CHARACTERIZATIONS OF POISSON INTEGRALS ON SYMMETRIC SPACES ## PETER SIÖGREN ### Introduction. It is well known that for the hyperbolic unit disk $U = \{|z| < 1\}$ the eigenfunctions u of the Laplacian are given by generalized Poisson integrals of hyperfunctions T on the boundary ([4, Ch. IV]). More generally, such an integral representation holds for the joint eigenfunctions of the invariant differential operators on a symmetric space X, see [6]. If X has rank 1, the kernels used here are powers of the ordinary Poisson kernel. In that case, T is a distribution if and only if u grows at most exponentially with the distance, see Lewis [J. Funct. Anal. 29 (1978), 287-307]. For U, the functional T is given by an L^p function on the boundary, $1 , if and only if the <math>L^p$ norm of u/ϕ on |z|=r is bounded as $r \to 1$, as follows by standard arguments, cf. Remark 2 in Section 4. Here φ is the circular mean value of u (assuming $u(0) \neq 0$), i.e., the generalized Poisson integral of a constant function on the boundary. The present paper deals with another way of characterizing those u for which T is an L^p function. These characterizations use weak L^p spaces and work for symmetric spaces of arbitrary rank. They extend the author's work in [12] on ordinary Poisson integrals in Rⁿ. In *U*, the results read as follows. Let dm_s be the measure $(1-|z|^2)^{-1-s}dxdy$, so that s=1 gives the invariant measure and s=-1 Lebesgue measure. Then *T* is an L^p function if and only if $(1-|z|^2)^{s/p}u/\varphi$ is in weak $L^p(m_s)$. When p>1, this holds for all $s\neq 0$, when p=1 only for $s\notin [0,1]$. For rank X=r>1, it turns out that r-1 logarithmic factors must be introduced in the weak L^p condition, which can be done in several ways. The case (called $\lambda=0$) corresponding to the square root of the ordinary Poisson kernel must be treated differently, although the results are essentially the same. Lohoué and Rychener [9] have proved a special case of our results and applied it to convolution operators on L^p in a Lie group. Most of our techniques are suitable generalizations of those of [12]. See also [13], where more general kernels are considered. The preparatory Section 2 contains, among other things, some known facts about the behaviour of joint eigenfunctions, and there the measures and weak L^p spaces we use are defined. In Section 3, we prove two auxiliary technical results in the setting of a "half-space" over a nilpotent Lie group. The idea of the proof of Theorem 3.1 is taken from that of Theorem 1 in [12]. The main results are given in Section 4 ($\lambda \neq 0$) and Section 5 ($\lambda = 0$). For $\lambda = 0$, we also give in Section 5 a method of recovering f from its Poisson integral, which replaces the ordinary convergence result at the boundary. Finally, those results which hold only for p > 1 are studied in the last section, which also contains two counterexamples. ### 2. Preliminaries. Let X = G/K be a Riemannian symmetric space of noncompact type. Here G is a connected semisimple Lie group with finite center, and K a maximal compact subgroup of G. In fact, all our results are valid even when X is reducible, but for simplicity we treat only the irreducible case. Denoting by g and f the Lie algebras of G and K, we choose a Cartan decomposition g = f + p and let g be a maximal abelian subspace of g. Then g is the rank of g. This gives a root space decomposition of g. Choosing as usual a positive Weyl chamber g and the associated ordering of the roots, we call g in g the sum of the root spaces corresponding to positive (negative) roots. Letting g and g be the subgroups of g having Lie algebras g and g and g and g are g can be written uniquely as g = g and g exp g with g with g end of g and Denoting $\bar{A}_+ = \exp \bar{\alpha}_+$, where $\bar{\alpha}_+$ is the closure of α_+ in α , we have the Cartan decomposition $G = K\bar{A}_+K$. This means that for any $g \in G$ or $x \in X$ there is a unique element H in $\bar{\alpha}_+$ such that g or x belongs to $K(\exp H)K$. We then set H = H'(g) or H = H'(x), respectively. A function F = F(H) defined on $\bar{\alpha}_+$ will be considered also as a function on G and on G, by means of G, where G is the considered also as a function of G and G is the considered also as a function of G and on G, by means of G is the considered also as a function of G and on G. Let a^* (a_2^*) be the real (complex) dual of a. Then $$_{+}\alpha^{*} = \{\lambda \in \alpha^{*} : \lambda(H) > 0 \text{ for } H \in \alpha_{+}\}$$ is the open cone generated by the positive roots, by the bipolar theorem. The Killing form makes \mathfrak{a} into an inner product space, so that there is a canonical map $\mathfrak{a} \to \mathfrak{a}^*$, and we denote by \mathfrak{a}_+^* the image of \mathfrak{a}_+ under this map. Then $\mathfrak{a}_+^* \subset_+ \mathfrak{a}^*$, as proved in Harish-Chandra [1, Lemma 35, p. 279]. Let 2ϱ be the sum of the positive roots, so that $\varrho \in \mathfrak{a}_+^*$ (see [1, p. 281]). We denote by S the "slice" $\{H_0 \in \mathfrak{a}_+ : 2\varrho(H_0) = 1\}$, and often write any $H \in \mathfrak{a}_+$ as $H = tH_0$, with t > 0 and $H_0 \in S$, and put t = |H|. Thus, $|\cdot| = |H'(x)|$ is also a function on X. A restricted domain in X is defined to be one of type $\{x \in X : H'(x) \in \mathbb{R}_+ S'\}$, where S' is a nonempty, open, and relatively compact subset of S and $\mathbb{R}_+ S'$ the open cone it generates in \mathfrak{a} . In such a domain, we see that H'(x) stays far from the boundary of the positive Weyl chamber, except for x near o. We call $\mathbb{R}_+ S'$ a restricted cone. The (maximal) boundary of X is by definition the quotient K/M, where M is the centralizer of A in K. This boundary has a unique normalized K-invariant measure dkM. If $\lambda \in \mathfrak{a}_{+}^{*}$, the associated Poisson kernel is $$P_{\lambda}(g,k) = e^{-(i\lambda+\varrho)(H(g^{-1}k))}, \quad \text{for } g \in G, k \in K.$$ Since this expression is right K-invariant in g and right M-invariant in k, we may also consider P_{λ} as a function on $X \times K/M$ and write $P_{\lambda}(x, kM)$ for $x \in X$. The λ -Poisson integral of a Borel measure μ in K/M is defined by $$P_{\lambda}\mu(x) \,=\, \int P_{\lambda}(x,kM)\,d\mu(kM)\;.