicompactness of .#". Thus n[F] € Souslin 4.

(b) = ¢)). &/ ®Z < Souslin (o ®AB).
(c) = d)). graph (f) € ' ®Z by 1.2, and f[X]=mny[graph (f)].

(d) = e)). (R, Borel R) is countably separated, and a subset of R is analytic iff
it belongs to Souslin (Borel R).

(e) = a)). Let # be a countably generated sub-o-field of /. Then there is a
map f: X — R such that #=f~!(Borel R). Now choose a pair (R,7), where R
isaset,and yisa 1 —1 map of R onto R, and RN X = . (We remark that such
a pair can be constructed without using any choice axioms, as follows. Let I be
a set such that there is no map of X onto I; say I =power set of X. For each
iel, let R;=R x{i}. Then for at least one i € I, R;N X = . Let R=R, and let
7((t,)))=t.) Next let Y=X Uy '[R\ f[X]] (note this is a disjoint union) and
define g: Y— R by

fy ifyeX

g(y)z{?(}’) if ye YNX.

Let €={g '[K]: K € X'}, where X" is the collection of compact subsets of R.
Then ¥ is a compact family of subsets of Y (since g[ Y]=R) and # = Souslin ¢
(since if B € 4, then B=g [ f[B]] and f[B] € Souslin ).

Note also that the ¥ we have obtained has an additional property not
required in the definition of smoothness; namely, for any Ce €, CNX € 4.

Proor oF 14. If (X, o)=®, (X, &), where each (X, ;) is smooth, and if
4 is a countably generated sub-o-field of ¢, then # < ®,; #,, where each %, is a
countably generated sub-o-field of «/; and #,={, X} for all but countably
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many i. The proof may now be easily concluded by working directly with the
definition of smoothness.

PRrOOF OF 1.5 a). Apply (e) = a)) of 1.3.

b). As (Y, 4) is countably separated, there is a 1 —1 measurable map g: Y
— R. Let h=gof. Suppose B€Y and f "![B] € «/. Let C=Y \ B. Then g[B]
=h[f~'[B]] and g[C] are disjoint analytic sets in R, so by the classical
separation theorem there are disjoint Borel sets D, ESR with g[B]<D and
g[C1<E. But then B=g ![D] € 4.

c) follows from b).

PROOF OF («) OF a) OF 1.7. Arrange the elements of & in a sequence (S,
and let f=3; (2/3")15'. Then f is measurable, f[Y] € Souslin (Borel R), and
Y=f"'[f[Y]].

Proor of 1.8. By 1.7 we need only prove that (X,.«) is smooth. As X is
separable and metrizable, X is homeomorphic to a set Z in a compact
metrizable space Y. As X is completely metrizable, Z must be a ¥;-set.

PRrROOF OF (b) => a)) oF 1.10. Let f be as in the proof of 1.7. Then
fLY,1Nnf[Y,]=. Now apply the classical separation theorem, and pull back
into X using f 1.

Proor of 1.11 (a) = b)). Apply 1.2.
(b) = c)). Trivial.

(c) = d)). f'[B]=n[graph (/)N (X x B)], where n is the projection of X
x Yon X. Now apply (a) = b)) of 1.3.

(d) = a)). Let Be #. Then A=f"'[B] and A'=f"'[Y\ B] are disjoint
elements of Souslin .«/. Now (4, .o/ | A) and (A', .« | A') are smooth, by 1.7(b)).
Also, the hypothesis 1.10(b)) is satisfied. (Consider a Souslin scheme for A4.) It
follows that 4,4’ € &, by (b) = a)) of 1.10.

ProoF oF 1.13(b)). Let I = X x X. We shall find countably generated sub-o-
fields €, of o (for i € I) such that #=);%, Consider i=(x,y) € I. If x and y
can be separated by some element of %, let ;= /. On the other hand, suppose
x and y cannot be so separated. Let o, 8 be the fibers of .o/ containing x, y,
respectively, and let €; be the o-field generated by « U § and the sets of the form
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AN (XN (xUp))for A € . Then x and y cannot be separated by an element of
€, Note o, f € o as & is countably fibred.

Now in either case, €, is a countably generated sub-o-field of &7, and #<S¥..
Suppose B € ;%,. If x,y € X and x,y cannot be separated by an element of 4,
then B does not separate x and y since B € €, where i=(x,y). Thus B is a
union of fibers of &, whence B € #. Thus #=0),4..

