# CHARACTERIZATIONS OF POISSON INTEGRALS ON SYMMETRIC SPACES

## PETER SIÖGREN

### Introduction.

It is well known that for the hyperbolic unit disk  $U = \{|z| < 1\}$  the eigenfunctions u of the Laplacian are given by generalized Poisson integrals of hyperfunctions T on the boundary ([4, Ch. IV]). More generally, such an integral representation holds for the joint eigenfunctions of the invariant differential operators on a symmetric space X, see [6]. If X has rank 1, the kernels used here are powers of the ordinary Poisson kernel. In that case, T is a distribution if and only if u grows at most exponentially with the distance, see Lewis [J. Funct. Anal. 29 (1978), 287-307]. For U, the functional T is given by an  $L^p$  function on the boundary,  $1 , if and only if the <math>L^p$  norm of  $u/\phi$ on |z|=r is bounded as  $r \to 1$ , as follows by standard arguments, cf. Remark 2 in Section 4. Here  $\varphi$  is the circular mean value of u (assuming  $u(0) \neq 0$ ), i.e., the generalized Poisson integral of a constant function on the boundary. The present paper deals with another way of characterizing those u for which T is an  $L^p$  function. These characterizations use weak  $L^p$  spaces and work for symmetric spaces of arbitrary rank. They extend the author's work in [12] on ordinary Poisson integrals in R<sup>n</sup>.

In *U*, the results read as follows. Let  $dm_s$  be the measure  $(1-|z|^2)^{-1-s}dxdy$ , so that s=1 gives the invariant measure and s=-1 Lebesgue measure. Then *T* is an  $L^p$  function if and only if  $(1-|z|^2)^{s/p}u/\varphi$  is in weak  $L^p(m_s)$ . When p>1, this holds for all  $s\neq 0$ , when p=1 only for  $s\notin [0,1]$ .

For rank X=r>1, it turns out that r-1 logarithmic factors must be introduced in the weak  $L^p$  condition, which can be done in several ways. The case (called  $\lambda=0$ ) corresponding to the square root of the ordinary Poisson kernel must be treated differently, although the results are essentially the same.

Lohoué and Rychener [9] have proved a special case of our results and applied it to convolution operators on  $L^p$  in a Lie group. Most of our techniques are suitable generalizations of those of [12]. See also [13], where more general kernels are considered.

The preparatory Section 2 contains, among other things, some known facts

about the behaviour of joint eigenfunctions, and there the measures and weak  $L^p$  spaces we use are defined. In Section 3, we prove two auxiliary technical results in the setting of a "half-space" over a nilpotent Lie group. The idea of the proof of Theorem 3.1 is taken from that of Theorem 1 in [12].

The main results are given in Section 4 ( $\lambda \neq 0$ ) and Section 5 ( $\lambda = 0$ ). For  $\lambda = 0$ , we also give in Section 5 a method of recovering f from its Poisson integral, which replaces the ordinary convergence result at the boundary. Finally, those results which hold only for p > 1 are studied in the last section, which also contains two counterexamples.

### 2. Preliminaries.

Let X = G/K be a Riemannian symmetric space of noncompact type. Here G is a connected semisimple Lie group with finite center, and K a maximal compact subgroup of G. In fact, all our results are valid even when X is reducible, but for simplicity we treat only the irreducible case. Denoting by g and f the Lie algebras of G and K, we choose a Cartan decomposition g = f + p and let g be a maximal abelian subspace of g. Then g is the rank of g. This gives a root space decomposition of g. Choosing as usual a positive Weyl chamber g and the associated ordering of the roots, we call g in g the sum of the root spaces corresponding to positive (negative) roots. Letting g and g be the subgroups of g having Lie algebras g and g and g and g are g can be written uniquely as g = g and g exp g with g with g end of g and g

Denoting  $\bar{A}_+ = \exp \bar{\alpha}_+$ , where  $\bar{\alpha}_+$  is the closure of  $\alpha_+$  in  $\alpha$ , we have the Cartan decomposition  $G = K\bar{A}_+K$ . This means that for any  $g \in G$  or  $x \in X$  there is a unique element H in  $\bar{\alpha}_+$  such that g or x belongs to  $K(\exp H)K$ . We then set H = H'(g) or H = H'(x), respectively. A function F = F(H) defined on  $\bar{\alpha}_+$  will be considered also as a function on G and on G, by means of G, where G is the considered also as a function of G and G is the considered also as a function of G and on G, by means of G is the considered also as a function of G and on G.

Let  $a^*$  ( $a_2^*$ ) be the real (complex) dual of a. Then

$$_{+}\alpha^{*} = \{\lambda \in \alpha^{*} : \lambda(H) > 0 \text{ for } H \in \alpha_{+}\}$$

is the open cone generated by the positive roots, by the bipolar theorem. The Killing form makes  $\mathfrak{a}$  into an inner product space, so that there is a canonical map  $\mathfrak{a} \to \mathfrak{a}^*$ , and we denote by  $\mathfrak{a}_+^*$  the image of  $\mathfrak{a}_+$  under this map. Then  $\mathfrak{a}_+^* \subset_+ \mathfrak{a}^*$ , as proved in Harish-Chandra [1, Lemma 35, p. 279]. Let  $2\varrho$  be the sum of the positive roots, so that  $\varrho \in \mathfrak{a}_+^*$  (see [1, p. 281]). We denote by S the "slice"  $\{H_0 \in \mathfrak{a}_+ : 2\varrho(H_0) = 1\}$ , and often write any  $H \in \mathfrak{a}_+$  as  $H = tH_0$ , with t > 0 and  $H_0 \in S$ , and put t = |H|. Thus,  $|\cdot| = |H'(x)|$  is also a function on X. A restricted

domain in X is defined to be one of type  $\{x \in X : H'(x) \in \mathbb{R}_+ S'\}$ , where S' is a nonempty, open, and relatively compact subset of S and  $\mathbb{R}_+ S'$  the open cone it generates in  $\mathfrak{a}$ . In such a domain, we see that H'(x) stays far from the boundary of the positive Weyl chamber, except for x near o. We call  $\mathbb{R}_+ S'$  a restricted cone.

