REMARKS ON A C*-DYNAMICAL SYSTEM

YOSHIKAZU KATAYAMA

0. Abstract.

Related to the crossed product of a C*-algebra A with a locally compact abelian group G to a co-action δ on it, we introduce the notion of δ -invariantness and using this, we define the essential spectrum $\Gamma(\delta)$ and show that $\Gamma(\hat{\alpha}) = \Gamma(\delta)$. When G is compact, we characterize the Connes spectrum $\Gamma(\hat{\alpha})$ by the co-action δ where $\hat{\alpha}$ is the bidual action of α . If α and β are exterior equivalent, then $\Gamma(\hat{\alpha})$ and $\Gamma(\hat{\beta})$ coincide.

We would like to thank Professors Y. Nakagami and O. Takenouchi for many helpful discussions.

Now take a C*-algebra A and a locally compact group G with a fix left Haar measure dg on G. Suppose that there is a homomorphism α of G into the group Aut (A) of all *-automorphisms of A such that each function $g \mapsto \alpha_g(a)$ is continuous for $a \in A$. The triple (A, G, α) is called a C*-dynamical system.

Let (A, G, α) be a C*-dynamical system and assume $A \subset B(H)$ for some Hilbert space H. We denote by K(G, A) the space of continuous functions from G to A with compact support. Define a faithful representation of K(G, A) on $L^2(G, H)$ by

(1.1)
$$(x\xi)(g) = \int_{G} \alpha_{h^{-1}}(x(g))\xi(h^{-1}g) dh$$

for $x \in K(G, A)$ and $\xi \in L^2(G, H)$. We identify K(G, A) with its image in $B(L^2(G, H))$ and denote by $G \times_{\alpha} A$ the C*-algebra generated by K(G, A). We say that $G \times_{\alpha} A$ is a crossed product of G with A. We define a representation V of G on $L^2(G, H)$ and a faithful representation V of A on $L^2(G, H)$ by

$$(\nu(h)\xi)(g) = \xi(h^{-1}g), \quad (\iota(x)\xi)(h) = \alpha_{h^{-1}}(x)\xi(h)$$

for $h, g \in G$, $x \in A$ and $\xi \in L^2(G, H)$. We also use a unitary operator W (called the Kac-Takesaki operator) on $L^2(G \times G)$

$$(W\xi)(g,h) = \xi(g,gh)$$

for $\xi \in L^2(G \times G)$ and we denote by λ a left regular representation of G and by

m(G) the von Neumann algebra generated by $\{\lambda(g); g \in G\}$. Then we define an isomorphism δ_G of m(G) into $m(G) \otimes m(G)$ by $\delta_G(x) = W^*(x \otimes 1) W$ for $x \in m(G)$.

When A and B are C*-algebras, we denote by M(A) its multiplier algebra. If A is a concrete C*-algebra, we may define $M(A) = \{a \in A''; ab + ca \in A \text{ for } b, c \in A\}$ ([1]). We put

$$\tilde{M}_L(A \otimes B) = \{ x \in M(A) \otimes M(b);$$

$$x(1 \otimes b) + (1 \otimes c)x \in A \otimes B$$
, $L_{\alpha}(x) \in A$ for $b, c \in B$, $\varphi \in B^*$

where L_{φ} is the left slice map of φ and the symbol \otimes means the spatial tensor product.

Proposition 1.1. The map δ ;

$$\delta(x) = (1 \otimes W^*)(x \otimes 1)(1 \otimes W)$$
 for $x \in G \times_{\alpha} A$,

is a *-isomorphism of $G \times_{\alpha} A$ into $\tilde{M}_L(G \times_{\alpha} A \otimes C_r^*(G))$, where $C_r^*(G)$ is the reduced group C*-algebra of G. It satisfies the following relation,

$$(1.2) \quad \delta(v(g)) = v(g) \otimes \lambda(g), \ (g \in G), \quad \delta(\iota(a)) = \iota(a) \otimes 1, \ (a \in A)$$

$$(1.3) \quad (\delta \otimes i)\delta = (i \otimes \delta_G)\delta$$

where i's are identity mappings of $M(C^*(G))$ or $M(G \times_{\alpha} A)$.