Proor oF 1.15. Clearly & =%, (X, #) is smooth, and (X, &) is countably
separated. Hence o/ =% and «f is countably generated, by 1.5 and 1.6.

It then follows that there is a countable set & < " such that .« & Souslin Z.

Now if x € X, then {x} belongs to & and hence to Souslin . ; therefore {x}
is the intersection of a sequence of elements of .#.

Let # ={N#: F+H finite <&}

If Ke# and xe X\K, then xe M= X\ K for some M e .#, since
{x} e &5 and X is a semicompact family.

Thus, as .# is countable, X \ K is the union of a sequence of elements of .#.
(Note that this is true even if K=X: J e o/, so & € Souslin ¥; hence
& € ¥, but then J € .4 as X is semi-compact.)

In particular we have shown that for every K € #, X\ K € Borelian .
Thus " S 4, so a) is completely proved.

Let 1=.#, Then 7 is a topology on X and, as we showed above, each
element of ¢ is t-closed. Note that 7 is the weakest topology on X with respect
to which the elements of .# are both open and closed.

Let Y={0,1} %, equipped with its usual produet topology. Then Y is a
compact metrizable space. A compatible metric d on Y may be defined by
dwy) = Y w(Myy—yul,

Me #

where w is a strictly positive function on .# with finite sum over .#.

Define f: X — ¥ by £(x)= (Ly(X)ue «-

If x,x" are distinct elements of X then, since {x} € .Z,, there exists M € .#
such that x e M and x' ¢ M; hence fis 1—1.

Clearly then, fis a homeomorphism of (X, t) onto a subspace of Y.

Thus to show that (X, ) is Polish, it is sufficient (and necessary) to show that
f[X] is a @sset in Y.

Let ¢ be the metric (compatible with 7) on X defined by o(x,x')
=d(f(x), f(x)).

Then as .# is a base for 1, we can find a double sequence (M (i, j)) in .# such
that for each i, {M(i, j): j=0,1,. ..} is a covering of X by sets of g-diameter less
than 2% For each i,j choose U (i, j) open in Y such that M(i, j)=f "'[U(, j)].
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Let T=ZN(N;U; U, j)), where Z is the closure of f[X] in Y. Then Tis a
%s-set in Y.

We claim T=f[X].

As X =U; M(i,)) for each i, f{X]< T. Let us prove the other inclusion. Let
y € T. Then since y € Z, there is a sequence (x,) in X such that f(x,) — y.

Now for each i, y e U(i,j;) for some j; then for some k, we have
f(x) € U(i,j;) for all k=k,

Consider any natural number n; let k=max{ko,...,k,}. Then
x, € NI_o M(i,j;); in particular, the intersection is non-empty.

Thus there exists x e (;M(i,j,), since ¥ is semicompact. Since -
diameter (M (i, j;)) — 0, (x,) t-converges to x. Hence f(x)=y.

PRroOOF OF 2.3. It is good enough to prove this with R replaced by [0, nc]. Let
(Y, %) be a measurable space, let Z< Y, let €=4%|Z, and let f: Z — [0, 0] be
¢-measurable. Then f=37,c¢;l¢ for suitable numbers c; € [0,00) and sets
C; € €. Foreach i, let B; € #such that BNZ=C, Letg=32,c;15. Then g is
#-measurable, and g|Z=f.

ProOOF OF (=) oF 2.8. Let A be any set of generators for .. Define g: X
— {0,1}4 by

g(x) = (14(x))aen -

Then g is a Borel isomorphism onto its range. (g is 1—1 as (X, &) is
separated.) Thus g~! extends to a measurable map f: {0,1}" — X.

REMARK ON THE PROOF OF 2.9. The proof of this trivial result depends,
annoyingly, on the full axiom of choice. The rest of the results of this paper, with
the exception of 4.6, require no stronger choice axiom than the principle of
dependent choice, provided those results which depend on 2.9 are reformulated
so as to talk only about separated measurable spaces.

ProoF oF 2.10. Let (X, o) have EP. First suppose (X, o) is separated. Then
for some set A, there is a measurable map of Y={0,1}" onto X, by 2.8. Now Y
is smooth, by 1.4. Hence (X, /) is smooth, by 1.5(a)). Now if (X, <) is not
separated, then conclude by applying 2.9 and then (e) = a)) of 1.3.

PRrOOF OF 2.11. By 2.10 and 1.5(c)), fis a Borel isomorphism onto its range.
Thus as (X,.o) has EP, f ! extends to a measurable map g: Y — X. Now
fIX]1={fog=idy}, which belongs to # as (Y,%) is countably separated.