The (maximal) boundary of X is by definition the quotient K/M, where M is the centralizer of A in K. This boundary has a unique normalized K-invariant measure dkM. If  $\lambda \in \mathfrak{a}_{+}^{*}$ , the associated Poisson kernel is

$$P_{\lambda}(g,k) = e^{-(i\lambda+\varrho)(H(g^{-1}k))}, \quad \text{for } g \in G, k \in K.$$

Since this expression is right K-invariant in g and right M-invariant in k, we may also consider  $P_{\lambda}$  as a function on  $X \times K/M$  and write  $P_{\lambda}(x, kM)$  for  $x \in X$ . The  $\lambda$ -Poisson integral of a Borel measure  $\mu$  in K/M is defined by

$$P_{\lambda}\mu(x) \,=\, \int P_{\lambda}(x,kM)\,d\mu(kM)\;.$$

For integrable functions f on the boundary,  $P_{\lambda}f$  means  $P_{\lambda}(fdkM)$ . Then the (spherical) function  $\varphi_{\lambda} = P_{\lambda}1$  is a left K-invariant function on X. As is well known, any  $P_{\lambda}\mu$  is an eigenfunction for all K-invariant differential operators on X, and the eigenvalues depend only on  $\lambda$ . Let  $\mathscr{E}_{\lambda}$  be the space of all eigenfunctions for these operators with the same eigenvalues as  $\varphi_{\lambda}$ . Whenever convenient, we consider the functions in  $\mathscr{E}_{\lambda}$  as defined on G rather than on G. These functions are smooth since some invariant operators are elliptic.

In this paper, C will denote many different constants, and we will generally not indicate precisely which parameters C depends on at each occurrence. The relation  $f \sim g$  means  $C^{-1} \leq f/g \leq C$ . The following lemma describes the asymptotic behavior of  $\varphi_{\lambda}$ .

LEMMA 2.1. One has  $\varphi_{\lambda}(\exp H) \sim e^{(i\lambda - \varrho)(H)}$  if  $i\lambda \in \mathfrak{a}_{+}^{*}$ , uniformly for  $H \in \mathfrak{a}_{+}$ . This can be written simply  $\varphi_{\lambda} \sim e^{i\lambda - \varrho}$ , with our conventions.

PROOF. With  $h = \exp H$ , we set  $\bar{n}^h = h\bar{n}h^{-1}$  and  ${}^h\bar{n} = h^{-1}\bar{n}h$ . Denoting by  $d\bar{n}$  a suitable Haar measure on  $\bar{N}$ , we may transform the Poisson integral to an integral over  $\bar{N}$  by means of  $\bar{n} \to k(\bar{n})M$ , getting

$$\varphi_{\lambda}(h) = \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(h^{-1}k(\bar{n}))) - 2\varrho(H(\bar{n}))} d\bar{n}$$

$$= e^{(i\lambda - \varrho)(H)} \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(h\bar{n})) + 2\varrho(H) + (i\lambda - \varrho)(H(\bar{n}))} d\bar{n}$$

$$= e^{(i\lambda - \varrho)(H)} \int_{\bar{N}} e^{-(i\lambda + \varrho)(H(\bar{n})) + (i\lambda - \varrho)(H(\bar{n}^h))} d\bar{n}$$

(see e.g. Helgason [4, pp. 129-130]; distinguish between H(.) and H(.) The last step here was the transformation  $\bar{n} \to \bar{n}^h$  which has Jacobian  $e^{-2\varrho(H)}$ . If a canonical coordinate system is used in  $\bar{N}$ , the conjugation  $\bar{n} \to \bar{n}^h$  has the effect of decreasing all coordinates when  $h \in \bar{A}_+$ , so  $\bar{n}^h$  stays in a compact set as  $\bar{n}$  varies in a compact set  $L \subset \bar{N}$  and  $h \in \bar{A}_+$ . Therefore, the integrand in the last integral is  $\sim 1$  in L. From this we get  $\varphi_1(\exp H) \ge e^{(i\lambda - \varrho)(H)}/C$ .

For the converse inequality, we estimate the same integrand from above by  $e^{-(\varrho+\delta i\lambda)H(\bar{n})}$ , where  $\delta>0$  is small, as in Helgason [4, p. 130] or Michelson [10, p. 262], and this expression is integrable and independent of H. The lemma is proved.

A measure  $\mu$  in  $\bar{N}$  may also be considered as a measure in K/M by means of the transformation  $\bar{n} \to k(\bar{n})M$ . From the proof just given, we then see that

$$(2.1) P_{\lambda}\mu(\bar{m}h) = e^{(i\lambda-\varrho)(H)} \int e^{-(i\lambda+\varrho)(H(h(\bar{m}^{-1}\bar{n})))+2\varrho(H)+(i\lambda+\varrho)(H(\bar{n}))} d\mu(\bar{n}) ,$$

for  $\bar{m} \in N$ ,  $h \in A$ , which will be used later.

For  $\lambda = 0$ , we put

$$\varphi_0(\exp H) = e^{-\varrho(H)}\psi(H), \quad H \in \bar{\mathfrak{a}}_+.$$

Harish-Chandra [1, p. 279] has proved that there is a natural number q such that  $\psi(H)/(1+|H|)^q$  is bounded on  $\bar{\alpha}_+$  and  $\psi(tH_0) \sim t^q$  as  $t \to \infty$  for each  $H_0 \in S$ , but this last relation is not uniform in  $H_0$  when r > 1. If r = 1, then q = 1.

LEMMA 2.2. Given  $i\lambda \in \overline{\mathfrak{a}_+^*}$  and a compact set  $L \subset X$ , there is a constant  $C = C(L,\lambda)$  such that any nonnegative  $u \in \mathscr{E}_{\lambda}$  satisfies

$$u(gx) \leq Cu(gy)$$

for all  $x, y \in L$  and any  $g \in G$ .

This lemma is a form of Harnack's inequality. Except for some cases, it is a consequence of Lemma 2.1 in Michelson [10], but we indicate another proof: For g=e, the lemma follows by well-known elliptic operator techniques (cf. Serrin [11], or the fact that  $\mathscr{E}_{\lambda}$  defines a sheaf satisfying Brelot's axiomatic potential theory). The general case is then immediate from the translation invariance of  $\mathscr{E}_{\lambda}$ .

We shall work with several positive measures on X. The invariant measure m is given by

$$\int_X \varphi \, dm = \int_{K/M \times a_+} \varphi(k \exp H) \prod_{\alpha} \sinh (\alpha(H)) \, dkM \, dH ,$$

where the product is taken over the positive roots, counted according to multiplicity. We write  $\varphi(k \exp H)$  rather than  $\varphi(k(\exp H)K)$ , and dH is a Euclidean measure in  $\alpha$ .

