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CHARACTERIZATIONS OF POISSON
INTEGRALS ON SYMMETRIC SPACES

PETER SJOGREN

Introduction.

It is well known that for the hyperbolic unit disk U={|z|<1} the
eigenfunctions u of the Laplacian are given by generalized Poisson integrals of
hyperfunctions T on the boundary ([4, Ch. IV]). More generally, such an
integral representation holds for the joint eigenfunctions of the invariant
differential operators on a symmetric space X, see [6]. If X has rank 1, the
kernels used here are powers of the ordinary Poisson kernel. In that case, T is a
distribution if and only if u grows at most exponentially with the distance, see
Lewis [J. Funct. Anal. 29 (1978), 287-307]. For U, the functional T is given
by an L? function on the boundary, 1 <p <00, if and only if the L? norm of u/¢
on |z|=r is bounded as r — 1, as follows by standard arguments, cf. Remark 2
in Section 4. Here ¢ is the circular mean value of u (assuming u(0)=0), i.e., the
generalized Poisson integral of a constant function on the boundary. The
present paper deals with another way of characterizing those u for which T is
an LP function. These characterizations use weak LP spaces and work for
symmetric spaces of arbitrary rank. They extend the author’s work in [12] on
ordinary Poisson integrals in R".

In U, the results read as follows. Let dm, be the measure (1 —|z|?) ! ~Sdxdy,
so that s=1 gives the invariant measure and s = — 1 Lebesgue measure. Then T
is an L? function if and only if (1 —|z|?)?u/@ is in weak LP(m,). When p > 1, this
holds for all s+0, when p=1 only for s ¢ [0,1].

For rank X =r>1, it turns out that r—1 logarithmic factors must be
introduced in the weak L? condition, which can be done in several ways. The
case (called 1=0) corresponding to the square root of the ordinary Poisson
kernel must be treated differently, although the results are essentially the same.

Lohoué and Rychener [9] have proved a special case of our results and
applied it to convolution operators on L? in a Lie group. Most of our
techniques are suitable generalizations of those of [12]. See also [13], where
more general kernels are considered.

The preparatory Section 2 contains, among other things, some known facts
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about the behaviour of joint eigenfunctions, and there the measures and weak
LP spaces we use are defined. In Section 3, we prove two auxiliary technical
results in the setting of a “half-space” over a nilpotent Lie group. The idea of
the proof of Theorem 3.1 is taken from that of Theorem 1 in [12].

The main results are given in Section 4 (4+0) and Section 5 (A1=0). For
4+=0, we also give in Section 5 a method of recovering f from its Poisson
integral, which replaces the ordinary convergence result at the boundary.
Finally, those results which hold only for p>1 are studied in the last section,
which also contains two counterexamples.

2. Preliminaries.

Let X =G/K be a Riemannian symmetric space of noncompact type. Here G
is a connected semisimple Lie group with finite center, and K a maximal
compact subgroup of G. In fact, all our results are valid even when X is
reducible, but for simplicity we treat only the irreducible case. Denoting by g
and f the Lie algebras of G and K, we choose a Cartan decomposition g=+p
and let a be a maximal abelian subspace of p. Then r=dima is the rank of X.
This gives a root space decomposition of g. Choosing as usual a positive Weyl
chamber a, and the associated ordering of the roots, we call n (1) the sum of
the root spaces corresponding to positive (negative) roots. Letting 4, N, and N
be the subgroups of G having Lie algebras a, n, and i, respectively, we have
Iwasawa decompositions g=f+a+n and G=KAN. Thus, any g € G can be
written uniquely as g =k(g) exp H(g)n(g) with k(g) € K, H(g) € a, and n(g) € N.
We let e be the unit element of G, K, or N, and set 0=¢K € X.

Denoting A, =expa., where a, is the closure of a, in a, we have the
Cartan decomposition G=KA K. This means that for any ge G or x € X
there is a unique element H in a, such that g or x belongs to K (exp H)K. We
then set H=H'(g) or H=H'(x), respectively. A function F=F(H) defined on
a, will be considered also as a function on G and on X, by means of F(g)
=F(H'(g)) and F(x)=F(H'(x)).

Let a* (ad) be the real (complex) dual of a. Then

sa* = {Aea*: AH)>0 for Hea,}

is the open cone generated by the positive roots, by the bipolar theorem. The
Killing form makes a into an inner product space, so that there is a canonical
map a — a*, and we denote by a* the image of a, under this map. Then a%
< ,a*, as proved in Harish-Chandra [1, Lemma 35, p. 279]. Let 2¢ be the sum
of the positive roots, so that ¢ € a% (see [1, p. 281]). We denote by S the “slice”
{Hy € a, :2¢(Hy)=1}, and often write any H € a, as H=tH,, with t>0 and
H, € S, and put t=|H|. Thus, |-|=|H'(x)| is also a function on X. A restricted
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domain in X is defined to be one of type {x € X : H'(x) € R, S'}, where §' is a
nonempty, open, and relatively compact subset of S and R, S’ the open cone it
generates in a. In such a domain, we see that H’(x) stays far from the boundary
of the positive Weyl chamber, except for x near 0. We call R, S a restricted
cone.

The (maximal) boundary of X is by definition the quotient K/M, where M is
the centralizer of 4 in K. This boundary has a unique normalized K-invariant
measure dkM. If A € ag, the associated Poisson kernel is

P,(g,k) = e~ +0HEN) for g G, ke K .