ProoF oF 3.2. First let us emphasize that by “projective” in ¢) we mean that



296 NEIL FALKNER

whenever we have a morphism of &/ into a quotient, we can lift it to the
numerator. This may not be the same as the abstract categorical definition of
projectivity, for I do not know if the categorical epimorphisms in the category
of Boolean g-algebras are really onto maps.

Now it is easy to show that each of a), b), and c) of 3.2 holds for (X, &) iff it
holds for the separated measurable space associated with (X, .o/), Hence let us
assume that (X, .) is separated.

(a) = b)). By 2.8, (X, %) is a retract of {0,1}4, for some set A. Now both
products and retracts of V-spaces are V-spaces. Thus (X, &) is a V-space.

(b) = c)). First let us check that &/ is projective. Let #,% be Boolean o-
algebras, let f be a morphism of & onto €, and let y be a morphism of .« into
%. (Note morphisms preserve 0 and 1, by definition.) By Loomis [8], there is a
measurable space (Y, %) and a morphism ¢ of 2 onto %#. But then fod is a
(Y, 2)-valued observable of the logic %, y is an (X, .o)-valued observable of &,
and range (y) Srange (fod). Thus, as (X, &) is a V-space, there is a measurable
function f: Y — X such that y(4)=Bo6(f "![A4]) for all A € /. Let a(A)
=6(f "![A]) for all A € /. Then a is a morphism of o/ into %, and y = foa.

Next, let u be a two-valued probability measure on .o/, and let us show that u
is “fixed”. Let Y be a one-point set; say Y={p}. Let # be the power set of Y.
Let y=idg and let x: o/ — # be defined by

g if p(4)=0

x4 = {Y if p(A)=1.

Then x and y are observables of the logic %, and range (x)=range (y). Thus, as
(X, &) is a V-space, there is a map f: Y — X such that x(4)=y(f ~[4]) for all
A € o/. But then u=4,

(c) = a)). Let (Y, %) be a measurable space, let Z< Y, let €=%|Z, and let
f+Z - X be (%, o)-measurable. Define y: & — & and p: # — € by y(4)
=f"![A], B(B)=BNZ. Then y and B are morphisms of Boolean g-algebras,
and f is onto. Hence there is a morphism a: &/ — £ such that y=foa. For
each y € Y, 6,0a is a two-valued probability measure on &/, and so is of the
form §, for some x € X; moreover this x is unique since we are assuming
(X, o) is separated. Thus we obtain a map g: Y — X such that § oca=4,,, for
each y e Y. Then for any 4 € &/, g"'[A] =a(A4). Thus g is measurable, and

(812)7'[4] = g7 [A1NZ = B(x(4) = y(4) = f'[A] forall Ae o .
As (X, o) is separated, it follows that g|Z=f.

ProoF oF 3.4. By 3.2, (X,.«) and (Y, %) are V-spaces. From this it follows
easily that there are measurable maps f: X — Y, g: Y- X such that
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®(A/#) = g"'[4)/# and @7'[B/f] = f"'[BlS

forall A € o and B € #. Let I ={gof*idy}, J={fog=*idy}. Let o=g| Y\ J.
Then ¢ is a 1—-1 map of Y\J onto X\1I, and ¢ !=f|X\ I Also, as
(X, o) and (Y, #) are countably separated, it follows from 3.3 that I € .# and
J e ¢. Now if &//# is not purely atomic, then X must be uncountable so
(X, s#) is Borel isomorphic to {0,1}N by 2.6 of Christensen [2]. But then,
letting =1{0,2,4,...}, T={1,3,5,.. .}, we can write X as U,c(o 1= X,, where
for each a, X, € o and (X,, & | X,) is Borel isomorphic to {0,1}”. Thus if we
also assume that &//.# is o-finite, then for some a, X,/ #=0. Then let I
=IUX,_, J'=JU¢@ '[X,]. Then I’ and J' are uncountable, so again by 2.6 of
Christensen [2], there is a Borel isomorphism y of J' onto I'. To conclude, let

. _Je on Y\J
¢ = Yy onJ.

Then ¢’ is a Borel isomorphism of Yonto X, and #(4/.#)=¢’ ~1[4]/ ¢ for all
Ae .