Next, we define weak  $L^p$  spaces. If  $\mu$  is any positive measure on X and f a  $\mu$ -measurable real- or complex-valued function, the distribution function of f is

$$\lambda_f(\alpha) = \mu\{x \in X : |f(x)| > \alpha\}, \quad \alpha > 0$$

The decreasing rearrangement of f is

$$f^*(t) = \inf\{\alpha : \lambda_f(\alpha) \leq t\}, \quad 0 < t < \mu(X).$$

Notice the simple inequality

(2.2) 
$$\int_{E} |f| \, d\mu \le \int_{0}^{\mu(E)} f^{*}(t) \, dt$$

valid for any  $\mu$ -measurable set  $E \subset X$ . Weak  $L^p$ , denoted  $\Lambda_p$ , consists of those f for which

$$f^*(t) \leq Ct^{-1/p}, \quad 0 < t < \mu(X),$$

and the smallest possible C here is the quasi-norm of f in weak  $L^p$ . Setting

$$\log_*^b t = (1 + |\log t|)^b$$
, all  $t > 0$  and  $b \ge 0$ ,

we define  $\Lambda_p^s$  by the inequality  $f^*(t) \le Ct^{-1/p} \log_*^{s/p} t$ , and call inf C the quasinorm as before. Notice that  $\Lambda_p^0 = \Lambda_p$ , that  $\Lambda_p^s$  may also be defined by

$$(2.3) \lambda_f(\alpha) \leq C\alpha^{-p} \log_{\bullet}^s \alpha$$

with another C, and that

$$(2.4) f \in \Lambda_p^s \Leftrightarrow |f|^p \in \Lambda_1^s.$$

When  $\mu = m_{\sigma}$ , we denote by  $\Lambda_{p,\sigma}$  and  $\Lambda_{p,\sigma}^{s}$  the spaces obtained. Finally,  $\Lambda_{p,\sigma}^{*}$  is weak  $L^{p}$  with respect to the measure  $(1+|H|)^{1-r}dm_{\sigma}$ ; observe that this measure is slightly smaller than  $m_{\sigma}$  and behaves like  $e^{\sigma}dkMdtdH_{0}$  as  $H = tH_{0} \to \infty$ .

# 3. Auxiliary theorems.

In this section,  $H_0$  will be in S and we set  $h_t = \exp tH_0$ ,  $t \in \mathbb{R}$ . For  $\bar{n} \in \bar{N}$ , we write  $\bar{n}_t = h_t \bar{n} h_{-t}$ . In the space  $\bar{N} \times \mathbb{R}$ , let  $dm'_{\sigma}$  denote the measure  $e^{t\sigma(H_0)} d\bar{n} dt$ 

 $(\bar{n} \in \bar{N}, t \in R)$ . Here  $\sigma \in \mathfrak{a}^*$  as before. Because of (2.1), the integral formed in the following theorem is closely related to  $P_i\mu(mh_i)$ .

THEOREM 3.1. Let  $i\lambda \in \mathfrak{a}_+^*$ , and  $\sigma \in (2\varrho + {}_+\mathfrak{a}^*) \cup (-{}_+\mathfrak{a}^*)$ . With  $H_0 \in S$  and  $\mu$  a probability measure in  $\overline{N}$ , define a function v in  $\overline{N} \times R$  by

$$v(\bar{m},t) \, = \, e^{-t\sigma(H_0)} \, \int e^{-(i\lambda + \varrho)H((\bar{m}^{-1}\bar{n})_{-t}) + t} \, d\mu(\bar{n}) \; .$$

Then v is in weak  $L^1$  with respect to  $m'_{\sigma}$  in  $\bar{N} \times \mathbb{R}$ , and the corresponding quasinorm is bounded uniformly for  $H_0 \in S$ .

PROOF. The product  $\bar{N} \times R$  should be seen as a "half-space"  $\{(\bar{m}, t') : \bar{m} \in \bar{N}, t' > 0\}$  over  $\bar{N}$ , but we use  $t = -\log t'$  instead of t' as a coordinate. Call  $\bar{N} \times [j, j+1] \subset \bar{N} \times R$  the j-layer, for any integer j.

Let B be a compact neighborhood of  $e \in \overline{N}$  which is symmetric  $(B^{-1} = B)$ , of Haar measure 1, and such that  $hBh^{-1} \subset B$  for all  $h \in \overline{A}_+$ . Of course,  $B_t$  means  $h_tBh_{-t}$ , and the Haar measure of  $B_t$  equals the Jacobian of the map  $\overline{n} \to \overline{n}_t$ , which is  $e^{-2\varrho(tH_0)} = e^{-t}$ . To obtain the claimed uniformity in  $H_0$ , we fix an element  $H_1 \in S$ , putting  $h'_y = \exp yH_1$  and  $B_{t,y} = h'_{-y}B_th'_y$ . Notice that  $B_{t,y}$  is decreasing in t and increasing in t. Take  $t \in S$ 0 so that  $t \in S$ 1.

The sets  $B_i$  will serve as building-blocks to discretize the problem. For each integer j, we choose a maximal set  $\{\bar{n}_iB_j\}_i$  of pairwise disjoint translates of  $B_j$  in  $\bar{N}$ , and each  $\bar{n}_iB_j$  is called a j-base. Thus, for any  $\bar{m} \in \bar{N}$ , the translate  $\bar{m}B_j$  must intersect some j-base. The sets  $\bar{n}_iB_j \times [j, j+1]$  are called j-pieces, and they are disjoint and contained in the j-layer.

In the "half-space", the j-layer should be thought of as situated at height  $\sim e^{-j}$  and having width  $\sim e^{-j}$ . And the j-pieces essentially correspond to a subdivision of the j-layer into cubes of side  $e^{-j}$ . (The j-pieces do not cover the j-layer, but this is unimportant.)