Proof. We get (1.2) by an easy calculation. It follows from (1.1) and (1.2) that

$$\delta(x) = \int_{G} (\iota(x(g)) \otimes 1) (\nu(g) \otimes \lambda(g)) dg$$

for $x \in K(G, A)$. Since $\iota(A)$ and $\iota(G)$ are contained in $M(G \times_{\alpha} A)$ and $\lambda(G)$ is contained in $M(C_r^*(G))$, $\delta(x)$ is an element of $M(G \times_{\alpha} A) \otimes M(C_r^*(G))$, which implies $\delta(G \times_{\alpha} A) \subset M(G \times_{\alpha} A) \otimes M(C_r^*(G))$.

If $x \in K(G, A)$, $f \in K(G) \equiv K(G, C)$, we have

$$\delta(x)(1 \otimes \lambda(f)) = \int_{G} (\iota(x(g)) \otimes 1)(\nu(g) \otimes \lambda(g))(1 \otimes \lambda(f)) dg$$

$$= \iint_{G \times G} f(h)(\iota(x(g)) \otimes 1)(\nu(g) \otimes \lambda(gh)) dg dh$$

$$= \iint_{G \times G} (\iota(f(g^{-1}h)x(g)) \otimes 1)(\nu(g) \otimes \lambda(h)) dg dh$$

where $\lambda(f) = \int_G f(h)\lambda(h) dh$, therefore $\delta(G \times_{\alpha} A)(1 \otimes C_r^*(G)) \subset G \times_{\alpha} A \otimes C_r^*(G)$. Similarly we have $(1 \otimes C_r^*(G))\delta(G \times_{\alpha} A) \subset (G \times_{\alpha} A) \otimes C_r^*(G)$. Take $x \in K(G, A)$ and $\varphi \in C^*(G)$, then

$$L_{\varphi}(\delta(x)) = L_{\varphi}\left(\int_{G} (\iota(x(g)) \otimes 1)(\nu(g) \otimes \lambda(g)) dg\right)$$

$$= \int_{G} \iota(x(g)) \varphi(\lambda(g)) \nu(g) dg$$

$$= \int_{G} \iota(\varphi(\lambda(g)) x(g)) \nu(g) dg = \varphi x,$$

where $(\varphi x)(g) = \varphi(\lambda(g))x(g) \in K(G, A)$. We have therefore

$$L_{\varphi} \circ \delta(G \times_{\alpha} A) \subset G \times_{\alpha} A$$
 for $\varphi \in C_r^*(G)^*$,

because $||L_{\omega}\delta|| \leq ||\varphi||$.

The relation (1.3) follows from (1.2) and $\delta_G(\lambda(g)) = \lambda(g) \otimes \lambda(g)$ for $g \in G$.

We will introduce the essential spectrum of a co-action following Y. Nakagami [7] and Y. Nakagami-M. Takesaki [8]. To do this we first recall some definitions.

A co-action δ of G on a C*-algebra A is an isomorphism of A into $\widetilde{M}_L(A \otimes C_r^*(G))$ satisfying $(\delta \otimes i)\delta = (i \otimes \delta_G)\delta$. Then we define δ_u by

$$\delta_u(a) = L_u \circ \delta(a)$$
 for $u \in B_r(G)$, $a \in A$,

where $B_r(G)$ is defined in [3] to be regular ring, and we identify $B_r(G)$ with the dual space $C_r^*(G)^*$ of $C_r^*(G)$. It follows from (1.3) that $\delta_{u \cdot v} = \delta_u \cdot \delta_v$ for $u, v \in B_r(G)$.

We set

$$\operatorname{Sp}_{\delta}(a) = \{ g \in G; \ u(g) = 0 \quad \text{for } \delta_{u}(a) = 0, \ u \in B_{r}(G) \},$$

$$\operatorname{Sp}(\delta) = \{ g \in G, \ u(g) = 0 \quad \text{for } \delta_{u} = 0, \ u \in B_{r}(G) \}$$

and

$$\Gamma(\delta) = \bigcap \{ \operatorname{Sp}(\delta \mid B); B \in \mathscr{H}^{\delta}(A) \},$$

where $\mathscr{H}^{\delta}(A)$ is the family of non-zero hereditary C*-subalgebras B of A such that $\delta_u(B) \subset B$ for $u \in B_r(G)$, which is called δ -invariant. Let E be a closed subset of G, we set

$$A^{\delta}(E) = \{a \in A; \operatorname{Sp}_{\delta}(a) \subset E\}$$
.