Since this expression is right K-invariant in g and right M-invariant in k, we
may also consider P, as a function on X x K/M and write P,(x, kM) for x € X.
The A-Poisson integral of a Borel measure y in K/M is defined by

Pu(x) = JPz(x, kM) du(kM) .

For integrable functions f on the boundary, P, f means P,(fdkM). Then the
(spherical) function ¢,=P,1 is a left K-invariant function on X. As is well
known, any P,u is an eigenfunction for all K-invariant differential operators on
X, and the eigenvalues depend only on A. Let &, be the space of all
eigenfunctions for these operators with the same eigenvalues as ¢,. Whenever
convenient, we consider the functions in &, as defined on G rather than on X.
These functions are smooth since some invariant operators are elliptic.

In this paper, C will denote many different constants, and we will generally
not indicate precisely which parameters C depends on at each occurrence. The
relation f~g means C '<f/g<C. The following lemma describes the
asymptotic behavior of ¢,.

LEMMA 2.1. One has ¢, (exp H)~e™ =9 if i} e a%, uniformly for H € a,.
This can be written simply ¢, ~e'*¢, with our conventions.

ProOF. With h=exp H, we set " =hith™! and *i=h"'7h. Denoting by dfi a

suitable Haar measure on N, we may transform the Poisson integral to an
integral over N by means of i — k(7)M, getting

@.(h)

J o~ i+ (™ k() ~20(H ) g
N

= -0 j o= A+ QH () + 20(H)+ (A -QH () g7
R

_ i-ou j o~ A+QUHE) + (- H@) g7
- N
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(see e.g. Helgason [4, pp. 129-130]; distinguish between H(.) and H). The last

step here was the transformation 7 — /" which has Jacobian e 2¢®) If a

canonical coordinate system is used in N, the conjugation i — 7" has the
effect of decreasing all coordinates when h € 4, so 7" stays in a compact set as

fi varies in a compact set L= N and h € 4. Therefore, the integrand in the last

integral is ~1 in L. From this we get ¢,(exp H)= e~ 0#)/C,

For the converse inequality, we estimate the same integrand from above by

e~ (@+3HH() where §>0 is small, as in Helgason [4, p. 130] or Michelson [10,

.p. 262], and this expression is integrable and independent of H. The lemma

is proved.

A measure u in N may also be considered as a measure in K/M by means of
the transformation 7 — k(7)M. From the proof just given, we then see that

(2.1)  P,u(mh) = eW—oH) je*(i;=+@)(H(h(';'_l’_‘)))+20(H)+(i/:~+Q)(H(ﬁ))d#(ﬁ) ,

for m € N, h € A, which will be used later.
For 1=0, we put

@olexpH) = e *®y(H), Hea,.

Harish—Chandra [1, p. 279] has proved that there is a natural number g such
that y(H)/(1+|H]|)? is bounded on a, and y(tHy)~t? as t —» oo for each
H, € S, but this last relation is not uniform in H, when r> 1. If r=1, theng=1.

LEMMA 2.2. Given i € a* and a compact set L <X, there is a constant C
=C(L, A) such that any nonnegative u € &, satisfies

u(gx) = Cu(gy)
for all x,y e L and any g € G.

This lemma is a form of Harnack’s inequality. Except for some cases, it is a
consequence of Lemma 2.1 in Michelson [10], but we indicate another proof:
For g=e, the lemma follows by well-known elliptic operator techniques (cf.
Serrin [11], or the fact that &, defines a sheaf satisfying Brelot’s axiomatic
potential theory). The general case is then immediate from the translation
invariance of &,.

We shall work with several positive measures on X. The invariant measure m
is given by

J @dm = I @(kexp H) [] sinh («(H))dkM dH ,
X K/Mxa, a
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where the product is taken over the positive roots, counted according to
multiplicity. We write ¢(kexp H) rather than ¢(k(exp H)K), and dH is a
Euclidean measure in a.

Writing H=tH, we have dH =t"~'dtdH, in a, for a fixed measure dH in S
which is an (r— 1)-dimensional Euclidean measure on S. As H — oo, which
means that a(H) — oo for all positive roots, dm~e*®dkMdH. Setting dm,
=e°~?%dm for ¢ € a*, we obtain a family of measures, and dm, ~e°dkMdH as
H — oo. Notice that Lebesgue measure in the unit disk is included here, up to
the ~ relation, and that m, is finite if and only if 6 € — ,a*.

Next, we define weak L? spaces. If u is any positive measure on X and fa u-
measurable real- or complex-valued function, the distribution function of fis

@) = p{ixe X : |[f(X)>a}, a>0.
The decreasing rearrangement of f is
¥ = inf{a: A(0st), O<t<u(X).
Notice the simple inequality

R(E)
(2.2) J‘E [fldu éj f*@de

0

valid for any u-measurable set Ec X. Weak L?, denoted 4, consists of those f
for which

[ 2 Gt 0 <t < (X)),
and the smallest possible C here is the quasi-norm of fin weak LP. Setting
loght = (1+]|logt))’, all t>0and b20,

we define A5 by the inequality f*()<Ct™'"logj’t, and call infC the
quasinorm as before. Notice that A=A, that A}, may also be defined by

(2.3) Ap(@) £ Ca”Plogi a
with another C, and that
(2.4) feA, < |fPeA].