ProoF ofF 3.5. By 20 (F) of Sikorski [11], «//#={U/#: U open <X}.
Suppose U is open in X and U/.# is an atom of «//.#. If p, q are distinct points
of U then there are disjoint open sets V, W U with p e V, g € W. But then
0+ V/S +U/#, contradicting the assumption that U/# is an atom. Thus
U ={p} for some p which is an isolated point of X. As there are only count-
ably many such isolated points, «//# is not purely atomic. Next suppose (U
is a family of open sets such that (U;/.#) is an orthogonal family in «//#. For
each i, let

Then (V) is a disjoint family of open sets in X, so V;=J for all but countably
many i. But by 6.35 of Kelley [5], U,\ V; s of the first category in X for each i.
Thus for every i, U;/# =V,/#. Hence /5 is o-finite.

Proor OF 4.2.. (a) = b)). As 4 and B are analytic, there are topological
spaces Y and Z, sets M Y and N<Z, and continuous maps g: M — X and
h: N - X such that

g[M] = 4,
h[N] = B,

M = (| U K} where each K} is a closed compact subset of Y,
ieN jEN
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N=N L} where each LY is a closed compact subset of Z .
ieN je
Suppose A and B cannot be separated by disjoint Baire sets. Then by induction
we can construct j(0),;(0),j(1),j(1),... € N such that for each ke N,
g[K (k)N M] and h[ L(k) N N] cannot be separated by disjoint Baire sets, where

k
K® = () Ko

k
Lk) = iDO L}(,-, .
Let
K= Kk, L= Lk).

keN keN

Then K is a compact subset of M and L is a compact subset of N. It follows
readily from the hypothesis of a) that there are open Baire sets U, V< X such
that g[K]< U, h[L]<V,and UNV=F. Now g~ '[U]=G N M for some open
set G Y. Next, for some k, € N, K(k,)= G, as (K(k)) is a decreasing sequence
of closed compact subsets of Y whose intersection is contained in G. Then
g[K(k,)NM]<cU. Similarly, for some k, e N, h[L(k,)NN]jgV. Let k
=max {ky,k,}. Then g[K(k)NM] and h[L(k)NN] are separated by the
disjoint Baire sets U and ¥, which is a contradiction.

(b) = c)). Let E, F be disjoint Baire sets which separate A, B. Then there is a
sequence (f;) in C(X,R) such that E,F € 6(fq, f;,. - -)- We can take ¢ to be the
element of C(X,RN) defined by o(x)=(fo(x), fi(X),. . .).

(c) = a)). Clear.

PRrooF OF 4.4. There is a topological space Y, a 4", set X' < Y, where . is
the collection of closed compact subsets of Y, and a continuous map f of X’
onto X. Now Baire X is equal to the Borelian family generated by the zero sets
in X. Thus if we let o =f~! (Baire X), then .o = Borelian 2#". Thus (X', &) is
smooth. Hence (X, Baire X) is smooth by 1.5.

PROOF OF 4.6. Let us begin by showing that X must be separable. Suppose
not. Then (provided we work in a set theory in which we can make aleph,
choices successively, each depending on all the preceding ones) we can
construct a closed discrete set S in X, with card (S)=aleph,. The metrizability
of X is used in this construction. Let fbe a 1—1 map of S into R. As each
subset of S is closed in X, fis measurable. Thus f[S] is analytic, by 1.3. But an
uncountable analytic subset of R contains a homeomorph of {0,1}N, by the



... ANALYTIC AND STANDARD MEASURABLE SPACES 299

theorem in II1.36.V of Kuratowski [6]. (We remark that the proof of this fact
given by Kuratowski appears to depend on the full axiom of choice, but this
can be avoided by using a (measurable) selection theorem depending only on
the principle of dependent choice; e.g., see 6. of Kuratowski [7].) Thus
card (f[S])=c, where c=card (R). But every subset of f[S] is the image, under
f, of a closed subset of S, and so is analytic. This implies that
card(Souslin(Borel R))=2°, which is a contradiction. Thus "X must be
separable. Hence X is homeomorphic to a subset Y of RN. As (X, Baire X) is
smooth, Y is analytic, by 1.8.

6. Concluding remarks.

First I would like to say that I discussed this paper with J. Hoffman-
Jorgensen and he informed me that he has proved the following result:

THEOREM. For a measurable space (X, /), consider the following statements:

a) For every measurable space (Y,#) and every F € /@B, we have
ny[F] € Souslin 8, where ny is the projection of X x Y on Y.

b) For every o/-valued Souslin scheme (A,), the set {o € NN: N, A, + &} is
an analytic subset of NN, where NN is given its usual product topology. (See
the proof of 1.3 for the notation.)

c) Whenever (Y,%) is a measurable space, Z<Y, and [ Z — X is B|Z-
measurable, there exists W e Souslin # and a #| W-measurable map g: W
— X such that Z< W and g|Z=f.