We shall need three observations. First, Lemma 2.2 gives a property of v. For if  $\bar{p} \in B_t$  and  $|\tau - t| \le 1$ , then  $\bar{m}\bar{p}h_{\tau} = \bar{m}h_t\bar{p}_{-t}h_{\tau-t}$ , and the last two factors here belong to a compact set. Applying Lemma 2.2 to the Poisson kernel, we conclude that for any  $k \in K$  and any  $\bar{m} \in \bar{N}$ ,

$$e^{-(i\lambda+\varrho)(H((\tilde{m}h_t)^{-1}k))}$$

does not change more than by a factor C if  $\bar{m}$  is replaced by  $\bar{m}\bar{p}$  and t by  $\tau$ . Since  $(\bar{m}^{-1}\bar{n})_{-t} = (\bar{n}^{-1}\bar{m}h_t)^{-1}h_t$ , this implies

(3.1) 
$$v(\bar{m}\bar{p},\tau) \sim v(\bar{m},t) \quad \text{for } \bar{p} \in B_v, |t-\tau| \leq 1.$$

Next, we see that

(3.2) 
$$\int e^{-(i\lambda+\varrho)(H(\bar{m}_{-l}))+t} d\bar{m} \quad \text{is independent of } t,$$

by transforming  $\bar{m} \to \bar{m}_{\rm l}$ . This integral is known to be finite ([1, Lemma 45, p. 289]). Finally

(3.3) 
$$\int_{\bar{N} \setminus B_{0,y}} e^{-(i\lambda + \varrho)(H(\bar{m}))} d\bar{m} = O(e^{-ay}), \quad y \to \infty,$$

for some a > 0. This follows from the facts that

$$\int e^{-(1-\eta)(i\lambda+\varrho)(H(\bar{m}))}d\bar{m} < \infty$$

and  $e^{-(i\lambda+\varrho)H(\bar{m})} = O(|\bar{m}|^{-a'})$  for some  $\eta, a' > 0$  and some norm on  $\bar{N}$  (Knapp-Williamson [7, Proposition 5.5]).

Now let  $s = \sigma(H_0)$  so that  $s \notin [0,1]$  and s is bounded away from [0,1], uniformly as  $H_0 \in S$ . Consider first the case s > 1. We have  $v \le e^{-(s-1)t}$  everywhere since  $H(\bar{m}) \in {}_+\bar{\alpha}$  for any  $\bar{m} \in \bar{N}$  (see [1, Lemma 43, p. 287]). Take  $\alpha > 0$ . Since  $v \to 0$  as  $t \to \infty$ , we may let  $j_0$  be the largest integer for which the set  $\{(\bar{m}, t) : v(\bar{m}, t) > \alpha\}$  intersects the  $j_0$ -layer.

By induction in decreasing j, we shall now construct for  $j = j_0, j_0 - 1, \ldots$  measures  $v_j$  in  $\bar{N} \times R$ , and supp  $v_j$  will be a set of j-pieces. Each time we decide to place  $v_k$ -mass in a certain k-piece, we simultaneously forbid placing mass near this k-piece in the sequel, i.e. for j < k. This is done by introducing "above" the k-piece a forbidden region which becomes wider as we move upwards (j decreases). At each step in the construction, mass is placed in a piece if and only if this piece intersects  $\{v > \alpha\}$  and is not already in a forbidden region.

When we now carry out this in detail,  $F_j$ ,  $j=j_0, j_0-1, \ldots$ , will be sets of (forbidden) pieces. For some  $k \leq j_0$ , assume  $v_j$  and  $F_j$  defined for  $j_0 \geq j > k$ . Then we let  $v_k$  be the restriction of the measure  $m'_{\sigma}$  to the union of all those k-pieces which intersect  $\{(\bar{m},t):v(\bar{m},t)>\alpha\}$  and do not belong to  $\bigcup_{j_0\geq j>k}F_j$ , i.e. which are not already forbidden. (In case  $k=j_0$ , this union is empty.) Set  $P_k=\pi(\sup v_k)$ , where  $\pi:\bar{N}\times\mathbb{R}\to\bar{N}$  is the projection. Then  $P_k$  is a union of k-bases. Now  $F_k$  is defined as the set of those j-pieces, all j< k, whose projections intersect the set  $P_kB_{j,\kappa(k-j)+\beta}$ , where  $\kappa$  is a fixed number satisfying  $0<\kappa< s-1$ . This defines  $v_j,j\leq j_0$ .

We claim that  $v = \sum_{j=0}^{j_0} v_j$  satisfies

- (i)  $m'_{\sigma}\{v>C\alpha\} \leq C\|v\|$
- (ii)  $v > \alpha/C$  in supp v
- (iii)  $U^{\nu} \leq C$  in  $\bar{N}$ ,

where

$$U^{\nu}(\bar{n}) = \int e^{-st-(i\lambda+\varrho)(H((\bar{m}^{-1}\bar{n})_{-t}))+t} d\nu(\bar{m},t).$$

These three inequalities imply Theorem 3.1, since

$$(3.4) m'_{\sigma}\{v > C\alpha\} \leq C\|v\| \leq C\alpha^{-1} \int v \, dv = C\alpha^{-1} \int U^{\nu} \, d\mu \leq C\alpha^{-1},$$

by Fubini's theorem; cf. [12, p. 183].

To prove (i), we first observe that the  $m'_{\sigma}$  measure of a k-piece is  $Ce^{(s-1)k}$ . Take a point  $(\bar{m},t)$  with  $v(\bar{m},t) > C\alpha$ , and let k = [t]. Then  $\bar{m}B_k \times [k,k+1]$  intersects some k-piece  $\bar{n}_l B_k \times [k,k+1]$ , and because of (3.1), one has  $v > \alpha$  in the intersection, if C is suitably chosen. It also follows that  $\bar{m} \in \bar{n}_l B_k B_k^{-1} = \bar{n}_l B_k B_k \subset \bar{n}_l B_{k,\beta}$ . But the Haar measure of  $\bar{n}_l B_{k,\beta}$  is at most C times that of  $\bar{n}_l B_k$ , and it follows that  $m'_{\sigma} \{v > C\alpha\}$  is bounded by C times the total  $m'_{\sigma}$  measure of those pieces which intersect  $\{v > \alpha\}$ . And such a piece is either in supp v or in v of the pieces in v of the pieces in v of this end, notice that a v-piece in v of the pieces in v of this end, notice that a v-piece in supp v or the Haar measure of v of the pieces in v of v

$$C \sum_{j < k} e^{sj - j + \varkappa(k - j)} \le C e^{(s - 1)k} \sum_{j < k} e^{-(s - 1 - \varkappa)(k - j)} \le C e^{(s - 1)k} = Cm'_{\sigma}(Q).$$

Summing over all the pieces Q in supp  $v_k$  and then over k, we see that the total measure of the pieces in  $\bigcup F_k$  is at most

$$Cm'_{\sigma}(\text{supp }v) = C\|v\|$$
.

Thus, (i) is proved.

Inequality (ii) is an immediate consequence of (3.1).

To prove (iii), we need two lemmas. The first one expresses that if the projection  $P_j$  of supp  $v_j$  is far from  $\bar{n}$ , then  $U^{v_j}$  is small at  $\bar{n}$ .