When p=m,, we denote by A, , and A} , the spaces obtained. Finally, A7, is
weak LP with respect to the measure (1 +|H D! ~"dm,; observe that this measure
is slightly smaller than m, and behaves like e’dkMdtdH, as H=tH, — .

3. Auxiliary theorems.

In this section, H, will be in S and we set h,=exptH,, t € R. For /i € N, we
write fi,=hjih_,. In the space N xR, let dm/, denote the measure e'**odsd:
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(7 e N, t € R). Here o € a* as before. Because of (2.1), the integral formed in
the following theorem is closely related to P,u(mh,).

THEOREM 3.1. LetiA € a*,and 6 € 20+ ,a*)U(— ,a*). WithH, e Sand pa
probability measure in N, define a function v in N x R by

U(ﬁl, t) - e——w(Ho) fe—(il+e)H((m"ﬁ)_,)+td#(ﬁ) .

Then v is in weak L' with respect to m, in N xR, and the corresponding
quasinorm is bounded uniformly for H, € S.

Proor. The product N x R should be seen as a “half-space” {(m,t') : m € N,
t'>0} over N, but we use t= —logt' instead of ¢’ as a coordinate. Call N x
[j,j+1]=N xR the j-layer, for any integer j.

Let B be a compact neighborhood of e € N which is symmetric (B! = B), of
Haar measure 1, and such that hBh~! < B for all h € 4,. Of course, B, means
h,Bh_,, and the Haar measure of B, equals the Jacobian of the map i — 7,
which is e~2(tHd=¢~* To obtain the claimed uniformity in H,, we fix an
element H, € S, putting h;=expyH, and B, ,=h"_ B/, Notice that B, , is
decreasing in ¢ and increasing in y. Take >0 so that BB< B, ;.

The sets B, will serve as building-blocks to discretize the problem. For each
integer j, we choose a maximal set {#,B;}, of pairwise disjoint translates of B; in
N, and each 7,B; is called a j-base. Thus, for any m € N, the translate mB ; must
intersect some j-base. The sets 7,B; x [j, j+ 1] are called j-pieces, and they are
disjoint and contained in the j-layer.

In the “half-space”, the j-layer should be thought of as situated at height
~e~J and having width ~e™J. And the j-pieces essentially correspond to a
subdivision of the j-layer into cubes of side e ™. (The j-pieces do not cover the j-
layer, but this is unimportant.)

We shall need three observations. First, Lemma 2.2 gives a property of v. For
if p € B, and |t—t|<1, then mph,.=mh,p_.h._,, and the last two factors here
belong to a compact set. Applying Lemma 2.2 to the Poisson kernel, we
conclude that for any k € K and any m € N,

e~ A+ o)(H((rh)~ k)

does not change more than by a factor C if m is replaced by mp and ¢t by t.
Since (m~'A)_,= (i~ 'mh,)"'h,, this implies

(3.1) v(mp,t) ~ v(m,t) for pe B, |[t—1|=1.

Next, we see that
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(3.2 J e~ WHAH- )+t g s independent of ¢ ,

by transforming m — m,. This integral is known to be finite ([1, Lemma 45, p.
2891). Finally

(33) j e~ FrIHM) gy = O(e™»), y - o0,
N\B,,
for some a>0. This follows from the facts that
Je"(l_")(i“g)(”(’ﬁ))dm < 00

and e~ “+OHM = 0 (Im|~*) for some #,a'>0 and some norm on N (Knapp—
Williamson [7, Proposition 5.5]).

Now let s=0g(H,) so that s ¢ [0,1] and s is bounded away from [0, 1],
uniformly as H, € S. Consider first the case s>1. We have v<e 71
everywhere since H(m) € ,a for any m € N (see [1, Lemma 43, p. 287]). Take o
>0. Since v — 0 as t — oo, we may let j, be the largest integer for which the
set {(m,t):v(m,t)>a} intersects the j,-layer.

By induction in decreasing j, we shall now construct for j=j,,j,—1,...
measures v; in N x R, and supp v; will be a set of j-pieces. Each time we decide
to place v,-mass in a certain k-piece, we simultaneously forbid placing mass
near this k-piece in the sequel, i.e. for j < k. This is done by introducing “above”
the k-piece a forbidden region which becomes wider as we move upwards (j
decreases). At each step in the construction, mass is placed in a piece if and
only if this piece intersects {v>a} and is not already in a forbidden region.

When we now carry out this in detail, Fj, j=jo,jo—1,..., will be sets of
(forbidden) pieces. For some k < j,, assume v; and F; defined for j, 2j> k. Then
we let v, be the restriction of the measure m;, to the union of all those k-pieces
which intersect {(m, t):v(r,)>a} and do not belong to Ujog j>k Fj i.e. which
are not already forbidden. (In case k=j,, this union is empty.) Set P,
=mn(supp v,), where n: N xR — N is the projection. Then P, is a union of k-
bases. Now F, is defined as the set of those j-pieces, all j <k, whose projections
intersect the set P,B; - j+ s Where x is a fixed number satisfying 0 <x <s—1.
This defines v;, j < jj.

