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ON STRONG MARKOV DUALS

S. E. GRAVERSEN and MURALI RAO

Introduction.

A strong Markov process with an excessive reference measure always has a
moderate Markov dual. Necessary and sufficient conditions for the existence of
a strong Markov dual are known. However these conditions seem hard to
check. In this note we show that if the potential kernel of a Hunt Process is
“nice”, then there is a strong Markov dual. Specifically let X, be a transient
Hunt process with excessive reference measure dx. Let u be the potential kernel
of the process. If for each x, y — u(x, y) is lower semi continuous and there is a
positive function f such that [ u(x, y) f (x)dx is continuous and positive, then the
process admits a strong Markov dual. This dual may have branch points, but
as shown in [3], these form a polar and copolar set iff the given process satisfies
Hypothesis B of Hunt. We are unable to give reasonable conditions more
general than that of [4] under which this happens. This paper is related to [4].
However the conditions, methods, and results are diferent.

Notations and terminology will generally be that of [1]. For a real function
f: non-negative means f(x) 20 V x, whereas strictly positive means f(x)>0 V x.
X, will denote a transient Hunt process with a locally compact second
countable state space E. We assume that there is a Radon measure dx and a
non-negative function u(-, -) on E x E such that

1) y — u(x,y) is lower semi continuous for each x € E. If y#z, the functions
u(-,y) and u(-,z) differ on a set of strictly positive dx measure.

2) There is a strictly positive function ¢ such that [ u(x, y)¢(x)dx is continuous
and non-negative.

3) For each non-negative Borel function f we have

E"U f(X.)dt] = Ju(x,y)f(y)d%
0
The path we take is the following: We show that a time change of X, has a

strong Markov dual. This implies that the right continuous version of the time
changed moderate Markov dual is in fact strong Markov. Changing time we
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conclude that the right continuous version of the moderate Markov dual is
itself strong Markov.

Let for f=0 measurable

Ufx) = ju(x,y)f () dy
uro = Iu(x,y)f(X)dX-

ProposiTION 1. U satisfies the complete maximum principle: For f,g20 and
constant b>0,

(1) b+0f=0g on (g>0)

implies the inequality everywhere.

Proor. By increasing b slightly we may assume that in (1) strict inequality
obtains. We may also assume that g has compact support; the general case
then follows by monotone convergence. U (ng) is continuous for any n, where ¢
is the function in condition (2) of the introduction. But since U(ng)
=U(ng A g)—U(g— (no A g)) and both summands are lower semi continuous,
it follows that U(ng Ag) is also continuous. This sequence increases
monotonically to Ug. Therefore if we can prove the statement for g of the form
ne A g it also holds for general g. Hence we may assume that in (1), Ug is
continuous and g has compact support. Since we have assumed that there is
strict inequality in (1), the same limit procedure can be applied to fand we may
assume that Uf is continuous also.

Now it is well known that there is a dual potential kernel V, for example the
potential kernel of a moderate Markov dual. Obviously Vh=Uh almost
everywhere for each Borel h. And V satisfies the complete maximum principle.
Hence (1) holds almost everywhere and by continuity everywhere. The proof is
complete.

Using standard techniques we can find a strictly positive function a such that

()
J adx = 1, Ua,Ua are non-negative and bounded and Oa is continuous .
The kernels U, U, defined by
U.f = Ulaf), U.f = Ulaf)
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also satisfy the complete maximum principle. U, corresponds to the Hunt
process obtained by time change of X, using the additive functional

On the other hand, since U, is a uniform kernel, by a theorem of Hunt, there is
a submarkov resolvent U2 such that U%=10,.

It is seen that U, and U, are in duality relative to the probability measure
a(x)dx. That the corresponding resolvents are also in duality can be seen, for
example by series expansions.

Finally we remark that for each bounded measurable f, U, f'is bounded and
continuous.

In the next article we show using the Ray-Knight approach that U%
corresponds to a strong Markov process on E.

2.

In this article we let R, S denote two potential kernels which are in duality
relative to a finite measure m on E. R* and S* denote the corresponding
resolvents. We also assume that

$%f is continuous if f is bounded measurable.
1) The set {S*f} separates points in E.
R* corresponds to a Hunt process Y,.