LEMMA 3.2. Let b>0. If  $\bar{n} \in \bar{N}$  and  $P_j \cap \bar{n}B_{j,\star b} = \emptyset$ , then  $U^{\nu_j}(\bar{n}) \leq C_0 e^{-\epsilon b}$ , where  $\epsilon>0$  and  $C_0$  are constants.

PROOF. In view of the reasoning leading to (3.1),

$$U^{\nu_j}(\bar{n}) \leq C \int_{P_i} e^{-(i\lambda+\varrho)(H((\bar{m}^{-1}\bar{n})_{-j}))+j} d\bar{m}.$$

By assumption,  $P_j^{-1}\bar{n} \subset \bar{N} \setminus B_{j, \times b}$ , so a transformation  $\bar{m} \to \bar{n}\bar{m}_j^{-1}$  takes us to the integral in (3.3). The lemma follows.

By making  $C_0$  larger if necessary, we may assume

$$(3.5) U^{\nu_j}(\bar{n}) \leq C_0$$

for all j and all  $\bar{n}$ , because of (3.2). Inequality (iii) is a consequence of the following lemma, where  $\varepsilon$  and  $C_0$  are as just described.

LEMMA 3.3. For any  $\bar{n} \in \bar{N}$  and any  $j \leq j_0$ , it is possible to rearrange the sum  $\sum_{k=j}^{j_0} U^{\nu_k}(\bar{n})$  so that it becomes dominated term by term by  $\sum_{k=0}^{j_0-j} C_0 e^{-\epsilon k}$ .

PROOF. The case  $j = j_0$  is clear from (3.5), so assume the lemma holds for j + 1. Let m be the nonnegative integer satisfying

$$(3.6) C_0 e^{-\varepsilon(m+1)} < U^{\nu_j}(\bar{n}) \le C_0 e^{-\varepsilon m}.$$

Lemma 3.2 then implies that  $P_j \cap \bar{n}B_{j, \varkappa(m+1)} \neq \emptyset$  so that  $\bar{n} \in P_jB_{j, \varkappa(m+1)}$ . If  $k \ge j + m + 1$  we have

$$\begin{split} \bar{n}B_{k,\,\varkappa(k-j)} \; \subset \; P_jB_{j,\,\varkappa(m+1)}B_{k,\,\varkappa(k-j)} \; \subset \; P_jB_{j,\,\varkappa(k-j)}B_{j,\,\varkappa(k-j)} \\ \; \subset \; P_jB_{j,\,\varkappa(k-j)+\beta} \; \subset \; \bar{N} \smallsetminus P_k \; , \end{split}$$

the last inclusion by the construction of  $F_k$ . So for  $j_0 \ge k \ge j+m+1$ , Lemma 3.2 implies  $U^{\nu_k}(\bar{n}) \le C_0 e^{-\varepsilon(k-j)}$ . By our induction assumption, the terms  $U^{\nu_k}(\bar{n})$ , j+m+1>k>j, are in some order dominated by  $C_0 e^{-\varepsilon k}$ ,  $0 \le k \le m-1$ . These two estimates together with the right-hand inequality of (3.6) end the induction step. Lemma 3.3, (iii) and Theorem 3.1 (case s>1) are proved. The claimed uniformity in  $H_0$  follows since none of the constants used depend on  $H_0$ .

When s < 0 in Theorem 3.1, we need only modify a few details. Then  $j_0$  is the smallest integer j for which the j-layer intersects  $\{v > \alpha\}$ , and the construction is carried out from smaller to greater j-values. The set  $F_k$  consists of those j-pieces, j > k, whose projections intersect  $P_k B_{k, \kappa(j-k)+\beta}$ . Here  $0 < \kappa < -s$ . We leave the rest to the reader.

This ends the proof of Theorem 3.1.

For  $\lambda = 0$  we replace Theorem 3.1 by a weaker local result. Let  $R_+ = \{t \in \mathbb{R}: t > 0\}$ .

THEOREM 3.4. Fix a compact set  $L \subset \overline{N}$ , and let  $\mu$  be a probability measure carried by L. Let  $\sigma$ ,  $H_0$ , and  $\nu$  be as in Theorem 3.1 but set  $\lambda = 0$ . Then

$$m'_{\sigma}\{(\bar{m},t)\in L\times R_{+}: v(\bar{m},t)>\alpha\} \leq C\alpha^{-1}\psi(C(\log_{*}\alpha)H_{0})$$

for  $\alpha > 0$ , where C depends on L but not on  $H_0$ .

PROOF. Again let  $s = \sigma(H_0)$  and consider first the case s > 1. In this proof, we use a measure v as in the proof of Theorem 3.1, but the construction of v is much easier this time. In fact, v is carried by the "lower" boundary of the set  $\{v > \alpha\}$  and has an area density there.

Set

$$S(\bar{m}) = \sup\{t : v(\bar{m}, t) > \alpha\}$$

when  $\bar{m} \in L'$  and L' is the set of  $\bar{m} \in L$  for which  $S(\bar{m}) > 0$ . Let  $\nu$  be the measure in  $L \times R_{\perp}$  defined by

$$\int \varphi(\bar{m},t) dv(\bar{m},t) = \int_{L'} e^{sS(\bar{m})} \varphi(\bar{m},S(\bar{m})) d\bar{m}.$$

Then clearly,

(ii') 
$$v = \alpha$$
 in supp  $v$ ,

and moreover,

(i') 
$$m'_{\sigma}(L \times \mathbb{R}_{+} \cap \{v > \alpha\}) \leq \int_{L'} d\bar{m} \int_{0}^{S(\bar{m})} e^{st} dt$$
 
$$\leq s^{-1} \int_{L'} e^{sS(\bar{m})} d\bar{m} = s^{-1} ||v|| .$$

Now define  $U^{\gamma}$  as in the preceding proof ( $\hat{\lambda} = 0$ ). Theorem 3.4 follows if we show

(iii') 
$$U^{\nu} \leq C\psi(C(\log_* \alpha)H_0) \quad \text{in } L,$$

cf. (3.4).

LEMMA 3.5. For any  $\bar{n} \in \bar{N}$ , the quantity  $e^{-\varrho(H(\bar{n}_{-i}))+t}$  increases with t.