We claim that v=3" v, satisfies

@) my{v>Ca}=Cjv|
(i) v>a/C in suppv
(i) U'SC inN,

where
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U*(f) = Je‘s“("“‘?)(H((’;'"ﬁ)-'»“dv(rh, 0.
These three inequalities imply Theorem 3.1, since
(34 m{v>Ca} < Cllv|| £ Ca™? Jvdv = Co~ ! J‘U"du < Ca™t,

by Fubini’s theorem; cf. [12, p. 183].

To prove (i), we first observe that the m, measure of a k-piece is Ce" ™1k,
Take a point (m,t) with v(m,t)>Ca, and let k=[¢]. Then mB, x [k, k+1]
intersects some k-piece 1,B, x [k,k+ 1], and because of (3.1), one has v>a in
the intersection, if C is suitably chosen. It also follows that m € 7B, B’
=#,B,B,=/,B, ;. But the Haar measure of B, , is at most C times that of
i,B,, and it follows that m,{v> Ca} is bounded by C times the total m, measure
of those pieces which intersect {v>a}. And such a piece is either in supp v or in
U F, by construction, and m,(supp v)=|v|. Thus, it remains to estimate the
total measure of the pieces in U F, by C||v||. To this end, notice that a j-piece in
F,, j<k, must intersect n(Q)B; ,u-j+px[j,j+1], for some k-piece Q in
supp v,. Therefore, this j-piece is contained in n(Q)B;, - j+cx [j,j+1] for
some C. The Haar measure of n(Q)B,; .- j+c is O(e”?***~7). Hence, the total
m,, measure of all pieces in F, associated with Q in this way is at most

C Z esi—itnk—j < Cels— 1k Z e~ =1-0k=)) < Ces— Dk — Cm;(Q)

j<k i<k

Summing over all the pieces Q in supp v, and then over k, we see that the total
measure of the pieces in U F, is at most

Cmj,(suppv) = Cllv|| .
Thus, (i) is proved.
Inequality (ii) is an immediate consequence of (3.1).

To prove (iii), we need two lemmas. The first one expresses that if the
projection P; of suppyv; is far from 7, then U is small at 7.

LEmMmA 3.2. Let b>0. If ie N and P;NAB; =&, then U"(A)< Coe™,
where ¢>0 and C,, are constants.

Proor. In view of the reasoning leading to (3.1),

U'in) < C f e~ WA+ QH(A 'R ) +i g
P,
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By assumption, P; 'ic N\ B; 4, so a transformation i — 7im; ! takes us to
the integral in (3.3). The lemma follows.
By making C, larger if necessary, we may assume

(3.9) Ut(n) = Co

for all j and all 7, because of (3.2). Inequality (iii) is a consequence of the
following lemma, where ¢ and C, are as just described.

LemMA 3.3. For any i € N and any j<jy, it is possible to rearrange the sum
Yo ; U™(fi) so that it becomes dominated term by term by Y jo=d Coe ™%,

Proor. The case j =j, is clear from (3.5), so assume the lemma holds for j+ 1.
Let m be the nonnegative integer satisfying

(3.6) Coe ™™+ < UM(ii) < Coe™™ .

Lemma 3.2 then implies that P;NAB; i+ 1, F & s0 that i € P;B; sy f k2j
+m+1 we have

ABy xik-jy < PiBj wim+ 1)Brw-iy & PiBj k- nBisxtk~j

[ PB k—j)+B < N\Pk,

I

the last inclusion by the construction of F,. So for jo=k=j+m+1, Lemma 3.2
implies U"(7)) < Cye "), By our induction assumption, the terms U®*(7), j
+m+1>k>j, are in some order dominated by Cye™*, 0Sk<m—1. These
two estimates together with the right-hand inequality of (3.6) end the induction
step. Lemma 3.3, (iii) and Theorem 3.1 (case s>1) are proved. The claimed
uniformity in H, follows since none of the constants used depend on H,,.

When s <0 in Theorem 3.1, we need only modify a few details. Then j, is the
smallest integer j for which the j-layer intersects {v>a}, and the construction
is carried out from smaller to greater j-values. The set F, consists of those j-
pieces, j>k, whose projections intersect PyB, ,(j-i+p Here 0<x< —s. We
leave the rest to the reader.

This ends the proof of Theorem 3.1.

For A=0 we replace Theorem 3.1 by a weaker local result. Let R, ={t € R:
t>0}.
THEOREM 3.4. Fix a compact set Lc N, and let p be a probability measure
carried by L. Let o, Hy, and v be as in Theorem 3.1 but set A=0. Then
m,{(m,t) e LxR, : v(m,t)>a} £ Ca”'y(C(log, a)H,)

Sor a>0, where C depends on L but not on H,.
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PRrOOF. Again let s=0(H) and consider first the case s> 1. In this proof, we
use a measure v as in the proof of Theorem 3.1, but the construction of v is
much easier this time. In fact, v is carried by the “lower” boundary of the set
{v>a} and has an area density there.

Set

S(m) = sup{t : v(m,t)>a}
when m € L’ and L' is the set of m € L for which S(m)>0. Let v be the measure

in L xR, defined by

J o(m,t)dv(m,t) = f eSS (rn, S (m)) dm .
L

Then clearly,
(ii") v=a in suppv,

and moreover,

M)
i) m,(LxR, N {v>a}) < J. dmj e dt
L

0

IIA

s71 j eSS dm = s71v| .
L

Now define U" as in the preceding proof (2 =0). Theorem 3.4 follows if we show
(iii’) U* = Cy(C(log,®)Hy) in L,
cf. (3.4).