$$ For integrable functions f on the boundary, $P_{\lambda}f$ means $P_{\lambda}(fdkM)$. Then the (spherical) function $\varphi_{\lambda} = P_{\lambda}1$ is a left K-invariant function on X. As is well known, any $P_{\lambda}\mu$ is an eigenfunction for all K-invariant differential operators on X, and the eigenvalues depend only on λ . Let \mathscr{E}_{λ} be the space of all eigenfunctions for these operators with the same eigenvalues as φ_{λ} . Whenever convenient, we consider the functions in \mathscr{E}_{λ} as defined on G rather than on G. These functions are smooth since some invariant operators are elliptic. In this paper, C will denote many different constants, and we will generally not indicate precisely which parameters C depends on at each occurrence. The relation $f \sim g$ means $C^{-1} \leq f/g \leq C$. The following lemma describes the asymptotic behavior of φ_{λ} . LEMMA 2.1. One has $\varphi_{\lambda}(\exp H) \sim e^{(i\lambda - \varrho)(H)}$ if $i\lambda \in \mathfrak{a}_{+}^{*}$, uniformly for $H \in \mathfrak{a}_{+}$. This can be written simply $\varphi_{\lambda} \sim e^{i\lambda - \varrho}$, with our conventions. PROOF. With $h = \exp H$, we set $\bar{n}^h = h\bar{n}h^{-1}$ and ${}^h\bar{n} = h^{-1}\bar{n}h$. Denoting by $d\bar{n}$ a suitable Haar measure on \bar{N} , we may transform the Poisson integral to an integral over \bar{N} by means of $\bar{n} \to k(\bar{n})M$, getting $$\varphi_{\lambda}(h) = \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(h^{-1}k(\bar{n}))) - 2\varrho(H(\bar{n}))} d\bar{n}$$ $$= e^{(i\lambda - \varrho)(H)} \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(h\bar{n})) + 2\varrho(H) + (i\lambda - \varrho)(H(\bar{n}))} d\bar{n}$$ $$= e^{(i\lambda - \varrho)(H)} \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(\bar{n})) + (i\lambda - \varrho)(H(\bar{n}^h))} d\bar{n}$$ (see e.g. Helgason [4, pp. 129-130]; distinguish between H(.) and H(.) The last step here was the transformation $\bar{n} \to \bar{n}^h$ which has Jacobian $e^{-2\varrho(H)}$. If a canonical coordinate system is used in \bar{N} , the conjugation $\bar{n} \to \bar{n}^h$ has the effect of decreasing all coordinates when $h \in \bar{A}_+$, so \bar{n}^h stays in a compact set as \bar{n} varies in a compact set $L \subset \bar{N}$ and $h \in \bar{A}_+$. Therefore, the integrand in the last integral is ~ 1 in L. From this we get $\varphi_1(\exp H) \ge e^{(i\lambda - \varrho)(H)}/C$. For the converse inequality, we estimate the same integrand from above by $e^{-(\varrho+\delta i\lambda)H(\bar{n})}$, where $\delta>0$ is small, as in Helgason [4, p. 130] or Michelson [10, p. 262], and this expression is integrable and independent of H. The lemma is proved. A measure μ in \bar{N} may also be considered as a measure in K/M by means of the transformation $\bar{n} \to k(\bar{n})M$. From the proof just given, we then see that $$(2.1) P_{\lambda}\mu(\bar{m}h) = e^{(i\lambda-\varrho)(H)} \int e^{-(i\lambda+\varrho)(H(h(\bar{m}^{-1}\bar{n})))+2\varrho(H)+(i\lambda+\varrho)(H(\bar{n}))} d\mu(\bar{n}) ,$$ for $\bar{m} \in N$, $h \in A$, which will be used later. For $\lambda = 0$, we put $$\varphi_0(\exp H) = e^{-\varrho(H)}\psi(H), \quad H \in \bar{\mathfrak{a}}_+.$$ Harish-Chandra [1, p. 279] has proved that there is a natural number q such that $\psi(H)/(1+|H|)^q$ is bounded on $\bar{\alpha}_+$ and $\psi(tH_0) \sim t^q$ as $t \to \infty$ for each $H_0 \in S$, but this last relation is not uniform in H_0 when r > 1. If r = 1, then q = 1. LEMMA 2.2. Given $i\lambda \in
\overline{\mathfrak{a}_+^*}$ and a compact set $L \subset X$, there is a constant $C = C(L,\lambda)$ such that any nonnegative $u \in \mathscr{E}_{\lambda}$ satisfies $$u(gx) \leq Cu(gy)$$ for all $x, y \in L$ and any $g \in G$. This lemma is a form of Harnack's inequality. Except for some cases, it is a consequence of Lemma 2.1 in Michelson [10], but we indicate another proof: For g=e, the lemma follows by well-known elliptic operator techniques (cf. Serrin [11], or the fact that \mathscr{E}_{λ} defines a sheaf satisfying Brelot's axiomatic potential theory). The general case is then immediate from the translation invariance of \mathscr{E}_{λ} . We shall work with several positive measures on X. The invariant measure m is given by $$\int_X \varphi \, dm = \int_{K/M \times a_+} \varphi(k \exp H) \prod_{\alpha} \sinh (\alpha(H)) \, dkM \, dH ,$$ where the product is taken over the positive roots, counted according to multiplicity. We write $\varphi(k \exp H)$ rather than $\varphi(k(\exp H)K)$, and dH is a Euclidean measure in α . Next, we define weak L^p spaces. If μ is any positive measure on X and f a μ -measurable real- or complex-valued function, the distribution function of f is $$\lambda_f(\alpha) = \mu\{x \in X : |f(x)| > \alpha\}, \quad \alpha > 0$$ The decreasing rearrangement of f is $$f^*(t) = \inf\{\alpha : \lambda_f(\alpha) \leq t\}, \quad 0 < t < \mu(X).$$ Notice the simple inequality (2.2) $$\int_{E} |f| \, d\mu \le \int_{0}^{\mu(E)} f^{*}(t) \, dt$$ valid for any μ -measurable set $E \subset X$. Weak L^p , denoted Λ_p , consists of those f for which $$f^*(t) \leq Ct^{-1/p}, \quad 0 < t < \mu(X),$$ and the smallest possible C here is the quasi-norm of f in weak L^p . Setting $$\log_*^b t = (1 + |\log t|)^b$$, all $t > 0$ and $b \ge 0$, we define Λ_p^s by the inequality $f^*(t) \le Ct^{-1/p} \log_*^{s/p} t$, and call inf C the quasinorm as before. Notice that $\Lambda_p^0 = \Lambda_p$, that Λ_p^s may also be defined by $$(2.3) \lambda_f(\alpha) \leq C\alpha^{-p} \log_{\bullet}^s \alpha$$ with another C, and that $$(2.4) f \in \Lambda_p^s \Leftrightarrow |f|^p \in \Lambda_1^s.