LEMMA 1.2. If $g \in G$, then $g \in \operatorname{Sp}(\delta)$ if and only if $A^{\delta}(V) \neq \{0\}$ for every compact neighbourhood V of g.

PROOF. Let V be a compact neighbourhood of g with $A^{\delta}(V) = \{0\}$. Take an element $g_0 \in V^c$ and $v \in B_r(G)$ with (the support of v) $\cap V = \emptyset$ and $v(g_0) = 1$. If $u \in B_r(G)$ with (the support of u) $\subset V$ and u(g) = 1, then

$$\delta_v \cdot \delta_u(a) = \delta_{v \cdot u}(a) = 0$$
 for $a \in A$,

which implies $g_0 \notin \operatorname{Sp}_{\delta}(\delta_u(a))$ that is $\delta_u(a) \in A^{\delta}(V)$. Therefore $\delta_u(a) = 0$ for all $a \in A$. As $u(g) \neq 0$, we see $g \notin \operatorname{Sp}(\delta)$.

Suppose that $g \notin \operatorname{Sp}(\delta)$. Take a compact neighbourhood V of g with $V \cap \operatorname{Sp}(\delta) = \emptyset$ and take $a \in A^{\delta}(V)$, then it follows from $\operatorname{Sp}_{\delta}(a) \subset \operatorname{Sp}(\delta)$ that $\operatorname{Sp}_{\delta}(a) = \emptyset$. Since

$$I_a \equiv \{u \in B_r(G), \delta_u(a) = 0\}$$

is a closed ideal of $B_r(G)$ with $\{g \in G; u(g) = 0 \text{ for all } u \in I_a\} = \emptyset$ and $B_r(G)$ is a regular ring ([3]), I_a contains the Fourier algebra A(G) of G because it contains K(G) ([3]). For $\omega \in A^*$, we have

$$0 = \langle \delta_u(a), \omega \rangle = \langle \delta(a), \omega \otimes u \rangle \quad \text{for } u \in A(G) \subset B_r(G) .$$

Since, by [1, Proposition 2.4], the algebraic tensor product $A^* \odot A(G)$ of A^* and A(G) is dense in $(M(A) \otimes M(C_r^*(G)))^*$ with respect to the w^* -topology of $M(A) \otimes M(C_r^*(G))$, we have $\delta(a) = 0$, that is a = 0. We have therefore $A^{\delta}(V) = 0$.

Lemma 1.3. Let E_i be a compact set in G (i=1,2), then $A^{\delta}(E_1)A^{\delta}(E_2) \subset A^{\delta}(E_1E_2)$.

This lemma is proved by a usual arguement (See [8, IV, Lemma 1.2]), and we leave its verification to the reader.

PROPOSITION 1.4. $\Gamma(\delta)$ is a closed subgroup of G.

PROOF. Since Sp (δ) is a closed set, $\Gamma(\delta)$ is a closed set of G. We want to see that Sp $(\delta)\Gamma(\delta)$ \subset Sp (δ) . Take $g_1 \in$ Sp (δ) , $g_2 \in \Gamma(\delta)$ and compact neighbourhoods V, V_1 , and V_2 of g_1g_2 , g_1 , and g_2 , respectively such that $V_1V_2 \subset V$. For $a_1 \in A^{\delta}(V_1)$, $a_1 \neq 0$, B denote the smallest δ -invariant hereditary C*-subalgebra generated by $\{\delta_u(a_1); u \in B_r(G)\}$. Then we can find an $a_2 \in B \cap A^{\delta}(V_2)$, $a_2 \neq 0$. Let I be the closed linear span of $\{a\delta_u(a_1); a \in A, u \in B_r(G)\}$, then I is a closed left ideal of A such that $B = I^* \cap I$. Therefore if $\delta_u(a_1)a_2 = 0$ for any $u \in B_r(G)$, it implies B $a_2 = 0$ that is $a_2 = 0$. Hence there is a $u \in B_r(G)$ such that $\delta_u(a_1)a_2 \neq 0$. By Lemma 1.3,

$$0 + \delta_u(a_1)a_2 \in A^{\delta}(V_1)A^{\delta}(V_2) \subset A^{\delta}(V_1V_2) \subset A^{\delta}(V).$$

By Lemma 1.2, we conclude from this that Sp $(\delta)\Gamma(\delta) \subset$ Sp (δ) . As this is true for

 $\delta \mid B$ in place of δ , we see that $\Gamma(\delta)$ is a semi-group and it is easy to prove $\Gamma(\delta) = \Gamma(\delta)^{-1}$. Therefore $\Gamma(\delta)$ is a closed subgroup of G.