LEMMA 3.5. For any ii € N, the quantity e~ ¢HGE-D*t incregses with t.
Proor. The square of this quantity is
e—ZQ(H(h_,ﬁ))-H = P_ia(r_l_lh,, e)eZQ(tHO)
and P_,,=P is the ordinary Poisson kernel. From the expansion
P(ﬁ—lhrae)_l = Z Gs(ht)Ds(ﬁ) s
s

Gs(hr) = €Xp Z i“(tHo) ’

given in Knapp and Williamson [7, Proposition 5.1, p. 71], the lemma easily
follows.
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PRrOOF OF (iii). Since v<e™“~ ! we need only consider small «, and we have
S(m)<t, for all m e L' if t, is defined as Clog,a. Any /i € L then satisfies

Uv(n) = J e~ (H(R™ ' R)—s@m)) +S(M) 47
1Y

A

C f e‘@(”((ﬁ'_l’-‘)—to))‘#to dm ,
L

where Lemma 3.5 was used. Since m and 7 stay in a compact set, we may
subtract ¢(H (7~ '7)) in the exponent in the last integral if we change the value
of C. Transforming m — am ™!, we obtain

U@ £ C je—a(li(rﬁ—:&)ﬂo-e(ll(rﬁ))d,;, = Y(toHy),

where the last equality is seen from the proof of Lemma 2.1. This proves (iii’)
and Theorem 3.4 for s> 1.

When s <0, we may assume « is large since m (L x R ) is finite, and we may
neglect the set where t >t,=Clog, o, since the m, measure of this set is O (¢~ ").
Now S () is defined as inf{¢ : v(,t)>a} for m in the set L' < L where this inf is
positive but smaller than ¢,. The rest goes as for s> 1.

Theorem 3.4 is proved. Notice that the proof given is based on that of
Theorem 2 in [13].

4. Results for Reil € a¥%.
If A € a&, we define A’ by iA’ =Reil.

THEOREM 4.1, Let Reilea* and o€ 20+ ,a*)U(— a*), and take
p € [1,00[. For any u € &, the following are equivalent:

(@) u=P,f for some fe LP(K/M) when p>1, or u=P,u for some Borel
measure p on K/M, when p=1.

(by) e "Pujg,. € A;Tal-

(bZ) (1 + | . I)—(r— l)/pe—a/pu/(pl' € Ap,o‘

(b3) e™"Pu/p, € Ag o

Observe that for r=1 the (bj) conditions coincide. Before the proof, we give a
lemma.

LEMMA 4.2. Let L < N be compact. Any nonnegative p € &,, v € ﬁ, satisfies
(4.1) @(mh) ~ @(k(m)h)

form e L, h € A,. The same relation holds when ¢ is replaced by e, any v € a*.
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PROOF. Let 7t =kan be the Iwasawa decomposition of m, so that mh = kha"n.
If me L, then also a, n, and "n stay in compact sets, so (4.1) follows from
Lemma 2.2. This is true in particular for ¢=¢,, ive a*. But ¢,~e” "¢ by
Lemma 2.1, so considering quotients ¢,./¢@,.., we see that any ¢’ must satisfy
(4.1), and the lemma is proved.

Proor ofF THEOREM 4.1. (a) = (b). Since |P,f|<P,|f|, we may assume
il € a%. The p=1 case then immediately implies the other cases, because of
(2.4) and since, by Holder’s inequality, |P, fIP< P,|f|P- @2 1.

Now let id € a% and u=P,u, where u is a probability measure carried by
k(LM< K/M, and L is as in Lemma 4.2. To begin with, we prove that u
satisfies (b)) in k(L)4, = X, and start with (b,). Let w=e""u/@,. Since dm,
<e°dkMdH and because of (2.3), it suffices to prove that for all >0

4.2) I= J e"®dkMdH < Ca™'log, 'a
D
where D={(kM, H) € k(L)M x a* : w(kexp H)>a}.
Setting k=k(r), we know that dkM corresponds to e~ 2™ g which is
majorized by dm, so

I

A

f eHdmdH ,
.

with D'={(m,H) € L xa, : w(k(m)exp H)>a}. Because of Lemma 4.2,
D = D" = {(mH)eLxa, : wimexpH)>a/C}.

The inverse image of p under i — k(A)M is a measure in L which is also called
u. For Hye S, let v be as in Theorem 3.1. Because of (2.1), we have
w(mexptHy) < Cv(m,t). When r=1, we see that I < C times the m, measure of
that part of L x R, where v>a/C. So by Theorem 3.1, I £Ca~! which is (4.2).
For r>1, we get

4.3) I= '[ 1M dimdt dH, = l[dHo Jdrﬁdt e
-

As in the proof of Theorem 3.4, we may neglect the subset E of L x a, where
t=|H|>Clog, a, either because v is small in E or because the measure of E is
small. This means that t"~! can be estimated by Clog,”! « in (4.3). Hence, the
inner integral in (4.3) is O(a"'log/, " @), uniformly in H,, and (4.2) follows
again.

To obtain (b,) in k(L)A,, notice that we may also neglect the set where ¢
< (log,, a)/C for similar reasons. But when t~log, a, the factor 1+ |H| behaves
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like a constant and (b,) follows from (b,). Finally, (b;) is a consequence of
Theorem 3.1 in a similar way.