$$ When $\mu = m_{\sigma}$, we denote by $\Lambda_{p,\sigma}$ and $\Lambda_{p,\sigma}^{s}$ the spaces obtained. Finally, $\Lambda_{p,\sigma}^{*}$ is weak L^{p} with respect to the measure $(1+|H|)^{1-r}dm_{\sigma}$; observe that this measure is slightly smaller than m_{σ} and behaves like $e^{\sigma}dkMdtdH_{0}$ as $H = tH_{0} \to \infty$. # 3. Auxiliary theorems. In this section, H_0 will be in S and we set $h_t = \exp tH_0$, $t \in \mathbb{R}$. For $\bar{n} \in \bar{N}$, we write $\bar{n}_t = h_t \bar{n} h_{-t}$. In the space $\bar{N} \times \mathbb{R}$, let dm'_{σ} denote the measure $e^{t\sigma(H_0)} d\bar{n} dt$ $(\bar{n} \in \bar{N}, t \in R)$. Here $\sigma \in \mathfrak{a}^*$ as before. Because of (2.1), the integral formed in the following theorem is closely related to $P_i\mu(mh_i)$. THEOREM 3.1. Let $i\lambda \in \mathfrak{a}_+^*$, and $\sigma \in (2\varrho + {}_+\mathfrak{a}^*) \cup (-{}_+\mathfrak{a}^*)$. With $H_0 \in S$ and μ a probability measure in \overline{N} , define a function v in $\overline{N} \times R$ by $$v(\bar{m},t) \, = \, e^{-t\sigma(H_0)} \, \int e^{-(i\lambda + \varrho)H((\bar{m}^{-1}\bar{n})_{-t}) + t} \, d\mu(\bar{n}) \; .$$ Then v is in weak L^1 with respect to m'_{σ} in $\bar{N} \times \mathbb{R}$, and the corresponding quasinorm is bounded uniformly for $H_0 \in S$. PROOF. The product $\bar{N} \times R$ should be seen as a "half-space" $\{(\bar{m}, t') : \bar{m} \in \bar{N}, t' > 0\}$ over \bar{N} , but we use $t = -\log t'$ instead of t' as a coordinate. Call $\bar{N} \times [j, j+1] \subset \bar{N} \times R$ the j-layer, for any integer j. Let B be a compact neighborhood of $e \in \overline{N}$ which is symmetric $(B^{-1} = B)$, of Haar measure 1, and such that $hBh^{-1} \subset B$ for all $h \in \overline{A}_+$. Of course, B_t means h_tBh_{-t} , and the Haar measure of B_t equals the Jacobian of the map $\overline{n} \to \overline{n}_t$, which is $e^{-2\varrho(tH_0)} = e^{-t}$. To obtain the claimed uniformity in H_0 , we fix an element $H_1 \in S$, putting $h'_y = \exp yH_1$ and $B_{t,y} = h'_{-y}B_th'_y$. Notice that $B_{t,y}$ is decreasing in t and increasing in t. Take $t \in S$ 0 so that $t \in S$ 1. The sets B_i will serve as building-blocks to discretize the problem. For each integer j, we choose a maximal set $\{\bar{n}_iB_j\}_i$ of pairwise disjoint translates of B_j in \bar{N} , and each \bar{n}_iB_j is called a j-base. Thus, for any $\bar{m} \in \bar{N}$, the translate $\bar{m}B_j$ must intersect some j-base. The sets $\bar{n}_iB_j \times [j, j+1]$ are called j-pieces, and they are disjoint and contained in the j-layer. In the "half-space", the j-layer should be thought of as situated at height $\sim e^{-j}$ and having width $\sim e^{-j}$. And the j-pieces essentially correspond to a subdivision of the j-layer into cubes of side e^{-j} . (The j-pieces do not cover the j-layer, but this is unimportant.) We shall need three observations. First, Lemma 2.2 gives a property of v. For if $\bar{p} \in B_t$ and $|\tau - t| \le 1$, then $\bar{m}\bar{p}h_{\tau} = \bar{m}h_t\bar{p}_{-t}h_{\tau-t}$, and the last two factors here belong to a compact set. Applying Lemma 2.2 to the Poisson kernel, we conclude that for any $k \in K$ and any $\bar{m} \in \bar{N}$, $$e^{-(i\lambda+\varrho)(H((\tilde{m}h_t)^{-1}k))}$$ does not change more than by a factor C if \bar{m} is replaced by $\bar{m}\bar{p}$ and t by τ . Since $(\bar{m}^{-1}\bar{n})_{-t} = (\bar{n}^{-1}\bar{m}h_t)^{-1}h_t$, this implies (3.1) $$v(\bar{m}\bar{p},\tau) \sim v(\bar{m},t) \quad \text{for } \bar{p} \in B_v, |t-\tau| \leq 1.$$ Next, we see that (3.2) $$\int e^{-(i\lambda+\varrho)(H(\bar{m}_{-l}))+t} d\bar{m} \quad \text{is independent of } t,$$ by transforming $\bar{m} \to \bar{m}_{\rm l}$. This integral is known to be finite ([1, Lemma 45, p. 289]). Finally (3.3) $$\int_{\bar{N} \setminus B_{0,y}} e^{-(i\lambda + \varrho)(H(\bar{m}))} d\bar{m} = O(e^{-ay}), \quad y \to \infty,$$ for some a > 0. This follows from the facts that $$\int e^{-(1-\eta)(i\lambda+\varrho)(H(\bar{m}))}d\bar{m} < \infty$$ and $e^{-(i\lambda+\varrho)H(\bar{m})} = O(|\bar{m}|^{-a'})$ for some $\eta, a' > 0$ and some norm on \bar{N} (Knapp-Williamson [7, Proposition 5.5]). Now let $s = \sigma(H_0)$ so that $s \notin [0,1]$ and s is bounded away from [0,1], uniformly as $H_0 \in S$. Consider first the case s > 1. We have $v \le e^{-(s-1)t}$ everywhere since $H(\bar{m}) \in {}_+\bar{\alpha}$ for any $\bar{m} \in \bar{N}$ (see [1, Lemma 43, p. 287]). Take $\alpha > 0$. Since $v \to 0$ as $t \to \infty$, we may let j_0 be the largest integer for which the set $\{(\bar{m}, t) : v(\bar{m}, t) > \alpha\}$ intersects the j_0 -layer. By induction in decreasing j, we shall now construct for $j = j_0, j_0 - 1, \ldots$ measures v_j in $\bar{N} \times R$, and supp v_j will be a set of j-pieces. Each time we decide to place v_k -mass in a certain k-piece, we simultaneously forbid placing mass near this k-piece in the sequel, i.e. for j < k. This is done by introducing "above" the k-piece a forbidden region which becomes wider as we move upwards (j decreases). At each step in the construction, mass is placed in a piece if and only if this piece intersects $\{v > \alpha\}$ and is not already in a forbidden region. When we now carry out this in detail, F_j , $j=j_0, j_0-1, \ldots$, will be sets of (forbidden) pieces. For some $k \leq j_0$, assume v_j and F_j defined for $j_0 \geq j > k$. Then we let v_k be the restriction of the measure m'_{σ} to the union of all those k-pieces which intersect $\{(\bar{m},t):v(\bar{m},t)>\alpha\}$ and do not belong to $\bigcup_{j_0\geq j>k}F_j$, i.e. which are not already forbidden. (In case $k=j_0$, this union is empty.) Set $P_k=\pi(\sup v_k)$, where $\pi:\bar{N}\times\mathbb{R}\to\bar{N}$ is the projection. Then P_k is a union of k-bases. Now F_k is defined as the set of those j-pieces, all j< k, whose projections intersect the set $P_kB_{j,\kappa(k-j)+\beta}$, where κ is a fixed number satisfying $0<\kappa< s-1$. This defines $v_j,j\leq j_0$. We claim that $v = \sum_{j=0}^{j_0} v_j$ satisfies - (i) $m'_{\sigma}\{v>C\alpha\} \leq C\|v\|$ - (ii) $v > \alpha/C$ in supp v - (iii) $U^{\nu} \leq C$ in \bar{N} , where $$U^{\nu}(\bar{n}) = \int e^{-st-(i\lambda+\varrho)(H((\bar{m}^{-1}\bar{n})_{-t}))+t} d\nu(\bar{m},t).