PROOF. The square of this quantity is

$$e^{-2\varrho(H(h_{-t}\bar{n}))+t} = P_{-i\varrho}(\bar{n}^{-1}h_t, e)e^{2\varrho(tH_0)}$$

and  $P_{-io} = P$  is the ordinary Poisson kernel. From the expansion

$$P(\bar{n}^{-1}h_t, e)^{-1} = \sum_s G_s(h_t)D_s(\bar{n}),$$
  
 $G_s(h_t) = \exp \sum_s \pm \alpha(tH_0),$ 

given in Knapp and Williamson [7, Proposition 5.1, p. 71], the lemma easily follows.

PROOF OF (iii). Since  $v \le e^{-(s-1)t}$ , we need only consider small  $\alpha$ , and we have  $S(\bar{m}) \leq t_0$  for all  $\bar{m} \in L'$  if  $t_0$  is defined as  $C \log_+ \alpha$ . Any  $\bar{n} \in L$  then satisfies

$$U^{\nu}(\bar{n}) = \int_{L'} e^{-\varrho(H((\bar{m}^{-1}\bar{n}) - S(\bar{m}))) + S(\bar{m})} d\bar{m}$$

$$\leq C \int_{L'} e^{-\varrho(H((\bar{m}^{-1}\bar{n}) - t_0)) + t_0} d\bar{m},$$

where Lemma 3.5 was used. Since  $\bar{m}$  and  $\bar{n}$  stay in a compact set, we may subtract  $\rho(H(\bar{m}^{-1}\bar{n}))$  in the exponent in the last integral if we change the value of C. Transforming  $\bar{m} \rightarrow \bar{n}\bar{m}^{-1}$ , we obtain

$$U^{\nu}(\bar{n}) \leq C \int e^{-\varrho(H(\bar{m}_{-t_0}))+t_0-\varrho(H(\bar{m}))} d\bar{m} = \psi(t_0 H_0),$$

where the last equality is seen from the proof of Lemma 2.1. This proves (iii') and Theorem 3.4 for s > 1.

When s < 0, we may assume  $\alpha$  is large since  $m'_{\alpha}(L \times R_{+})$  is finite, and we may neglect the set where  $t > t_0 = C \log_* \alpha$ , since the  $m'_{\alpha}$  measure of this set is  $O(\alpha^{-1})$ . Now  $S(\bar{m})$  is defined as  $\inf\{t: v(\bar{m}, t) > \alpha\}$  for  $\bar{m}$  in the set  $L' \subset L$  where this inf is positive but smaller than  $t_0$ . The rest goes as for s > 1.

Theorem 3.4 is proved. Notice that the proof given is based on that of Theorem 2 in [13].

## 4. Results for Re $i\lambda \in \mathfrak{a}_{+}^{*}$ .

If  $\lambda \in \mathfrak{a}^*$ , we define  $\lambda'$  by  $i\lambda' = \operatorname{Re} i\lambda$ .

THEOREM 4.1. Let Re  $i\lambda \in \mathfrak{a}_{+}^{*}$  and  $\sigma \in (2\varrho + \mathfrak{a}^{*}) \cup (-\mathfrak{a}^{*})$ , and take  $p \in [1, \infty[$ . For any  $u \in \mathcal{E}_{\lambda}$ , the following are equivalent:

- (a) u=P, f for some  $f \in L^p(K/M)$  when p>1, or  $u=P_{\lambda}\mu$  for some Borel measure  $\mu$  on K/M, when p=1.
- $\begin{array}{ll} (b_1) \ e^{-\sigma/p} u/\phi_{\lambda'} \in \varLambda_{p,\sigma}^{r-1}. \\ (b_2) \ (1+|.|)^{-(r-1)/p} e^{-\sigma/p} u/\phi_{\lambda'} \in \varLambda_{p,\sigma}. \end{array}$
- (b<sub>3</sub>)  $e^{-\sigma/p}u/\varphi_{\lambda'} \in \Lambda_{p,\sigma}^*$ .

Observe that for r = 1 the  $(b_i)$  conditions coincide. Before the proof, we give a lemma.

LEMMA 4.2. Let  $L \subset \overline{N}$  be compact. Any nonnegative  $\varphi \in \mathscr{E}_{v}$ ,  $v \in \overline{\mathfrak{a}_{+}^{*}}$ , satisfies

(4.1) 
$$\varphi(\bar{m}h) \sim \varphi(k(\bar{m})h)$$

for  $\bar{m} \in L$ ,  $h \in A_+$ . The same relation holds when  $\varphi$  is replaced by  $e^{\nu}$ , any  $\nu \in \mathfrak{a}^*$ .

PROOF. Let  $\bar{m} = kan$  be the Iwasawa decomposition of  $\bar{m}$ , so that  $\bar{m}h = kha^h n$ . If  $m \in L$ , then also a, n, and h stay in compact sets, so (4.1) follows from Lemma 2.2. This is true in particular for  $\varphi = \varphi_v$ ,  $iv \in \mathfrak{a}_+^*$ . But  $\varphi_v \sim e^{iv - \varrho}$  by Lemma 2.1, so considering quotients  $\varphi_{v'}/\varphi_{v''}$ , we see that any  $e^v$  must satisfy (4.1), and the lemma is proved.

PROOF OF THEOREM 4.1. (a)  $\Rightarrow$  (b<sub>j</sub>). Since  $|P_{\lambda}f| \leq P_{\lambda'}|f|$ , we may assume  $i\lambda \in \mathfrak{a}_+^*$ . The p=1 case then immediately implies the other cases, because of (2.4) and since, by Hölder's inequality,  $|P_{\lambda}f|^p \leq P_{\lambda}|f|^p \cdot \varphi_{\lambda}^{p-1}$ .

Now let  $i\lambda \in \mathfrak{a}_{+}^{*}$  and  $u = P_{\lambda}\mu$ , where  $\mu$  is a probability measure carried by  $k(L)M \subset K/M$ , and L is as in Lemma 4.2. To begin with, we prove that u satisfies  $(b_{j})$  in  $k(L)A_{+} \subset X$ , and start with  $(b_{1})$ . Let  $w = e^{-\sigma}u/\varphi_{\lambda}$ . Since  $dm_{\sigma} \leq e^{\sigma}dkMdH$  and because of (2.3), it suffices to prove that for all  $\alpha > 0$ 

$$(4.2) I \equiv \int_{D} e^{\sigma(H)} dk \, M \, dH \leq C \alpha^{-1} \log_{*}^{r-1} \alpha$$

where  $D = \{(kM, H) \in k(L)M \times \mathfrak{a}_+^* : w(k \exp H) > \alpha\}.$ 

Setting  $k = k(\bar{m})$ , we know that dkM corresponds to  $e^{-2\varrho(H(\bar{m}))}d\bar{m}$  which is majorized by  $d\bar{m}$ , so

$$I \leq \int_{D'} e^{\sigma H} d\bar{m} dH ,$$

with  $D' = \{(\bar{m}, H) \in L \times a_+ : w(k(\bar{m}) \exp H) > \alpha\}$ . Because of Lemma 4.2,

$$D' \subset D'' = \{(\bar{m}, H) \in L \times \alpha_+ : w(\bar{m} \exp H) > \alpha/C\}$$
.