To complete the proof of (a) = (b;), we must get rid of L. Since k(N)M is
open and dense in K/M, it is easy to find a compact set L and finitely many
points ky,...,k, so that the sets kk(L)M together cover K/M and their
intersection is a neighborhood U of eM. Decomposing a given measure u in
K/M into parts carried by the kk(L)M, we see that u=P,u satisfies (b)) in
UA . Hence by translation, (b holds in all of X, j=1,2,3.

(b) = (a). Assume u e &, satisfies some (b;) and that the associated
quasinorm is at most 1. We start with a crude preliminary estimate.

LEMMA 4.3, [u|SCe® in X.

Proor. Because of the mean value theorem (see Helgason [3, p. 438]), we
have for any ge G and x € X

4.4 j u(gkx)dk = Au(g),
K

where 4, — 1 as x — o and dk is the normalized Haar measure in K. The use
of the mean value theorem at this point was suggested by T. Rychener. Let By
denote the geodesic ball in X with center o and radius R. Now integrate (4.4)
with respect to dm(x) over By, when R>0 is small. We get

(4.5) lu(g) < Cm(Bp)™" L dk j . |u(gkx)] dm(x)

Cm(Bg)™! j |u(gx)| dm(x)

Br

because of the K-invariance of m and By. Fix g € G. By Lemmas 2.1 and 2.2,
the functions e, v € a*, are approximately constant in gB,, so dm,/dm~§
=¢°®~2e® in gB,. For some C, the function v=e"u| is in A}, with a
quasinorm < C, when (b,) or (b,) is satisfied. In the (b;) case, we replace o by a
slightly smaller o/, and reason in the same way. Clearly, v~e~Ce®y| in gB,.
Now let v* be the decreasing rearrangement of the restriction of v to gB, with
respect to m. Considering distribution functions with respect to m, and m, we
get

(4.6) v*() S C(Br)”'"?log{~ VP (Br) .

When p>1, the lemma follows at once from (4.5-4.6) and (2.2), so assume

Math. Scand. 49 - 16
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p=1. Let s; be the sup of vin gB, _,-;,j=1,2,.... Set n=dim X, so that m(Bg)
~R" for R<1. For x € gB, _,-; (4.5) implies

v(x) £ C2"jJ~ vdm .
xBj-i-1

Now xB,-i-1cgB,_,-i-, s0 v<s;,, there. Applying (4.6) and (2.2), we
therefore have

c2~"
v(x) £ C2v j min (s;, 1, (Bt) ' logl, (B1)) dt
0
) . c2~m
< crigTrt4cam f B! log,,” ! (Br)dt .
l/ﬁsjn

Transforming ¢t — t/f in the last integral, we see that
v(x) £ C2VB~14+C2¥B ! (log', s;4, +1og,, B) .
It is possible to assume that all the s; are >f$*2 so that
log, 5.1 +10gl, B ~ log, (Bs;+1) ,

since otherwise the lemma follows at once. Letting x vary, we have proved

s; £ C2VB~1+C2™B~ ' log, (Bsj+y) -
It is elementary to see from this inequality that if 4 >0 is large enough, and if
the inequality
4.7) 27"Mps; > A

holds for j=1, then it holds for all j. But this would mean that v is unbounded
in gB,, which is false. Hence, (4.7) cannot hold for j=1, and this gives the
desired estimate for v(g) and u(g). The lemma is proved.

Continuing the proof of (b;) = (a), we shall show that

u(kexp H)|?

dkM .
@a(exp H)

4.8) liminfI,(H) < oo, where I,(H) = J
H— K/M

If (b,) is satisfied, take a compact set S'<=S. For T> 1, clearly

T

4.9) J t~ldt j 1, (tHy)dH, = f le=o@iry g P dk M dH
1 s Dt

when Dr={kexpHe X : ke K, HeR,S, 1=|H|ST}. Notice that

e°®dkdH < Cdm, in Dy and that m, (D) < Ce®™. Lemma 4.3 and (b,) give two

estimates for |e = *®/Py/¢ . .|P. From (2.4) and (2.2), applied to m,, it follows that

both sides of (4.9) are dominated by
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ECT
cf min (Tt 'log, ' f)dt £ CT".

0

But then necessarily

=00

liminfj I,.,(tHy)dH, < o0,
s

so liminf, ,  I,.(tH,) < oo for some H, € §' by Fatou’s lemma. From this (4.8)
follows, since |@,| and @, have the same asymptotic behavior on a ray {tH,},

as proved by Harish~Chandra [1, p. 291].
When u satisfies (b,), we write instead

jdt J 1,(tHy)dH, = j||H|“"”"’e""””"u/(p””e"‘"’dkMdH,

where the integrals are taken over the same sets as before. Then this is
estimated by O(T) in the same way. The details, as well as the (bs) case, are left
to the reader.

Finally, we must show that (4.8) yields the representation of u as a Poisson
integral. For each irreducible representation & of K, let ay=d;¥; where d
denotes dimension, y character, and the bar complex conjugate. As in
Helgason [4, p. 138], we expand u in

u =Yy osxu,
&

where the convolution is performed in K.