$$ These three inequalities imply Theorem 3.1, since $$(3.4) m'_{\sigma}\{v > C\alpha\} \leq C\|v\| \leq C\alpha^{-1} \int v \, dv = C\alpha^{-1} \int U^{\nu} \, d\mu \leq C\alpha^{-1},$$ by Fubini's theorem; cf. [12, p. 183]. To prove (i), we first observe that the m'_{σ} measure of a k-piece is $Ce^{(s-1)k}$. Take a point (\bar{m},t) with $v(\bar{m},t) > C\alpha$, and let k = [t]. Then $\bar{m}B_k \times [k,k+1]$ intersects some k-piece $\bar{n}_l B_k \times [k,k+1]$, and because of (3.1), one has $v > \alpha$ in the intersection, if C is suitably chosen. It also follows that $\bar{m} \in \bar{n}_l B_k B_k^{-1} = \bar{n}_l B_k B_k \subset \bar{n}_l B_{k,\beta}$. But the Haar measure of $\bar{n}_l B_{k,\beta}$ is at most C times that of $\bar{n}_l B_k$, and it follows that $m'_{\sigma} \{v > C\alpha\}$ is bounded by C times the total m'_{σ} measure of those pieces which intersect $\{v > \alpha\}$. And such a piece is either in supp v or in v of the pieces in v of the pieces in v of this end, notice that a v-piece in v of the pieces in v of this end, notice that a v-piece in supp v or the Haar measure of v the pieces in v of $$C \sum_{j < k} e^{sj - j + \varkappa(k - j)} \le C e^{(s - 1)k} \sum_{j < k} e^{-(s - 1 - \varkappa)(k - j)} \le C e^{(s - 1)k} = Cm'_{\sigma}(Q).$$ Summing over all the
pieces Q in supp v_k and then over k, we see that the total measure of the pieces in $\bigcup F_k$ is at most $$Cm'_{\sigma}(\text{supp }v) = C\|v\|$$. Thus, (i) is proved. Inequality (ii) is an immediate consequence of (3.1). To prove (iii), we need two lemmas. The first one expresses that if the projection P_j of supp v_j is far from \bar{n} , then U^{v_j} is small at \bar{n} . LEMMA 3.2. Let b>0. If $\bar{n} \in \bar{N}$ and $P_j \cap \bar{n}B_{j,\star b} = \emptyset$, then $U^{\nu_j}(\bar{n}) \leq C_0 e^{-\epsilon b}$, where $\epsilon>0$ and C_0 are constants. PROOF. In view of the reasoning leading to (3.1), $$U^{\nu_j}(\bar{n}) \leq C \int_{P_i} e^{-(i\lambda+\varrho)(H((\bar{m}^{-1}\bar{n})_{-j}))+j} d\bar{m}.$$ By assumption, $P_j^{-1}\bar{n} \subset \bar{N} \setminus B_{j, \times b}$, so a transformation $\bar{m} \to \bar{n}\bar{m}_j^{-1}$ takes us to the integral in (3.3). The lemma follows. By making C_0 larger if necessary, we may assume $$(3.5) U^{\nu_j}(\bar{n}) \leq C_0$$ for all j and all \bar{n} , because of (3.2). Inequality (iii) is a consequence of the following lemma, where ε and C_0 are as just described. LEMMA 3.3. For any $\bar{n} \in \bar{N}$ and any $j \leq j_0$, it is possible to rearrange the sum $\sum_{k=j}^{j_0} U^{\nu_k}(\bar{n})$ so that it becomes dominated term by term by $\sum_{k=0}^{j_0-j} C_0 e^{-\epsilon k}$. PROOF. The case $j = j_0$ is clear from (3.5), so assume the lemma holds for j + 1. Let m be the nonnegative integer satisfying $$(3.6) C_0 e^{-\varepsilon(m+1)} < U^{\nu_j}(\bar{n}) \le C_0 e^{-\varepsilon m}.$$ Lemma 3.2 then implies that $P_j \cap \bar{n}B_{j, \varkappa(m+1)} \neq \emptyset$ so that $\bar{n} \in P_jB_{j, \varkappa(m+1)}$. If $k \ge j + m + 1$ we have $$\begin{split} \bar{n}B_{k,\,\varkappa(k-j)} \; \subset \; P_jB_{j,\,\varkappa(m+1)}B_{k,\,\varkappa(k-j)} \; \subset \; P_jB_{j,\,\varkappa(k-j)}B_{j,\,\varkappa(k-j)} \\ \; \subset \; P_jB_{j,\,\varkappa(k-j)+\beta} \; \subset \; \bar{N} \smallsetminus P_k \; , \end{split}$$ the last inclusion by the construction of F_k . So for $j_0 \ge k \ge j+m+1$, Lemma 3.2 implies $U^{\nu_k}(\bar{n}) \le C_0 e^{-\varepsilon(k-j)}$. By our induction assumption, the terms $U^{\nu_k}(\bar{n})$, j+m+1>k>j, are in some order dominated by $C_0 e^{-\varepsilon k}$, $0 \le k \le m-1$. These two estimates together with the right-hand inequality of (3.6) end the induction step. Lemma 3.3, (iii) and Theorem 3.1 (case s>1) are proved. The claimed uniformity in H_0 follows since none of the constants used depend on H_0 . When s < 0 in Theorem 3.1, we need only modify a few details. Then j_0 is the smallest integer j for which the j-layer intersects $\{v > \alpha\}$, and the construction is carried out from smaller to greater j-values. The set F_k consists of those j-pieces, j > k, whose projections intersect $P_k B_{k, \kappa(j-k)+\beta}$. Here $0 < \kappa < -s$. We leave the rest to the reader. This ends the proof of Theorem 3.1. For $\lambda = 0$ we replace Theorem 3.1 by a weaker local result. Let $R_+ = \{t \in \mathbb{R}: t > 0\}$. THEOREM 3.4. Fix a compact set $L \subset \overline{N}$, and let μ be a probability measure carried by L. Let σ , H_0 , and ν be as in Theorem 3.1 but set $\lambda = 0$. Then $$m'_{\sigma}\{(\bar{m},t)\in L\times R_{+}: v(\bar{m},t)>\alpha\} \leq C\alpha^{-1}\psi(C(\log_{*}\alpha)H_{0})$$ for $\alpha > 0$, where C depends on L but not on H_0 . PROOF. Again let $s = \sigma(H_0)$ and consider first the case s > 1. In this proof, we use a measure v as in the proof of Theorem 3.1, but the construction of v is much easier this time. In fact, v is carried by the "lower" boundary of the set $\{v > \alpha\}$ and has an area density there. Set $$S(\bar{m}) = \sup\{t : v(\bar{m}, t) > \alpha\}$$ when $\bar{m} \in L'$ and L' is the set of $\bar{m} \in L$ for which $S(\bar{m}) > 0$. Let ν be the measure in $L \times R_{\perp}$ defined by $$\int \varphi(\bar{m},t) dv(\bar{m},t) = \int_{L'} e^{sS(\bar{m})} \varphi(\bar{m},S(\bar{m})) d\bar{m}.$$ Then clearly, (ii') $$v = \alpha$$ in supp v , and moreover, (i') $$m'_{\sigma}(L \times \mathbb{R}_{+} \cap \{v > \alpha\}) \leq \int_{L'} d\bar{m} \int_{0}^{S(\bar{m})} e^{st} dt$$ $$\leq s^{-1} \int_{L'} e^{sS(\bar{m})} d\bar{m} = s^{-1} ||v|| .