The inverse image of  $\mu$  under  $\bar{n} \to k(\bar{n})M$  is a measure in L which is also called  $\mu$ . For  $H_0 \in S$ , let v be as in Theorem 3.1. Because of (2.1), we have  $w(\bar{m} \exp t H_0) \le Cv(\bar{m}, t)$ . When r = 1, we see that  $I \le C$  times the  $m'_{\sigma}$  measure of that part of  $L \times \mathbb{R}_+$  where  $v > \alpha/C$ . So by Theorem 3.1,  $I \le C\alpha^{-1}$  which is (4.2). For r > 1, we get

$$(4.3) I \leq \int_{D''} t^{r-1} e^{t\sigma(H_0)} d\bar{m} dt dH_0 = \int dH_0 \int d\bar{m} dt \dots$$

As in the proof of Theorem 3.4, we may neglect the subset E of  $L \times \alpha_+$  where  $t = |H| > C \log_* \alpha$ , either because v is small in E or because the measure of E is small. This means that  $t^{r-1}$  can be estimated by  $C \log_*^{r-1} \alpha$  in (4.3). Hence, the inner integral in (4.3) is  $O(\alpha^{-1} \log_*^{r-1} \alpha)$ , uniformly in  $H_0$ , and (4.2) follows again.

To obtain  $(b_2)$  in  $k(L)A_+$ , notice that we may also neglect the set where  $t < (\log_* \alpha)/C$  for similar reasons. But when  $t \sim \log_* \alpha$ , the factor 1 + |H| behaves

like a constant and  $(b_2)$  follows from  $(b_1)$ . Finally,  $(b_3)$  is a consequence of Theorem 3.1 in a similar way.

To complete the proof of (a)  $\Rightarrow$  (b<sub>j</sub>), we must get rid of L. Since  $k(\bar{N})M$  is open and dense in K/M, it is easy to find a compact set L and finitely many points  $k_1, \ldots, k_n$  so that the sets  $k_j k(L)M$  together cover K/M and their intersection is a neighborhood U of eM. Decomposing a given measure  $\mu$  in K/M into parts carried by the  $k_j k(L)M$ , we see that  $u = P_{\lambda}\mu$  satisfies (b<sub>j</sub>) in  $UA_+$ . Hence by translation, (b<sub>i</sub>) holds in all of K, K = 1, 2, 3.

 $(b_j) \Rightarrow (a)$ . Assume  $u \in \mathscr{E}_{\lambda}$  satisfies some  $(b_j)$  and that the associated quasinorm is at most 1. We start with a crude preliminary estimate.

LEMMA 4.3. 
$$|u| \le Ce^{C\varrho}$$
 in  $X$ .

PROOF. Because of the mean value theorem (see Helgason [3, p. 438]), we have for any  $g \in G$  and  $x \in X$ 

(4.4) 
$$\int_{K} u(gkx) dk = \lambda_{x} u(g) ,$$

where  $\lambda_x \to 1$  as  $x \to o$  and dk is the normalized Haar measure in K. The use of the mean value theorem at this point was suggested by T. Rychener. Let  $B_R$  denote the geodesic ball in X with center o and radius R. Now integrate (4.4) with respect to dm(x) over  $B_R$ , when R > 0 is small. We get

(4.5) 
$$|u(g)| \leq Cm(B_R)^{-1} \int_K dk \int_{B_R} |u(gkx)| dm(x)$$
$$= Cm(B_R)^{-1} \int_{B_R} |u(gx)| dm(x)$$

because of the K-invariance of m and  $B_R$ . Fix  $g \in G$ . By Lemmas 2.1 and 2.2, the functions  $e^v$ ,  $v \in \alpha^*$ , are approximately constant in  $gB_1$ , so  $dm_\sigma/dm \sim \beta \equiv e^{\sigma(g)-2\varrho(g)}$  in  $gB_1$ . For some C, the function  $v=e^{-C\varrho}|u|$  is in  $A_{p,\sigma}^{r-1}$ , with a quasinorm < C, when  $(b_1)$  or  $(b_2)$  is satisfied. In the  $(b_3)$  case, we replace  $\sigma$  by a slightly smaller  $\sigma'$ , and reason in the same way. Clearly,  $v \sim e^{-C\varrho(g)}|u|$  in  $gB_1$ . Now let  $v^*$  be the decreasing rearrangement of the restriction of v to v to v with respect to v. Considering distribution functions with respect to v0, we get

(4.6) 
$$v^*(t) \leq C(\beta t)^{-1/p} \log_*^{(r-1)/p} (\beta t) .$$

When p>1, the lemma follows at once from (4.5-4.6) and (2.2), so assume

p = 1. Let  $s_j$  be the sup of v in  $gB_{1-2^{-j}}, j = 1, 2, ...$  Set  $n = \dim X$ , so that  $m(B_R) \sim R^n$  for R < 1. For  $x \in gB_{1-2^{-j}}$ , (4.5) implies

$$v(x) \leq C2^{nj} \int_{xB_2^{-j-1}} v \, dm .$$

Now  $xB_{2^{-j-1}} \subset gB_{1-2^{-j-1}}$ , so  $v \le s_{j+1}$  there. Applying (4.6) and (2.2), we therefore have

$$v(x) \leq C2^{nj} \int_0^{C2^{-nj}} \min(s_{j+1}, (\beta t)^{-1} \log_*^{r-1} (\beta t)) dt$$
  
$$\leq C2^{nj} \beta^{-1} + C2^{nj} \int_{1/\beta s_{j+1}}^{C2^{-nj}} (\beta t)^{-1} \log_*^{r-1} (\beta t) dt.$$

Transforming  $t \to t/\beta$  in the last integral, we see that

$$v(x) \leq C2^{nj}\beta^{-1} + C2^{nj}\beta^{-1} (\log_*^r s_{j+1} + \log_*^r \beta).$$

It is possible to assume that all the  $s_i$  are  $> \beta^{\pm 2}$ , so that

$$\log_*^r s_{i+1} + \log_*^r \beta \sim \log_*^r (\beta s_{i+1}),$$

since otherwise the lemma follows at once. Letting x vary, we have proved

$$s_i \leq C2^{nj}\beta^{-1} + C2^{nj}\beta^{-1}\log_*^r(\beta s_{i+1})$$
.