From now on, G is supposed to be abelian and we study relations between the co-action δ on $G \times_{\alpha} A$ and the dual action $\hat{\alpha}$ of the dual group Γ of G on $G \times_{\alpha} A$ (See [11]).

PROPOSITION 1.5. Let (A, G, α) be a C*-dynamical system and B is a C*-subalgebra of $G \times_{\alpha} A$. Then B is δ -invariant if and only if B is $\hat{\alpha}_{\gamma}$ -invariant for $\gamma \in \Gamma$ $(\Gamma$ -invariant).

PROOF. Take $\xi, \eta \in K(\Gamma)$ and $x \in K(G, A)$,

$$\int_{\Gamma} \xi(\gamma)\eta(\gamma)\hat{\alpha}_{\gamma}(x) d\gamma$$

$$= \int_{\Gamma} \xi(\gamma)\eta(\gamma)\hat{\alpha}_{\gamma}\left(\int_{G} \iota(x(g))\nu(g) dg\right) d\gamma$$

$$= \int_{\Gamma} \int_{G} \xi(\gamma)\eta(\gamma)\iota(x(g))\nu(g)\overline{\langle g, \gamma \rangle} d\gamma$$

$$= \int_{G} \left(\int_{\Gamma} \xi(\gamma)\eta(\gamma)\overline{\langle g, \gamma \rangle} d\gamma\right)\iota(x(g))\nu(g) dg$$

$$= \int_{G} \xi * \tilde{\eta}(-g)\iota(x(g))\nu(g) dg,$$

where ξ is the inverse Fourier transform of ξ and the symbol * means the convolution in $L^1(G)$. On the other hand, set

$$\omega(\xi,\eta)(x) = \langle x\xi, \tilde{\eta}^b \rangle, \quad \text{for } x \in C^*(G)$$

where $\tilde{\eta}^b(g) = \overline{\tilde{\eta}(-g)}$, then we have

$$\omega(\xi,\eta)(\lambda(g)) = \langle \lambda(g)\xi, \tilde{\eta}^b \rangle = \int_G \xi(h-g)\tilde{\eta}(-h) dh = \xi * \tilde{\eta}(-g).$$

Then we have,

$$= \int_{G} \omega(\xi, \eta) (\hat{\lambda}(g)) \iota(x(g)) \nu(g) dg$$

$$= \delta_{\omega(\xi, \eta)} \left(\int_{G} \iota(x(g)) \nu(g) dg \right) = \delta_{\omega(\xi, \eta)}(x) .$$

Therefore

(1.4)
$$\int_{\Gamma} \xi(\gamma)\eta(\gamma)\hat{\alpha}_{\gamma}(x) d\gamma = \delta_{\omega(\xi,\eta)}(x) \quad \text{for } x \in G \times_{\alpha} A.$$

The set $\{\omega(\xi,\eta); \xi,\eta\in K(\Gamma)\}$ is dense in $(C_r^*(G))^*$ with respect to $\sigma(C_r^*(G)^*,M(C_r^*(G)))$ -topology and the map

$$\varphi \in (C_r^*(G))^* \to \delta_\alpha(x) \in G \times_\alpha A$$

is norm continuous with respect to $\sigma((C_r^*(G))^*, M(C_r^*(G)))$ -topology for each $x \in G \times_{\sigma} A$. Hence if B is Γ -invariant, then B is δ -invariant.

Conversely suppose that B is δ -invariant. Take $\gamma \in \Gamma$, the positive definite function $\langle \cdot, \gamma \rangle$ is an element of $B_r(G)$. Then by an easy calculation, we have $\delta_{\langle \cdot, \cdot, \gamma \rangle} = \hat{\alpha}$, therefore B is Γ -invariant.

Given $^{\gamma}a$ C*-dynamical system (A, G, α) , we denote by $\mathcal{H}^{\alpha}(A)$ the family of non-zero, G-invariant, hereditary C*-subalgebra of A. The Connes spectrum $\Gamma(\alpha)$ of α is defined as

$$\Gamma(\alpha) = \bigcap \{ \operatorname{Sp}(\alpha \mid B), B \in \mathcal{H}^{\alpha}(A) \},$$

cf. [9].