$$ Now define U^{γ} as in the preceding proof ($\hat{\lambda} = 0$). Theorem 3.4 follows if we show (iii') $$U^{\nu} \leq C\psi(C(\log_* \alpha)H_0) \quad \text{in } L,$$ cf. (3.4). LEMMA 3.5. For any $\bar{n} \in \bar{N}$, the quantity $e^{-\varrho(H(\bar{n}_{-i}))+t}$ increases with t. PROOF. The square of this quantity is $$e^{-2\varrho(H(h_{-t}\bar{n}))+t} = P_{-i\varrho}(\bar{n}^{-1}h_t, e)e^{2\varrho(tH_0)}$$ and $P_{-io} = P$ is the ordinary Poisson kernel. From the expansion $$P(\bar{n}^{-1}h_t, e)^{-1} = \sum_s G_s(h_t)D_s(\bar{n}),$$ $G_s(h_t) = \exp \sum_s \pm \alpha(tH_0),$ given in Knapp and Williamson [7, Proposition 5.1, p. 71], the lemma easily follows. PROOF OF (iii). Since $v \le e^{-(s-1)t}$, we need only consider small α , and we have $S(\bar{m}) \leq t_0$ for all $\bar{m} \in L'$ if t_0 is defined as $C \log_+ \alpha$. Any $\bar{n} \in L$ then satisfies $$U^{\nu}(\bar{n}) = \int_{L'} e^{-\varrho(H((\bar{m}^{-1}\bar{n}) - S(\bar{m}))) + S(\bar{m})} d\bar{m}$$ $$\leq C \int_{L'} e^{-\varrho(H((\bar{m}^{-1}\bar{n}) - t_0)) + t_0} d\bar{m},$$ where Lemma 3.5 was used. Since \bar{m} and \bar{n} stay in a compact set, we may subtract $\rho(H(\bar{m}^{-1}\bar{n}))$ in the exponent in the last integral if we change the value of C. Transforming $\bar{m} \rightarrow \bar{n}\bar{m}^{-1}$, we obtain $$U^{\nu}(\bar{n}) \leq C \int e^{-\varrho(H(\bar{m}_{-t_0}))+t_0-\varrho(H(\bar{m}))} d\bar{m} = \psi(t_0 H_0),$$ where the last equality is seen from the proof of Lemma 2.1. This proves (iii') and Theorem 3.4 for s > 1. When s < 0, we may assume α is large since $m'_{\alpha}(L \times R_{+})$ is finite, and we may neglect the set where $t > t_0 = C \log_* \alpha$, since the m'_{α} measure of this set is $O(\alpha^{-1})$. Now $S(\bar{m})$ is defined as $\inf\{t: v(\bar{m}, t) > \alpha\}$ for \bar{m} in the set $L' \subset L$ where this inf is positive but smaller than t_0 . The rest goes as for s > 1. Theorem 3.4 is proved. Notice that the proof given is based on that of Theorem 2 in [13]. ## 4. Results for Re $i\lambda \in \mathfrak{a}_{+}^{*}$. If $\lambda \in \mathfrak{a}^*$, we define λ' by $i\lambda' = \operatorname{Re} i\lambda$. THEOREM 4.1. Let Re $i\lambda \in \mathfrak{a}_{+}^{*}$ and $\sigma \in (2\varrho + \mathfrak{a}^{*}) \cup (-\mathfrak{a}^{*})$, and take $p \in [1, \infty[$. For any $u \in \mathcal{E}_{\lambda}$, the following are equivalent: - (a) u=P, f for some $f \in L^p(K/M)$ when p>1, or $u=P_{\lambda}\mu$ for some Borel measure μ on K/M, when p=1. - $\begin{array}{ll} (b_1) \ e^{-\sigma/p} u/\phi_{\lambda'} \in \varLambda_{p,\sigma}^{r-1}. \\ (b_2) \ (1+|.|)^{-(r-1)/p} e^{-\sigma/p} u/\phi_{\lambda'} \in \varLambda_{p,\sigma}. \end{array}$ - (b₃) $e^{-\sigma/p}u/\varphi_{\lambda'} \in \Lambda_{p,\sigma}^*$. Observe that for r = 1 the (b_i) conditions coincide. Before the proof, we give a lemma. LEMMA 4.2. Let $L \subset \overline{N}$ be compact. Any nonnegative $\varphi \in \mathscr{E}_{v}$, $v \in \overline{\mathfrak{a}_{+}^{*}}$, satisfies (4.1) $$\varphi(\bar{m}h) \sim \varphi(k(\bar{m})h)$$ for $\bar{m} \in L$, $h \in A_+$. The same relation holds when φ is replaced by e^{ν} , any $\nu \in \mathfrak{a}^*$. PROOF. Let $\bar{m} = kan$ be the Iwasawa decomposition of \bar{m} , so that $\bar{m}h = kha^h n$. If $m \in L$, then also a, n, and h stay in compact sets, so (4.1) follows from Lemma 2.2. This is true in particular for $\varphi = \varphi_v$, $iv \in \mathfrak{a}_+^*$. But $\varphi_v \sim e^{iv - \varrho}$ by Lemma 2.1, so considering quotients $\varphi_{v'}/\varphi_{v''}$, we see that any e^v must satisfy (4.1), and the lemma is proved. PROOF OF THEOREM 4.1. (a) \Rightarrow (b_j). Since $|P_{\lambda}f| \leq P_{\lambda'}|f|$, we may assume $i\lambda \in \mathfrak{a}_+^*$. The p=1 case then immediately implies the other cases, because of (2.4) and since, by Hölder's inequality, $|P_{\lambda}f|^p \leq P_{\lambda}|f|^p \cdot \varphi_{\lambda}^{p-1}$. Now let $i\lambda \in \mathfrak{a}_{+}^{*}$ and $u = P_{\lambda}\mu$, where μ is a probability measure carried by $k(L)M \subset K/M$, and L is as in Lemma 4.2. To begin with, we prove that u satisfies (b_{j}) in $k(L)A_{+} \subset X$, and start with (b_{1}) . Let $w = e^{-\sigma}u/\varphi_{\lambda}$. Since $dm_{\sigma} \leq e^{\sigma}dkMdH$ and because of (2.3), it suffices to prove that for all $\alpha > 0$ $$(4.2) I \equiv \int_{D} e^{\sigma(H)} dk \, M \, dH \leq C \alpha^{-1} \log_{*}^{r-1} \alpha$$ where $D = \{(kM, H) \in k(L)M \times \mathfrak{a}_+^* : w(k \exp H) > \alpha\}.$ Setting $k = k(\bar{m})$, we know that dkM corresponds to $e^{-2\varrho(H(\bar{m}))}d\bar{m}$ which is majorized by $d\bar{m}$, so $$I \leq \int_{D'} e^{\sigma H} d\bar{m} dH ,$$ with $D' = \{(\bar{m}, H) \in L \times a_+ : w(k(\bar{m}) \exp H) > \alpha\}$. Because of Lemma 4.2, $$D' \subset D'' = \{(\bar{m}, H) \in L \times \alpha_+ : w(\bar{m} \exp H) > \alpha/C\}$$. The inverse image of μ under $\bar{n} \to k(\bar{n})M$ is a measure in L which is also called μ . For $H_0 \in S$, let v be as in Theorem 3.1. Because of (2.1), we have $w(\bar{m} \exp t H_0) \le Cv(\bar{m}, t)$. When r = 1, we see that $I \le C$ times the m'_{σ} measure of that part of $L \times \mathbb{R}_+$ where $v > \alpha/C$. So by Theorem 3.1, $I \le C\alpha^{-1}$ which is (4.2). For r > 1, we get $$(4.3) I \leq \int_{D''} t^{r-1} e^{t\sigma(H_0)} d\bar{m} dt dH_0 = \int dH_0 \int d\bar{m} dt \dots$$ As in the proof of Theorem 3.4, we may neglect the subset E of $L \times
\alpha_+$ where $t = |H| > C \log_* \alpha$, either because v is small in E or because the measure of E is small. This means that t^{r-1} can be estimated by $C \log_*^{r-1} \alpha$ in (4.3). Hence, the inner integral in (4.3) is $O(\alpha^{-1} \log_*^{r-1} \alpha)$, uniformly in H_0 , and (4.2) follows again. To obtain (b_2) in $k(L)A_+$, notice that we may also neglect the set where $t < (\log_* \alpha)/C$ for similar reasons. But when $t \sim \log_* \alpha$, the factor 1 + |H| behaves like a constant and (b_2) follows from (b_1) . Finally, (b_3) is a consequence of Theorem 3.1 in a similar way. To complete the proof of (a) \Rightarrow (b_j), we must get rid of L. Since $k(\bar{N})M$ is open and dense in K/M, it is easy to find a compact set L and finitely many points k_1, \ldots, k_n so that the sets $k_j k(L)M$ together cover K/M and their intersection is a neighborhood U of eM. Decomposing a given measure μ in K/M into parts carried by the $k_j k(L)M$, we see that $u = P_{\lambda}\mu$ satisfies (b_j) in UA_+ . Hence by translation, (b_i) holds in all of K, K = 1, 2, 3. $(b_j) \Rightarrow (a)$. Assume $u \in \mathscr{E}_{\lambda}$ satisfies some (b_j) and that the associated quasinorm is at most 1. We start with a crude preliminary estimate. LEMMA 4.3. $$|u| \le Ce^{C\varrho}$$ in X . PROOF. Because of the mean value theorem (see Helgason [3, p. 438]), we have for any $g \in G$ and $x \in