Using a known technique [see for example 2] we can form a min-stable,
separable, convex cone # of bounded non-negative continuous functions on E
such that

# contains constant and U, S*# separates points of E and is contained in
H.

Let E denote the compactification of E using #. E is a compact metric
space. E contains a continuous (because elements of # are continuous) and 1
—1 (because # separates points) image of E. Since topology on compact sets
is not disturbed by 1 —1 continuous maps, the original topology on E agrees
with the topology on E inherited from E, in particular E can be regarded as a
g-compact borel set of E.

The definition of E implies that elements of # can be extended to be
continuous on E. Denoting the extension by a bar on top, the Stone-
Weierstrass theorem implies that # — # is dense in C(E).

The operators S* have a natural definition denoted §* on C(E) into itself and
thus defined they satisfy the resolvent equation. Also the range of §* will
separate points of E. In other words (5% a>0) is a Ray resolvent on E.
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According to a theorem of Ray this resolvent gives rise to a Ray process (Y,, P*)
on E.
We will have use for the following two notes.

Norte 1. For all x € E and o >0,
S*(x,E) = 0.
To see*this, let x € E and 220 be given. Given compacts K < E and L < E° let
fe C(E) be such that 0<f=<1, fequal to 0 on K and 1 on L. Then
§*(x,L) < 5 (x) = S*(flp(x)
= S*(1p p(x)

and the last quantity is small if K is large.

NoTE 2. mP,=m. Here we are regarding m as a measure on E and P,f
—lim, . a8%f for all fe C(E).

REMARK. From the construction it follows that
aS*f (x) = aS*f|g(x)

for >0, x € E and f € C(E); therefore P,f(x)=f(x) for x € E and fe C(E).
Thus all points in E are non-branch points.
Note 2 follows from

mP,f = fpofdm = lim a ~[S“‘fdm

a—oc

= limaJ.S"fdm = dem
because lim aS%f=f m-almost everywhere, and everything is bounded.

By regarding points not in E as traps for example, Y, can be considered a
right-continuous with left limits strong Markov process on E. Y, and Y, will
then be two strong Markov processes on E which are in weak duality relative
to m. We also have

mPy,=m and mPy,=m

as measures on E. In other words we are in a set-up studied in Walsh [6] in
which paper the arguments about duality used in the proof of the following
theorem can be found.
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THEOREM. (Y, P, x € E) is a right continuous strong Markov process on E. Its
left limits also belong to E. It is in weak duality with the given process Y,.

Proor. For compact K < E, duality implies
P{3t<n, Y,e EXK, {2n}
= P*{3t<n, Y, e EXK, (2n} = &,(K)

say. &,(K) tends to zero as K increases to E.

The Borel-Cantelli lemma implies the existence of a sequence K, of
compacts in E satisfying

for P™-almost all @ 3 n such that
Y, (w) € K, for all t<n if {(w)=n.

In other words P™-almost surely both Y, and Y,_ belong to E. The function s
defined by

s(x) = P*[3t>0,Y, e ENE or Y,_ e ENE]

is seen to be excessive. s=0 m-almost everywhere, as shown above. Since aS®s
increases to s, we see that s =0 on E. Hence for all x € E, P*-almost purely Y,
and Y,_ both belong to E. This is the assertion in the theorem.

We continue with section 1. As we remarked in section 1, U, is the potential
kernel of the time change of X, using the additive functional with density a(X).
Let us call this process X% The results of article 2 applied to this situation give
a strong Markov process X?¢, which is in weak duality with X7, relative to the
measure a(x)dx. The assumption concerning point separation of the resolvent
is fulfilled by the last part of assumption 1) above. It is now obvious that time
changing X? using the additive functional with density (a(X?))™' would give
us a strong Markov dual to X,. However this seems to need some justification
which we proceed to give.