THEOREM 1.6. Let (A, G, α) be a C*-dynamical system with an abelian group G. Starting from this, we have a C*-dynamical system $(G \times_{\alpha} A, \Gamma, \hat{\alpha})$ and a dual system $(G \times_{\alpha} A, \delta)$. Then $\Gamma(\delta)$ and $\Gamma(\hat{\alpha})$ coincide.

PROOF. At first we prove $A^{\hat{\alpha}}(V) = A^{\delta}(-V)$ for every compact neighbourhood V of $g \in G$, where $A^{\hat{\alpha}}(V) = \{x \in G \times_{\alpha} A, \operatorname{Sp}_{\hat{\alpha}}(x) \subset V\}$. Take $x \in A^{\hat{\alpha}}(V)$, $g_0 \notin V$ and compact neighbourhood V_0 of g_0 with $V_0 \cap V = \emptyset$, we can find ξ, η $K(\Gamma)$ with $\xi * \tilde{\eta}(g_0) = 1$ and $\xi * \tilde{\eta} \equiv 0$ on V_0^c . The inverse Fourier transform of $\xi(\gamma)\eta(\gamma)$ is $\xi * \tilde{\eta}$, so

$$\delta_{\omega(\xi,\eta)}(x) = \int_{\Gamma} \xi(\gamma)\eta(\gamma)\hat{\alpha}_{\gamma}(x)\,d\gamma = 0, \quad \text{as } x \in A^{\hat{\alpha}}(V).$$

As $\omega(\xi,\eta)(\lambda(-g_0)) = \tilde{\xi} * \tilde{\eta}(g_0) = 1$, we have $-g_0 \in \operatorname{Sp} \delta(x)$ that is $\operatorname{Sp}_{\delta}(x) \subset -V$. Conversely, take $x \in A^{\delta}(-V)$, $g_0 \notin V$ and a compact neighbourhood V_0 of g_0 with $V_0 \cap (-V) = \emptyset$, and take $\xi, \eta \in K(\Gamma)$ as above. Put $y = \delta_{\omega(\xi,\eta)}(x)$, then we have $\operatorname{Sp}_{\delta}(y) = \emptyset$, since $\operatorname{Sp}_{\delta}(\delta_u(y)) \subset (\text{the support of } u) \cap \operatorname{Sp}_{\delta}(y)$, hence we get y = 0. By (1.4) we have

$$\int_{\Gamma} \xi(\gamma)\eta(\gamma)\hat{\alpha}_{\gamma}(x) d\gamma = 0 ,$$

which implies $g_0 \notin \operatorname{Sp}_{\hat{\alpha}}(x)$ that is $\operatorname{Sp}_{\hat{\alpha}}(x) \subset V$. As $g \in \operatorname{Sp}(\hat{\alpha})$ if and only if $A^{\hat{\alpha}}(V) \neq \{0\}$ for each compact neighbourhood V of g (See [9]), by Lemma 1.2, we have $\operatorname{Sp}(\hat{\alpha}) = -\operatorname{Sp}(\delta)$. We conclude that $\Gamma(\hat{\alpha}) = \Gamma(\delta)$.

2. C*-dynamical system with the action of a compact group.

Throughout this section, we assume that G is compact and dg is the normalized Haar measure on G. Let (A, G, α) be a dynamical system and \widehat{G} be the space of isomorphism classes of all irreducible representation of G. If $\pi \in \widehat{G}$, we denote by χ_{π} the associated "modified character" $\chi_{\pi}(g) = (\dim \pi)^{-1} \operatorname{Tr} (\pi(g))$, and $u(i, j, \pi)$ the associated "coordinate functions" $u(i, j, \pi)(g) = \langle \pi(g)\xi_i, \xi_j \rangle$, where $\{\xi_i\}$ is a normalized orthogonal basis for H_{π} . By definition $\pi \in \operatorname{Sp}(\alpha)$, iff $\alpha(\chi_{\pi})(A) \neq \{0\}$, where

$$\alpha(\chi_{\pi})(a) = \int_{G} \chi_{\pi}(g)\alpha_{g}(a) dg$$
 for $a \in A$,

([2]), and $\Gamma(\alpha) = \bigcap \{ \operatorname{Sp}(\alpha \mid B); B \in \mathcal{H}^{\alpha}(A) \}.$

LEMMA 2.1. If $\pi \notin \Gamma(\alpha)$, then there is a non-zero closed ideal I of $G \times_{\alpha} A$ such that

$$\bigvee_{i,j} \delta_{u(i,j,\pi)}(I) \cap I = \{0\},\,$$

where $\bigvee_{i,j} \delta_{u(i,j,\pi)}(I)$ denotes the closed ideal of $G \times_{\alpha} A$ generated by $\delta_{u(i,j,\pi)}(I)$, $i,j=1,2,\ldots,\dim \pi$.