X$ (4.4) $$\int_{K} u(gkx) dk = \lambda_{x} u(g) ,$$ where $\lambda_x \to 1$ as $x \to o$ and dk is the normalized Haar measure in K. The use of the mean value theorem at this point was suggested by T. Rychener. Let B_R denote the geodesic ball in X with center o and radius R. Now integrate (4.4) with respect to dm(x) over B_R , when R > 0 is small. We get (4.5) $$|u(g)| \leq Cm(B_R)^{-1} \int_K dk \int_{B_R} |u(gkx)| dm(x)$$ $$= Cm(B_R)^{-1} \int_{B_R} |u(gx)| dm(x)$$ because of the K-invariance of m and B_R . Fix $g \in G$. By Lemmas 2.1 and 2.2, the functions e^v , $v \in \alpha^*$, are approximately constant in gB_1 , so $dm_\sigma/dm \sim \beta \equiv e^{\sigma(g)-2\varrho(g)}$ in gB_1 . For some C, the function $v=e^{-C\varrho}|u|$ is in $A_{p,\sigma}^{r-1}$, with a quasinorm < C, when (b_1) or (b_2) is satisfied. In the (b_3) case, we replace σ by a slightly smaller σ' , and reason in the same way. Clearly, $v \sim e^{-C\varrho(g)}|u|$ in gB_1 . Now let v^* be the decreasing rearrangement of the restriction of v to v to v with respect to v. Considering distribution functions with respect to v0, we get (4.6) $$v^*(t) \leq C(\beta t)^{-1/p} \log_*^{(r-1)/p} (\beta t) .$$ When p>1, the lemma follows at once from (4.5-4.6) and (2.2), so assume p = 1. Let s_j be the sup of v in $gB_{1-2^{-j}}, j = 1, 2, ...$ Set $n = \dim X$, so that $m(B_R) \sim R^n$ for R < 1. For $x \in gB_{1-2^{-j}}$, (4.5) implies $$v(x) \leq C2^{nj} \int_{xB_2^{-j-1}} v \, dm .$$ Now $xB_{2^{-j-1}} \subset gB_{1-2^{-j-1}}$, so $v \le s_{j+1}$ there. Applying (4.6) and (2.2), we therefore have $$v(x) \leq C2^{nj} \int_0^{C2^{-nj}} \min(s_{j+1}, (\beta t)^{-1} \log_*^{r-1} (\beta t)) dt$$ $$\leq C2^{nj} \beta^{-1} + C2^{nj} \int_{1/\beta s_{j+1}}^{C2^{-nj}} (\beta t)^{-1} \log_*^{r-1} (\beta t) dt.$$ Transforming $t \to t/\beta$ in the last integral, we see that $$v(x) \leq C2^{nj}\beta^{-1} + C2^{nj}\beta^{-1} (\log_*^r s_{j+1} + \log_*^r \beta).$$ It is possible to assume that all the s_i are $> \beta^{\pm 2}$, so that $$\log_*^r s_{i+1} + \log_*^r \beta \sim \log_*^r (\beta s_{i+1}),$$ since otherwise the lemma follows at once. Letting x vary, we have proved $$s_i \leq C2^{nj}\beta^{-1} + C2^{nj}\beta^{-1}\log_*^r(\beta s_{i+1})$$. It is elementary to see from this inequality that if A > 0 is large enough, and if the inequality $$(4.7) 2^{-nj}\beta s_i > A2^j$$ holds for j=1, then it holds for all j. But this would mean that v is unbounded in gB_1 , which is false. Hence, (4.7) cannot hold for j=1, and this gives the desired estimate for v(g) and u(g). The lemma is proved. Continuing the proof of $(b_i) \Rightarrow (a)$, we shall show that (4.8) $$\liminf_{H \to \infty} I_{\lambda}(H) < \infty$$, where $I_{\lambda}(H) = \int_{K/M} \left| \frac{u(k \exp H)}{\varphi_{\lambda}(\exp H)} \right|^{p} dk M$. If (b_1) is satisfied, take a compact set $S' \subset S$. For T > 1, clearly (4.9) $$\int_{1}^{T} t^{r-1} dt \int_{S'} I_{\lambda'}(tH_0) dH_0 = \int_{D_T} |e^{-\sigma(H)/p} u/\varphi_{\lambda'}|^p e^{\sigma(H)} dk M dH$$ when $D_T = \{k \exp H \in X : k \in K, H \in R_+S', 1 \le |H| \le T\}$. Notice that $e^{\sigma(H)}dkdH \le Cdm_{\sigma}$ in D_T and that $m_{\sigma}(D_T) \le Ce^{CT}$. Lemma 4.3 and (b_1) give two estimates for $|e^{-\sigma(H)/p}u/\varphi_{\lambda'}|^p$. From (2.4) and (2.2), applied to m_{σ} , it follows that both sides of (4.9) are dominated by $$C \int_{0}^{e^{CT}} \min \left(e^{CT}, t^{-1} \log_{*}^{r-1} t \right) dt \leq CT^{r}.$$ But then necessarily $$\liminf_{t\to\infty}\int_{S'}I_{\lambda'}(tH_0)dH_0<\infty,$$ so $\liminf_{t\to\infty}I_{\lambda'}(tH_0)<\infty$ for some $H_0\in S'$ by Fatou's lemma. From this (4.8) follows, since $|\varphi_{\lambda}|$ and $\varphi_{\lambda'}$ have the same asymptotic behavior on a ray $\{tH_0\}$, as proved by Harish-Chandra [1, p. 291]. When u satisfies (b_2) , we write instead $$\int dt \int I_{\lambda'}(tH_0) dH_0 = \int ||H|^{-(r-1)/p} e^{-\sigma(H)/p} u/\varphi_{\lambda'}|^p e^{\sigma(H)} dk M dH ,$$ where the integrals are taken over the same sets as before. Then this is estimated by O(T) in the same way. The details, as well as the (b_3) case, are left to the reader. Finally, we must show that (4.8) yields the representation of u as a Poisson integral. For each irreducible representation δ of K, let $\alpha_{\delta} = d_{\delta}\bar{\chi}_{\delta}$, where d denotes dimension, χ character, and the bar complex conjugate. As in Helgason [4, p. 138], we expand u in $$u = \sum_{\delta} \alpha_{\delta} * u ,$$ where the convolution is performed in K. Harish-Chandra [2, Corollary 1, p. 13] has proved that this series converges in $C^{\infty}(X)$. Now every $\alpha_{\delta} * u$ is a K-finite function in \mathscr{E}_{λ} , so by [5, Corollary 7.4, p. 207], $\alpha_{\delta} * u = P_{\lambda} f_{\delta}$ for some K-finite function f_{δ} in K/M. Because of (4.8), we may take a sequence $H_{j} \to \infty$ for which $u(k \exp H_{j})/\varphi_{\lambda}(\exp H_{j})$ converges weakly to a measure μ in K/M, and μ is an L^{p} function if p > 1. Then $$\alpha_{\delta} * u(k \exp H_j)/\varphi_{\lambda}(\exp H_j) \rightarrow \alpha_{\delta} * \mu(kM), \quad j \rightarrow \infty$$ uniformly for $k \in K$. Michelson [10, Theorem 1.3] has proved that $P_{\lambda}f_{\delta}/\varphi_{\lambda} \to f_{\delta}$ as $H \to \infty$, so we conclude $f_{\delta} = \alpha_{\delta} * \mu$. Thus, $$u = \sum_{\delta} P_{\lambda}(\alpha_{\delta} * \mu) ,$$ and it remains to prove that this last sum equals $P_{\lambda}\mu$. And this follows from a direct calculation since $P_{\lambda}(x,\cdot)$ is smooth and thus has a convergent α_{δ} expansion. Theorem 4.1 is completely proved. REMARK 1. As to the last part of this proof, cf. also the general representation theorem in [6]. REMARK 2. In the case when r=1 and $i\lambda \in \mathfrak{a}_+^*$, we sketch a proof that (4.8) implies the desired representation for u which does not use any general representation theorem. Let the measure μ on the boundary be a weak* accumulation point of $u(\cdot \exp H)/\varphi_{\lambda}$ as $H \to \infty$, and regularize by convolving in K by a smooth approximate identity