Then a) and b) are equivalent and are implied by c).

In view of (a) < c)) of 1.3, this theorem of Hoffmann-Jergensen yields an
additional characterization of smooth measurables spaces, namely b), and also
generalizes 2.10. More recently, Hoffmann-Jorgensen has found examples of
smooth measurable spaces which do not satisfy his condition c); in particular,
he showed that an uncountable set with its countable-cocountable Borel
structure is a smooth measurable space which does not satisfy c).

Some readers may be unfamiliar with the notion of a semicompact class; for
this they may consult Christensen [2].

I would like to emphasize that the point of view taken in section 1 of this
paper makes it possible to develop the theory of analytic measurable spaces
without first developing the theory of classical analytic topological spaces. To
make this clear, let me mention two points. First, we have used the fact that a
subset of R is analytic iff it is an element of Souslin(Borel R), but we could have
just taken this as the definition of analyticity for subsets of R for the purposes
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of section 1. Second, we have used the fact that any disjoint pair of analytic
subsets of R can be separated by disjoint Borel sets. This can be proved
topologically, as in 4.2, but it is also a consequence of the following “abstract”
separation theorem:

THEOREM. Let )" be a semicompact class of subsets of a set X, and assume
K ,K,e X = K,NK, € X. Let B be a Borelian family of subsets of X such
that K, K, € A", K, NK,=F = there exist B, B, € # with K, £ B,, K, < B,,
and B, N B,={J. Suppose A,, A, € Souslin ¥ with A, NA,=. Then there
exist B;,B, € # with A;<B,, A,<B,, and BiNB,={.

This theorem can be proved in the same manner as 5.8 of Bressler and Sion
[1]. Also, note that one suitable choice of # is 4 =Borelian %"

Perhaps a little more explanation of the statement of proposition 1.10 would
be appropriate. Suppose (X,of) is a smooth measurable space and
Y,, Y, € Souslin o with Y,NY,=¢F. Then (Y,,«|Y,) and (Y,, & |Y,) are
smooth and b) of 1.10 is satisfied (we can take & to consist of the collection of
sets occurring in a pair of o/-valued Souslin schemes defining Y, and Y,,
respectively). Thus we can conclude that a) of 1.10 holds; that is Y, and Y, can
be separated by disjoint members of ..

Finally, here is a typical application of a) of proposition 1.13. Let (2, %) be a
measurable space, let (E, &) be a separated measurable space, and let (X )o <, <o
be a process in (E, &) over (2, %). For 0=t< 00 let

F,=0(X;:0=s55)

Foo=NZs.
s>t

If w and ' are elements of Q, then w and ' lie on the same fiber of %, iff
X (w)=X (') for 0Ss=<t. Also, w and ' lie in the same fiber of &, iff there
exists £¢> 0 such that X (w)= X (o) for 0<s<t+¢. (Note that ¢ depends on w
and o’ and that as w and o' vary, arbitrarily small values of ¢ will in general
occur.) Now suppose in addition that E is a separable metrizable space, that &
=Borel E, and that (X,) is either right-continuous or left-continuous. Then for
each t, %, is countably generated and %, is thus an intersection of countably
generated sub-g-fields of #. Finally, suppose (Q,#) is smooth. Then by
1.13(a)), #, and &, are determined by their fibers. From this is obtain the so-
called:

GALMARINO’s TEST. Let T: Q — [0, 00] be #-measurable. Then:
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a) T is an (F)-stopping time iff [¢ € [0,00), w, 0 € Q, X,(w)= X () for
0sSsst = (T(w)=t and T(w')=t) or (T(w)>t and T(w')>1)].

b) Tis an (F,,)-stopping time iff [t € [0, ), w, ' € Q, X (w)=X,(w’) for
0=s=<t+e for some ¢>0 = (T(w)<t and T(w)<t) or (T(w)>t and
T(w')>1)].

In words, Tis an (% ,)-stopping time iff Tdepends only on the past and present;
Tis an (% ,,)-stopping time iff T depends only on the past, the present, and the
“infinitesimal future”. We caution the reader not to overlook the hypotheses
made in the paragraph preceding the statement of Galmarino’s test.
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