PROOF. If $\pi \notin \Gamma(\delta)$, there is a $B \in \mathcal{H}^{\alpha}(A)$ such that $\alpha(\chi_{\pi})(B) = \{0\}$. Take a non-zero G-invariant positive element b of B and put a non-zero element $y = \int_{G} \iota(b)v(g) dg \in G \times_{\pi} A$, then we have, for $a \in A$, $g \in G$,

$$\delta_{u(i,j,\pi)}(y)\iota(a)v(g)y$$

$$= \iint_{G\times G} u(i,j,\pi)(h)\iota(b\alpha_h(a)b)v(hgk)\,dk\,dh$$

$$= \int_G \iota\left(\int_G u(i,j,\pi)(h)\alpha_h(bab)\,dh\right)v(k)\,dk,$$

put

$$z = \int_{G} u(i, j, \pi)(h) \alpha_{h}(bab) dh.$$

Since B is hereditary, the element bab is in B. Therefore we have $\alpha(\chi_{\pi})(bab) = 0$.

By the relation $\alpha(u(i,j,\pi))[(u(k,l,\pi))(c)] = \alpha(u(i,j,\pi)*u(k,l,\pi))(c)$ for any c in A and the orthogonality relations for compact groups, $\alpha(\chi_{\pi})(c) = 0$ is equivalent to

$$\int_G u(i,j,\pi)(h)\alpha_h(c) dh = 0, \quad \text{for } i,j=1,2,\ldots,\dim \pi.$$

Therefore z=0 and so $\delta_{u(i,j,\pi)}(y)\iota(a)\nu(g)y=0$, that is

$$\delta_{u(i,j,\pi)}(y)G \times_{\alpha} Ay = \{0\}, \quad \text{for } i, j = 1, 2, ..., \dim \pi.$$

Let *I* be the non-zero closed ideal of $G \times_{\alpha} A$ generated by *y*. By easy calculation, we have $\bigvee_{i,j} \delta_{u(i,j,\pi)}(I) \cap I = \{0\}.$

We use the definition of the crossed product $G \times_{\delta} (G \times_{\alpha} A)$ with the coaction δ , the dual action δ of δ , and Takesaki's duality (See [5], [6], and [8]).

LEMMA 2.2. If there is a non-zero closed ideal I of $G \times_{\alpha} A$ such that $\bigvee_{i,j} \delta_{u(i,j,\pi)}(I) \cap I = \{0\}$, then π does not belong to $\Gamma(\hat{\alpha})$ where $\hat{\alpha}$ is the bidual action of α (See [8] or [6]).

PROOF. Take a non-zero positive element y in I. For $\sigma \in \hat{G}$, put $z = \delta(y)(1 \otimes u(i, j, \sigma))\delta(x)\delta(y)$ for $x \in G \times_{\alpha} A$. We then have

$$\int_{G} \chi_{\pi}(g) \hat{\alpha}_{g}(z) dg$$

$$= \int_{G} \chi_{\pi}(g) \delta(y) \hat{\alpha}_{g}(1 \otimes u(i, j, \sigma)) \delta(x) \delta(y) dg$$

$$= \int_{G} \chi_{\pi}(g) \delta(y) \sum_{k, m=1}^{\dim \sigma} \overline{u(k, i, \sigma)(g)} \delta(\delta_{u(m, j, \sigma)}(xy)) (1 \otimes u(k, m, \sigma)) dg$$

$$= \sum_{k, m=1}^{\dim \sigma} \int_{G} \chi_{\pi}(g) \overline{u(k, i, \sigma)(g)} dg \delta(y \delta_{u(m, j, \sigma)}(xy)) (1 \otimes u(k, m, \sigma))$$

$$= \begin{cases} 0, & \text{when } \pi \neq \sigma, \text{ by } [4, \text{ Theorem 27.19}], \\ 0, & \text{when } \pi = \sigma, \text{ by } y \delta_{u(m, j, \sigma)}(xy) = 0. \end{cases}$$