ψ_{ε} . Then $\psi_{\varepsilon}*u(\cdot \exp H_j)/\varphi_{\lambda}$ will converge uniformly to $\psi_{\varepsilon}*\mu$ for some sequence $H_j \to \infty$. Now if $v \in \mathscr{E}_{\lambda}$, then v/φ_{λ} must assume its maximum in the domain $\{k \exp H : H \in \mathfrak{a}_+, H < H_j\}$ on the boundary $K \exp H_j$. This follows from Hopf's maximum principle applied to v/φ_{λ} and the operator $w \to \Delta(\varphi_{\lambda}w) - w\Delta\varphi_{\lambda}$, where Δ is the Laplacian of X. Applying this with $v = \pm (\psi_{\varepsilon}*u - P_{\lambda}(\psi_{\varepsilon}*\mu))$ and letting $j \to \infty$ gives $\psi_{\varepsilon}*u = P_{\lambda}(\psi_{\varepsilon}*\mu)$ and thus $u = P_{\lambda}\mu$. ## 5. Results for $\lambda = 0$. THEOREM 5.1. If r=1, Theorem 4.1 holds when $\lambda=0$. For r>1 and $\lambda=0$, let σ and ρ be as in Theorem 4.1, and assume $u\in \mathscr{E}_0$. Then u has a representation as in condition (a) of Theorem 4.1 if and only if (b_j) holds in some (or every) restricted domain. Here j is 1, 2, or 3. We do not know whether Theorem 4.1 holds for $\lambda = 0$, r > 1, although this seems plausible in view of Theorem 3.4. However, conditions like $$e^{-\sigma/p}u/e^{-\varrho} \in \Lambda_{p,\sigma}^{qp+r-1}$$ in all of X also characterize the Poisson integrals of L^p functions or measures for $\lambda = 0$. The proof of this is left to the reader. In the preceding section, we already used a convergence result of type $P_{\lambda}f/\varphi_{\lambda} \to f$ at the boundary, for $\operatorname{Re} i\lambda \in \mathfrak{a}_+$. Michelson [10] obtains such results by proving that $P_{\lambda}(\exp H,kM)/\varphi_{\lambda}(\exp H)$ is an approximate identity in K/M as $H \to \infty$. Since this expression has integral 1 and bounded L^1 norm in K/M, it defines an approximate identity if and only if its L^1 norm in $K/M \setminus U$ tends to 0 as $H \to \infty$ for any neighborhood U of eM in K/M. Whether this is true for $\lambda = 0$ and r > 1 seems to be unknown. The following weaker result will be needed in the proof of Theorem 5.1. THEOREM 5.2. Let $H_0 \in S$ and $\varepsilon > 0$, and set $h_t = \exp t
H_0$. There exists a Lebesgue measurable set $F \subset \mathbb{R}_+$ such that for any T > 1 the measure of $F \cap [T, 2T]$ is larger than $(1 - \varepsilon)T$ and such that for any neighborhood U of εM in K/M $$(5.1) \qquad \frac{1}{\varphi_0(h_t)} \int_{K/M \setminus U} P_0(h_t, kM) dkM \to 0 \quad \text{as } t \to \infty, \ t \in F.$$ PROOF. As usual, we transform the integral to \overline{N} . Assume U = k(B)M, for a compact neighborhood B of $e \in \overline{N}$. Writing B, as in Section 3, we have $$I(B,t) \equiv e^{\varrho(tH_0)} \int_{K/M \setminus U} P_0(h_t, kM) dkM$$ $$= \int_{\bar{N} \setminus B} e^{-\varrho(H(\bar{n}_{-t})) + t - \varrho(H(\bar{n}))} d\bar{n} .$$ Now $$\bar{N} \setminus B = \bigcup_{j=1}^{\infty} (B_{-j} \setminus B_{-j+1}),$$ and $$e^{-\varrho(H(\bar{n}))} \leq Ce^{-\delta j}$$ for $\bar{n} \notin B_{-i+1}$ and some $\delta > 0$, by Γ7, Proposition 5.51. Thus, (5.2) $$I(B,t) \leq C \sum_{j=1}^{\infty} e^{-\delta j} \int_{B_{-j} \setminus B_{-j+1}} e^{-\varrho(H(\bar{n}_{-j}))+t} d\bar{n}.$$ Notice that the quantity in (5.1) is $I(B,t)/\psi(tH_0)$ and that $\psi(tH_0) \sim t^q$, $t \to \infty$. We must thus determine F so that $I(B,t) = o(t^q)$, $t \to \infty$, $t \in F$. In the terms with j>t in (5.2), we transform $\bar{n} \to \bar{n}_{-j}$, getting $$\sum_{j>t} \ldots \leq C \sum_{j>t} e^{-\delta j} \int_{B \setminus B_1} e^{-\varrho (H(\bar{n}_{-j-t}))+j+t} d\bar{n}.$$ Since $H(\bar{n})$ is bounded in $B \setminus B_1$, the integral in the last sum is dominated by $$C \int_{\bar{N}} e^{-\varrho(H(\bar{n}_{-j-t}))+j+t-\varrho(H(\bar{n}))} d\bar{n} = C\psi((j+t)H_0) \leq C(j+t)^q.$$ Hence, $$\sum_{j>t} \ldots \leq C \sum_{j>t} e^{-\delta j} (j+t)^q \to 0 \quad \text{as } t \to \infty.$$ As to the other terms in (5.2), we have $$\sum_{t=1}^{T} \sum_{j=1}^{t} e^{-\delta j} \int_{B_{-j} \setminus B_{-j+1}} e^{-\varrho(H(\bar{n}_{-i})) + t} d\bar{n} \leq \sum_{j=1}^{T} e^{-\delta j} \sum_{t=j}^{T} \int_{B_{-j-i} \setminus B_{-j-i+1}} e^{-\varrho(H(\bar{n}))} d\bar{n}$$ $$\leq \sum_{j=1}^{T} e^{-\delta j} \int_{B_{-2T}} e^{-\varrho(H(\bar{n}))} d\bar{n} ,$$ since $B_{-j-t} \setminus B_{-j-t+1}$ are disjoint for distinct t, fixed j. Transforming $\bar{n} \to 0$ \bar{n}_{-2T} , one can estimate the last integral by $\psi(2TH_0) \le CT^q$ as before, and so the last sum is also $O(T^q)$. Altogether then, we conclude $$\sum_{t=1}^{T} I(B,t) \leq CT^{q}.$$ Because of Lemma 2.2, this estimate remains valid if we replace summation in t by integration dt. If we let $F = \{t : I(B, t) \le Ct^{q-1}\}$ and choose C large enough, it is clear that $I(B, t) = o(t^q)$ in F and that F is as dense at ∞ as claimed. Finally, to find an F which works for all U simultaneously, we repeat this construction as U describes a neighborhood basis at eM, choosing the values of ε suitably. The proof of Theorem 5.2 is complete. Notice that we actually proved that $$\int_{0}^{T} \psi(tH_{0}) \varphi_{0}(h_{t})^{-1} P_{0}(h_{t}, kM) dt / \int_{0}^{T} \psi(tH_{0}) dt$$ is an approximate identity as $T \to \infty$. Since this makes it possible to reconstruct f from $P_0 f$, we incidentally also get a proof of the fact that the value $\lambda = 0$ is simple without using the general criterion of Helgason [5, Theorem 6.1]. PROOF OF THEOREM 5.1. We only indicate at which points this proof differs from that of Theorem 4.1, leaving the details to the reader. Assume first $u = P_0 \mu$, $\mu \ge 0$ a measure, and take $\alpha > 0$. As before, we need only care about the region where $|H| \sim \log_* \alpha$. If, further, H is in a restricted cone, we know that $\psi(H) \sim |H|^q \sim \log_*^q \alpha$. Now the (b_j) conditions are proved as in Section 4, by means of Theorem 3.4 instead of Theorem 3.1. Conversely, let u satisfy (b_1) , say, in the restricted domain corresponding to $S' \subset S$. As in the deduction of (4.8), we have $$\int_{1}^{T} t^{r-1} dt \int_{S'} I_{0}(tH_{0}) dH_{0} \leq CT'.