Let us denote by (X, P¥) a moderate Markov dual of X,. The process X¢
obtained by time change of X, using the additive functional

f' a(X,)ds
0

is moderate Markov. See [1, Example 2.11 pp. 212]. Here we are using that a is
strictly positive. This implies that the inverse, say {r()} of t — j’oa(X Jds is
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continuous and strictly increasing and in particular that each (¢) is a
predictable stopping time. It is easily verified that it is in weak duality with X?
relative to the measure a(x)dx.

On the other hand, the left continuous version of X2, namely (X?_, P¥), is
also moderate Markov. To see this, recall that the resolvent U? corresponding
to the uniform kernel U, maps bounded Borel functions into continuous
functions. Now very simple modifications in the proof of [1, pp. 42] are needed.

This left continuous version is also in weak duality with X?. Hence, except
for a polar set of x, the processes (X?, P*) and (X?_, P¥) are indistinguishable [3].

Now it is intuitively clear that a time change of X* using

t
(1 j L (e ds

0 d
leads us to X,. This is validated once we show that for sufficiently small ¢, the
integral in (1) is finite. But this is an easy consequence of Lemma (2.2) ['1, pp.
206]. However we only need the fact that (1) is finite for small enough ¢. But
then except perhaps for x in a polar set (1) is finite, almost surely P* if X? is
replaced by X¢ provided of course that ¢ is small enough. In other words we
can time change X using [} (1/a)(X?) ds. The time changed process will then be
strong Markov and will clearly be dual to the original process. Thus we have
proved:

THEOREM. A strong Markov process, satisfying the conditions spelled out in the
introduction admits a strong Markov dual.

ReMARK. We have proved above that the right continuous version of any
moderate Markov dual is in fact strong Markov, provided the conditions of the
Introduction hold.

4. An example.

We shall here give a simple example of a potential kernel which satisfies all
our conditions, and since this kernel is not necessarily symmetric, the existence
of a strong markov dual is not obvious. Let G denote the 1-potential kernel of
the d-dimensional Brownian motion with d=3. Let P(x,dy) be a submarkov
kernel on R? satisfying the following two conditions:

1) Ps<s for all excessive functions s .

2 JP(x, dz)G(z,y) is continuous in y .



ON STRONG MARKOV DUALS 281

Define inductively kernels V, (-, ) as follows:

Volx,y) = G(x,)
and
(©) Var1(%,)) = G(x,y)+GPV,(x,y), nz0.
By induction it is seen that V, increase with n. We put

4 V(x,y) = limV,(x,y) .

If G, denotes the Newtonian kernel, then using (1), it is seen by induction that
V,<G,, and hence

(5) V(x,y) £ Go(x,y) .

Since G is infinite on the diagonal, and G, is finite off the diagonal, we see that
V has these two properties.

We now show that V is continuous off the diagonal. By condition (2)
PG(x,y) is continuous in y. Since GG, is continuous and bounded in both
variables, it follows using (1) that GPG is continuous in both variables and
bounded. So if L=GP, then L"G(x,y) is continuous and bounded in both
variables. Now for any N we can write

N
V=Y L"G+L"V
0

but using (1) and (5) we get
LNV < GG,

from which it follows that V is continuous off the diagonal. Thus V is lower
semicontinuous in both variables, infinite on the diagonal and continuous and
finite off the diagonal. Of course V is strictly positive.

If for a continuous function f with compact support we let

Vf(x) = fV(x,y)(f ) dy

we see
(6) Vf= GLf+PVf].

Further Vf<G,f, so that Vf is continuous and bounded. For any O0<a<l1,
using (6) and resolvent equation we see

() Vf = Gf+PVf-(1-4Vf],
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where G, is the a-potential kernel of Brownian motion. Using (7) it is not
difficult to see that V satisfies the complete maximum principle. A theorem of
Hunt asserts that V is the potential kernel of a Hunt process.

If f is bounded with compact support Vf (»)={V(x,y)f(x)dx is continuous
in y. This is so because V is extended continuous in both variables, V < G, and
G, has this property. For any fixed bounded non-negative g with compact
support the measure Vg(y)dy is excessive for the Hunt process determined by V
and with respect to this excessive measure the potential kernel is
(Vg(y) 'V (x, y). With this change all the conditions in the Introduction will be
satisfied.
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