Harish—-Chandra [2, Corollary 1, p. 13] has proved that this series converges
in C*(X). Now every as*u is a K-finite function in &, so by [5, Corollary 7.4,
p. 207], a;*u =P, f; for some K-finite function f; in K/M. Because of (4.8), we
may take a sequence H; — oo for which u(kexp H))/¢,(exp H;) converges
weakly to a measure y in K/M, and u is an L? function if p>1. Then

asxu(kexp H)/p,(expH)) — a;xu(kM), j— oo,

uniformly for k € K. Michelson [10, Theorem 1.3] has proved that P,f/¢,
— fy as H — 00, so we conclude f;=os*u. Thus,

u = z Pi(as*p),
s

and it remains to prove that this last sum equals P,u. And this follows from a
direct calculation since P,(x, ) is smooth and thus has a convergent o,
expansion. Theorem 4.1 is completely proved.

REMARK 1. As to the last part of this proof, cf. also the general representation
theorem in [6].
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REMARK 2. In the case when r=1 and il € a¥, we sketch a proof that (4.8)
implies the desired representation for u which does not use any general
representation theorem. Let the measure u on the boundary be a weak*
accumulation point of u(-exp H)/p, as H — oo, and regularize by convolving
in K by a smooth approximate identity .. Then y, xu(-exp H)/p, will
converge uniformly to ¥, u for some sequence H; — oo. Now if v € &, then
/@, must assume its maximum in the domain {kexpH : H € a,, H<H;} on
the boundary K exp H;. This follows from Hopf’s maximum principle applied
to v/, and the operator w — A(¢@,w)—wd@,, where 4 is the Laplacian of X.
Applying this with v= + (Y, *u—P,(Y,*u) and letting j — oo gives Y, *u
=P,(y,*u) and thus u=P,u.

5. Results for 1=0.

THEOREM 5.1. If r=1, Theorem 4.1 holds when A=0. For r>1 and 4=0, let ¢
and p be as in Theorem 4.1, and assume u € 8,. Then u has a representation as in
condition (a) of Theorem 4.1 if and only if (b)) holds in some (or every)
restricted domain. Here j is 1, 2, or 3.

We do not know whether Theorem 4.1 holds for A=0, r> 1, although this
seems plausible in view of Theorem 3.4. However, conditions like

e “Pufe"® e A%S""1  in all of X

also characterize the Poisson integrals of L? functions or measures for A=0.
The proof of this is left to the reader.

In the preceding section, we already used a convergence result of type
P,f/@, — f at the boundary, for Reil € a,. Michelson [10] obtains such
results by proving that P,(exp H,kM)/¢;,(exp H) is an approximate identity in
K/M as H — oo. Since this expression has integral 1 and bounded L' norm in
K/M, it defines an approximate identity if and only if its L! norm in K/M\ U
tends to 0 as H — oo for any neighborhood U of eM in K/M. Whether this is
true for A=0 and r>1 seems to be unknown. The following weaker result will
be needed in the proof of Theorem S5.1.

THEOREM 5.2. Let Hy € S and ¢>0, and set hy=exptH,. There exists a
Lebesgue measurable set F<R, such that for any T>1 the measure of
FN[T,2T] is larger than (1 —¢)T and such that for any neighborhood U of eM
in K/M

(5.1) Po(h, kM)dkM — 0 as t— oo, te F .

1
@o(hy) j K/M\U
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Proor. As usual, we transform the integral to N. Assume U =k(B)M, for a
compact neighborhood B of e € N. Writing B, as in Section 3, we have

]

I(B,t) = ettHo j Py(h,, kM)dkM
K/M\U

j e~ e HA ) +t—o(H®) g7
N\B
Now
N\B = ‘Ul (B_;NB_j.1),
j=

and
e eHM < Ce%  for ¢ B_;,, and some §>0,

by [7, Proposition 5.5]. Thus,

(5.2) IB,)) = C Y. e""fj e CHE D+t g5
j=1 B_\B_j.,
Notice that the quantity in (5.1) is I(B,t)/y(tH,) and that ¢ (tHg) ~t%, t — 0.
We must thus determine F so that I(B,t)=o0(t%, t - oo, t € F.
In the terms with j>t in (5.2), we transform 7 — fi_;, getting

Y ...sCY e“’jj e eHG-D+itt gy
- B\ B,

j>t j>t

Since H(f) is bounded in B\ By, the integral in the last sum is dominated by

C_[ e~ eHG ) titi—eH@D) g = Cy((j+1)Hy) < C(j+1).
N

Hence,

Y ...SCY e+t >0 ast—o00.
j>t j>t .
As to the other terms in (5.2), we have

T

e—ajj e eHA D+ g7 <
t=1 j=1 B_\B_;,, Jj

A
M=~

T
e ¥y J e~ CH®) g5
=jJB_j- \B_;_ .y,

L}
—

A
D~

e~ % f e~ H®) g5 ,

B_r

j=1

since B_;_,\B_;_,,, are disjoint for distinct ¢, fixed j. Transforming 7 —

—-j-t
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ni_,1, One can estimate the last integral by Y (2TH,) < CT? as before, and so
the last sum is also O(T9).
Altogether then, we conclude

T
Y I(B,t) < CT9.
t=1

Because of Lemma 2.2, this estimate remains valid if we replace summation in ¢
by integration dt. If we let F={t: I(B,t)<Ct*" '} and choose C large enough,
it is clear that I(B,t)=o0(t%) in F and that F is as dense at co as claimed.
Finally, to find an F which works for all U simultaneously, we repeat this
construction as U describes a neighborhood basis at eM, choosing the values
of ¢ suitably. The proof of Theorem 5.2 is complete.
Notice that we actually proved that

T T
j Y (tHo)@o(h) ™' Po(h, kM)dI/J. Y(tH,)dt
0 0

is an approximate identity as T— oo. Since this makes it possible to re-
construct f from P, f, we incidentally also get a proof of the fact that the value
A=0 is simple without using the general criterion of Helgason [5, Theorem
6.1].