$$ This implies that $I_0(tH_0) \le C$ in "most of" the set $\{(t,H_0): T \le t \le 2T, H_0 \in S'\}$ for every large T and some C. But then one can find an $H_0 \in S'$ for which the same inequality holds for most t in $[2^j,2^{j+1}]$ for infinitely many values of j. Hence, there is a sequence $t_j \to \infty$ contained in the set F of Theorem 5.2 and such that $I(t_jH_0)$ is bounded as $j \to \infty$. This is all we need to apply the reasoning at the end of the proof of Theorem 4.1, and the proof is complete. # 6. The case when σ is between 0 and 2ρ . We say that the maximum theorem holds for a p>1 and a λ , Re $i\lambda \in \mathfrak{a}_+^*$ or $\lambda=0$. if $$u^*(kM) \equiv \sup\{|u(k\exp H)|/\varphi_{\lambda'}(\exp H): H \in \mathfrak{a}_+\} \in L^p(K/M)$$ whenever $u = P_{\lambda} f$ and $f \in L^p(K/M)$. This is true for all such p and λ when r = 1 (see Michelson [10, Sec. 3]). For r > 1, the maximum theorem holds for p large enough, at least when $i\lambda = \varrho$ (see Lindahl [8]). The following result generalizes a theorem of Lohoué and Rychener [9, Proposition 1]. THEOREM 6.1. Let p>1 and $\operatorname{Re} i\lambda \in \mathfrak{a}_+^*$ or $\lambda=0$, and assume $\sigma \in {}_+\mathfrak{a}^* \cup (-{}_+\mathfrak{a}^*)$. If the maximal theorem holds for these p and λ , then conditions (a), (b₂), and (b₃) are equivalent. To prove (a) \Rightarrow (b_j), one estimates u by means of u^* . The details are left to the reader (see also [9]). For the converse implications, the corresponding proofs given in Sections 4 and 5 carry over without change. However, (a) does not in general imply (b_1) under the hypotheses of Theorem 6.1. To get a counterexample, consider a bi-disk U^2 , U being the noneuclidean unit disk, and write each coordinate $z_i \in U$ as $(r_i \cos \theta_i, r_i \sin \theta_i)$, $-\pi < \theta_i \le \pi$, i = 1, 2. Then dm_{σ} is essentially the product of the measures $r_i(1-r_i)^{-1-s_i}dr_id\theta_i$, i = 1, 2, and we let $0 < s_i < 1$, which means choosing σ strictly "between" 0 and 2ρ . Given $p \ge 1$ and $\varepsilon > 0$, choose $$f(\theta_1, \theta_2) = f(\theta_1) = |\theta_1|^{-1/p} \log_{*}^{-(1+\epsilon)/p} |\theta_1|$$ which is an L^p function on the boundary $\partial U \times \partial U$. If $$v(z_1, z_2) = (1 - r_1)^{s_1/p} (1 - r_2)^{s_2/p} P_{\lambda} f/\phi_{\lambda}$$ and $i\lambda \in \mathfrak{a}_{+}^{*}$, it is easily seen that (6.1) $$v \ge (1-r_1)^{s_1/p}(1-r_2)^{s_2/p}f(\max(|\theta_1|,1-r_1))/C.$$ Let $0 < \varepsilon' < 1 - s_1$ and $\alpha > 0$. Suppose $$(6.2) (1-r_1)^{1-s_1-\varepsilon'} < (1-r_2)^{s_2}\alpha^{-p} < 1$$ so that $$\log_{+}(1-r_1)^{s_1}(1-r_2)^{s_2}\alpha^{-p} \sim \log_{+}(1-r_1)$$. If in addition $$(6.3) 1-r_1 < |\theta_1| < (1-r_1)^{s_1}(1-r_2)^{s_2}\alpha^{-p}\log_+^{-1-\epsilon}(1-r_1)/C,$$ it follows from (6.1) that $v > \alpha$. For r_2 fixed, we integrate $r_1(1-r_1)^{-1-s_1}dr_1d\theta_1$ over the set of (r_1, θ_1) defined by (6.2) and (6.3), getting at least $$(1-r_2)^{s_2}\alpha^{-p}\log_{+}^{-\epsilon}((1-r_2)^{s_2}\alpha^{-p})/C$$. Integrating now in r_2 and θ_2 , we see that $m_{\sigma}\{v>\alpha\}=\infty$, so that $v\notin \Lambda^1_{p,\sigma}$. Next, we give examples showing that Theorem 6.1 is false for p=1 and σ "between" 0 and 2ρ . When $\sigma = 0$, the function $u = P_1 1 = \varphi_1$ does not satisfy any (b_i). For other σ , we consider only the ordinary Poisson kernel P in the unit disk, or, more conveniently, the upper half-plane $R_{+}^{2} = \{(x, t) : t > 0\}$. We choose measures in $0 \le x \le 1$ and estimate their Poisson integrals in \mathbb{R}^2 near this interval. If $\sigma = s \cdot 2\rho$, $0 < s \le 1$, we have $e^{-\sigma} \sim t^s$ and $dm_{\sigma} \sim t^{-s-1} dx dt$ here. For s=1, $\sigma=2\rho$, consider the Dirac measure δ_0 . It is easily verified that $tP\delta_0 \sim t^2/2$ (x^2+t^2) is not in $\Lambda_{1,\sigma}$. And when 0 < s < 1, we use measures of Cantor type, carried by Cantor sets of ration $2^{-\kappa}$, $\kappa = 1/(1-s) > 1$, constructed as follows. Choose two 1st step intervals $[0, 2^{-\kappa}]$ and $[1-2^{-\kappa}, 1]$, thus situated at the ends of [0, 1], and then four 2nd step intervals, each of length 2^{-2x} , at the ends of the two 1st step intervals. Continuing in this way, we get at the nth step 2" intervals of length 2^{-nx} . There exists a measure μ such that each of these nth step intervals has measure 2^{-n} . It is easily verified that at points (x, t) with t $\sim 2^{-\kappa n}$ and x in an nth step interval, we have $t^s P \mu(x,t) \sim 1$. Hence, $m_{\sigma} \{ t^s P \mu(x,t) \}$ ~ 1 } = ∞ , and we are done. ## REFERENCES - Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. Math. 80 (1958), 241-310. - 2. Harish-Chandra, Discrete series for semisimple Lie groups, II, Acta. Math. 116 (1966), 1-111. - 3. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. - S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 1-154. - 5. S. Helgason, A duality for symmetric spaces with applications to group representations, II. Differential equations and eigenspace representations, Adv. in Math. 22 (1976), 187-219. - M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), 1-39. - A. W. Knapp and R. E. Williamson, Poisson integrals and semisimple groups, J. Analyse Math. 24 (1971), 53-76. - 8. L.-Å. Lindahl, Fatou's theorem for symmetric spaces, Ark. Mat. 10 (1972), 33-47. - 9. N. Lohoué and T. Rychener, Some function spaces on symmetric spaces related to convolution operators, to appear. - H. L. Michelson, Fatou theorems for eigenfunctions of
the invariant differential operators on symmetric spaces, Trans. Amer. Math. Soc. 177 (1973), 257-274. - J. Serrin, On the Harnack inequality for linear elliptic equations. J. Analyse Math. 4 (1954-56), 292-308. - 12. P. Sjögren, Weak L₁ characterizations of Poisson integrals, Green potentials, and H^p spaces, Trans. Amer. Math. Soc. 233 (1977), 179-196. - P. Sjögren, Generalized Poisson integrals in a half-space and weak L¹, Uppsala University, Department of Mathematics. Report No. 9, 1977. DEPARTMENT OF MATHEMATICS CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GÖTEBORG S-412 96 GÖTEBORG SWEDEN