Then we get $\int_G \chi_{\pi}(g) \hat{d}_g(\delta(y) a \delta(y)) dg = 0$ for $a \in G \times_{\delta} (G \times_{\alpha} A)$ because the vector space generated by $\{(1 \otimes u(i, j, \sigma)) \delta(x); x \in G \times_{\alpha} A, \sigma \in \hat{G}\}$ is norm-dense in $G \times_{\delta} (G \times_{\alpha} A)$. Let B be the non-zero hereditary C*-subalgebra of $G \times_{\delta} (G \times_{\alpha} A)$ generated by $\delta(y)$. Then B is \hat{d}_g -invariant for each $g \in G$ because $\hat{d}_g(\delta(y)) = \delta(y)$, therefore

$$\int_G \chi_{\pi}(g)\hat{\alpha}_g(B) dg = \{0\},\,$$

which implies $\pi \notin \Gamma(\hat{\alpha})$.

THEOREM 2.3. Let (A, G, α) be a C*-dynamical system, then

$$\Gamma(\hat{\alpha}) = \{ \pi \in \hat{G}, \bigvee_{i,j} \delta_{u(i,j,\pi)}(I) \cap I \neq \{0\}, \text{ for each non-zero ideal } I \text{ of } G \times_{\alpha} A \}$$
and
$$\Gamma(\alpha) \supset \Gamma(\hat{\alpha}).$$

PROOF. By Takesaki's duality (See [6]), $G \times_{\hat{a}} (G \times_{\delta} (G \times_{\alpha} A))$ is isomorphic to $(G \times_{\alpha} A) \otimes C(L^2(G))$, therefore each closed ideal I' of $(G \times_{\alpha} A) \otimes C(L^2(G))$ is of the form $I \otimes C(L^2(G))$, where I is a closed ideal of $G \times_{\alpha} A$, moreover

$$\bigvee_{i,j} \hat{\delta}_{u(i,j,\pi)}(I') = \bigvee_{i,j} \delta_{u(i,j,\pi)}(I) \otimes C(L^2(G)).$$

Hence, if $\pi \notin \Gamma(\hat{\alpha})$, we have a non-zero closed ideal I of $G \times_{\alpha} A$ such that

$$\bigvee_{i} \delta_{u(i,j,\pi)}(I) \cap I = \{0\}$$

by Lemma 2.1.

REMARK 2.4. Let (A, G, α) and (A, G, β) be a C*-dynamical system. If α are exterior equivalent to β (See [10, 4.2]), then $\Gamma(\hat{\alpha}) = \Gamma(\hat{\beta})$, but $\Gamma(\alpha)$ is not always equal to $\Gamma(\beta)$ (See [2]).

REFERENCES

- C. A. Akemann, G. K. Pedersen, and J. Tomiyama, Multipliers of C*-algebras. J. Funct. Anal. 13 (1973), 277-301.
- D. E. Evans and T. Sund, Spectral subspaces for compact actions, Reports in Math. Phys. 17 (1980), 299-308.
- P. Eymard, L'algebra de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- E. Hewitt and K. A. Ross, Abstract harmonic analysis II, (Grundlehren der Mathematischen Wissenschaften 152), Springer-Verlag, Berlin - Heidelberg - New York, 1970.
- S. Imai and H. Takai, On the duality for C*-crossed products by a locally compact group, J. Math. Soc. Japan 30 (1978), 495-504.
- M. B. Landstad, Duality for dual C*-covariance algebras over compact groups, preprint, University of Trondheim, 1978.
- 7. Y. Nakagami, Essential spectrum $\Gamma(\beta)$ of a dual action on a von Neumann algebra, Pacific J. Math. 70 (1977), 437-479.
- 8. Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras, Lecture Notes in Math., 731 (1979), Springer-Verlag.
- D. Olesen, Inner *-automorphisms of simple C*-algebras, Comm. Math. Phys. 44 (1975), 175– 190.
- D. Olesen and G. K. Pedersen, Applications of the Connes spectrum to C*-dynamical systems, J. Funct. Anal. 30 (1978), 179-197.
- 11. H. Takai, On a duality for crossed products of C*-algebras, J. Funct. Anal. 19 (1975), 25-39.

OSAKA UNIVERSITY
FACULTY OF ENGINEERING SCIENCE
TOYONAKA, OSAKA
JAPAN