Proor oF THEOREM 5.1. We only indicate at which points this proof differs
from that of Theorem 4.1, leaving the details to the reader. Assume first u
= Pou, 120 a measure, and take a>0. As before, we need only care about the
region where |H|~log, . If, further, H is in a restricted cone, we know that
Y (H)~|H|*~log% a. Now the (b;) conditions are proved as in Section 4, by
means of Theorem 3.4 instead of Theorem 3.1.

Conversely, let u satisfy (by), say, in the restricted domain corresponding to
§'<S. As in the deduction of (4.8), we have

T
f ttde f I,(tHy)dH, < CT".
1 s
This implies that I,(tHy) < C in “most of” the set {(t, Hy): TSt<2T, Hy € §'}
for every large T and some C. But then one can find an H, € §’ for which the
same inequality holds for most ¢ in [2/,2/*!] for infinitely many values of j.
Hence, there is a sequence t; — oo contained in the set F of Theorem 5.2 and
such that I(¢;H,) is bounded as j — oo. This is all we need to apply the
reasoning at the end of the proof of Theorem 4.1, and the proof is complete.
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6. The case when o is between 0 and 2.

We say that the maximum theorem holds for a p>1 and a 4, Reid € a* or
A=0, if

u*(kM) = sup {Jlu(kexp H)|/¢, (expH) : H e a,} e L?(K/M)

whenever u= P, fand f e LP(K/M). This is true for all such p and 2 when r=1
(see Michelson [10, Sec. 3]). For r> 1, the maximum theorem holds for p large
enough, at least when id=g (see Lindahl [8]). The following result generalizes
a theorem of Lohoué and Rychener [9, Proposition 1].

THEOREM 6.1. Let p>1 and Reil € a* or A=0, and assume o € ,a*U
(— +a*). If the maximal theorem holds for these p and A, then conditions (a),
(by), and (b;) are equivalent.

To prove (a) = (b)), one estimates u by means of u*. The details are left to
the reader (see also [9]). For the converse implications, the corresponding
proofs given in Sections 4 and 5 carry over without change.

However, (a) does not in general imply (b;) under the hypotheses of
Theorem 6.1. To get a counterexample, consider a bi-disk U?, U being the
noneuclidean unit disk, and write each coordinate z; € U as (r;cos 8,, r;sin6,),
—n<0;Sm, i=1,2. Then dm, is essentially the product of the measures
ri(l—r) 175drdf, i=1,2, and we let 0<s,<1, which means choosing o
strictly “between” 0 and 2¢. Given p=1 and ¢>0, choose

f(0,,0,) = f(6,) = |01|_1/p103;“+€)/p|91| s
which is an L? function on the boundary oU x oU. If
v(z1,2,) = (1 —r PP(1=r )PP, flo,
and i € a*, it is easily seen that

6.1) v = (1L=rP(1 —r,)?f(max (16,],1—r)/C .

Let 0<é¢ <1—s, and a>0. Suppose
6.2) A=r)' 7% < (1=ryf™? < 1
so that

log, (1—ry)'(1—=ry)?a"? ~ log, (1-r1,).

If in addition

(6.3) 1—r, <16, < (L=r )" (1 =r)%a"Plog, ' ~¢(1-ry)/C,
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it follows from (6.1) that v>a. For r, fixed, we integrate r,(1—r,)~ ! ~%dr,d0,
over the set of (r,,0,) defined by (6.2) and (6.3), getting at least

(1=ry)2a ?log,*((1—ry)a"?)/C .

Integrating now in r, and 6,, we see that m,{v>a}=o00, so that v ¢ A4} .

Next, we give examples showing that Theorem 6.1 is false for p=1 and ¢
“between” 0 and 2g. When o =0, the function u= P,1 = ¢, does not satisfy any
(b)). For other g, we consider only the ordinary Poisson kernel P in the unit
disk, or, more conveniently, the upper half-plane R2 ={(x,t):t>0}. We
choose measures in 0 < x < 1 and estimate their Poisson integrals in R2 near this
interval. If 6 =s-29, 0<s=<1, we have e °~t* and dm,~t"*"'dxdt here. For
s=1, 6 =2, consider the Dirac measure J,. It is easily verified that tPS,~1t%/
(x®*+1?) is not in A, ,. And when 0<s<1, we use measures of Cantor type,
carried by Cantor sets of ration 27% x=1/(1—s)>1, constructed as follows.
Choose two 1st step intervals [0,27*] and [1—27% 1], thus situated at the
ends of [0, 1], and then four 2nd step intervals, each of length 272%, at the ends
of the two 1st step intervals. Continuing in this way, we get at the nth step 2"
intervals of length 27" There exists a measure u such that each of these nth
step intervals has measure 27", It is easily verified that at points (x,t) with ¢
~27" and x in an nth step interval, we have *Pu(x, t) ~ 1. Hence, m {t*Pu(x, t)
~1} =00, and we are done.
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