It is elementary to see from this inequality that if A > 0 is large enough, and if the inequality

$$(4.7) 2^{-nj}\beta s_i > A2^j$$

holds for j=1, then it holds for all j. But this would mean that v is unbounded in  $gB_1$ , which is false. Hence, (4.7) cannot hold for j=1, and this gives the desired estimate for v(g) and u(g). The lemma is proved.

Continuing the proof of  $(b_i) \Rightarrow (a)$ , we shall show that

(4.8) 
$$\liminf_{H \to \infty} I_{\lambda}(H) < \infty$$
, where  $I_{\lambda}(H) = \int_{K/M} \left| \frac{u(k \exp H)}{\varphi_{\lambda}(\exp H)} \right|^{p} dk M$ .

If  $(b_1)$  is satisfied, take a compact set  $S' \subset S$ . For T > 1, clearly

(4.9) 
$$\int_{1}^{T} t^{r-1} dt \int_{S'} I_{\lambda'}(tH_0) dH_0 = \int_{D_T} |e^{-\sigma(H)/p} u/\varphi_{\lambda'}|^p e^{\sigma(H)} dk M dH$$

when  $D_T = \{k \exp H \in X : k \in K, H \in R_+S', 1 \le |H| \le T\}$ . Notice that  $e^{\sigma(H)}dkdH \le Cdm_{\sigma}$  in  $D_T$  and that  $m_{\sigma}(D_T) \le Ce^{CT}$ . Lemma 4.3 and  $(b_1)$  give two estimates for  $|e^{-\sigma(H)/p}u/\varphi_{\lambda'}|^p$ . From (2.4) and (2.2), applied to  $m_{\sigma}$ , it follows that both sides of (4.9) are dominated by

$$C \int_{0}^{e^{CT}} \min \left( e^{CT}, t^{-1} \log_{*}^{r-1} t \right) dt \leq CT^{r}.$$

But then necessarily

$$\liminf_{t\to\infty}\int_{S'}I_{\lambda'}(tH_0)dH_0<\infty,$$

so  $\liminf_{t\to\infty}I_{\lambda'}(tH_0)<\infty$  for some  $H_0\in S'$  by Fatou's lemma. From this (4.8) follows, since  $|\varphi_{\lambda}|$  and  $\varphi_{\lambda'}$  have the same asymptotic behavior on a ray  $\{tH_0\}$ , as proved by Harish-Chandra [1, p. 291].

When u satisfies  $(b_2)$ , we write instead

$$\int dt \int I_{\lambda'}(tH_0) dH_0 = \int ||H|^{-(r-1)/p} e^{-\sigma(H)/p} u/\varphi_{\lambda'}|^p e^{\sigma(H)} dk M dH ,$$

where the integrals are taken over the same sets as before. Then this is estimated by O(T) in the same way. The details, as well as the  $(b_3)$  case, are left to the reader.

Finally, we must show that (4.8) yields the representation of u as a Poisson integral. For each irreducible representation  $\delta$  of K, let  $\alpha_{\delta} = d_{\delta}\bar{\chi}_{\delta}$ , where d denotes dimension,  $\chi$  character, and the bar complex conjugate. As in Helgason [4, p. 138], we expand u in

$$u = \sum_{\delta} \alpha_{\delta} * u ,$$

where the convolution is performed in K.

Harish-Chandra [2, Corollary 1, p. 13] has proved that this series converges in  $C^{\infty}(X)$ . Now every  $\alpha_{\delta} * u$  is a K-finite function in  $\mathscr{E}_{\lambda}$ , so by [5, Corollary 7.4, p. 207],  $\alpha_{\delta} * u = P_{\lambda} f_{\delta}$  for some K-finite function  $f_{\delta}$  in K/M. Because of (4.8), we may take a sequence  $H_{j} \to \infty$  for which  $u(k \exp H_{j})/\varphi_{\lambda}(\exp H_{j})$  converges weakly to a measure  $\mu$  in K/M, and  $\mu$  is an  $L^{p}$  function if p > 1. Then

$$\alpha_{\delta} * u(k \exp H_j)/\varphi_{\lambda}(\exp H_j) \rightarrow \alpha_{\delta} * \mu(kM), \quad j \rightarrow \infty$$

uniformly for  $k \in K$ . Michelson [10, Theorem 1.3] has proved that  $P_{\lambda}f_{\delta}/\varphi_{\lambda} \to f_{\delta}$  as  $H \to \infty$ , so we conclude  $f_{\delta} = \alpha_{\delta} * \mu$ . Thus,

$$u = \sum_{\delta} P_{\lambda}(\alpha_{\delta} * \mu) ,$$

and it remains to prove that this last sum equals  $P_{\lambda}\mu$ . And this follows from a direct calculation since  $P_{\lambda}(x,\cdot)$  is smooth and thus has a convergent  $\alpha_{\delta}$  expansion. Theorem 4.1 is completely proved.

REMARK 1. As to the last part of this proof, cf. also the general representation theorem in [6].

REMARK 2. In the case when r=1 and  $i\lambda \in \mathfrak{a}_+^*$ , we sketch a proof that (4.8) implies the desired representation for u which does not use any general representation theorem. Let the measure  $\mu$  on the boundary be a weak\* accumulation point of  $u(\cdot \exp H)/\varphi_{\lambda}$  as  $H \to \infty$ , and regularize by convolving in K by a smooth approximate identity  $\psi_{\varepsilon}$ . Then  $\psi_{\varepsilon}*u(\cdot \exp H_j)/\varphi_{\lambda}$  will converge uniformly to  $\psi_{\varepsilon}*\mu$  for some sequence  $H_j \to \infty$ . Now if  $v \in \mathscr{E}_{\lambda}$ , then  $v/\varphi_{\lambda}$  must assume its maximum in the domain  $\{k \exp H : H \in \mathfrak{a}_+, H < H_j\}$  on the boundary  $K \exp H_j$ . This follows from Hopf's maximum principle applied to  $v/\varphi_{\lambda}$  and the operator  $w \to \Delta(\varphi_{\lambda}w) - w\Delta\varphi_{\lambda}$ , where  $\Delta$  is the Laplacian of X. Applying this with  $v = \pm (\psi_{\varepsilon}*u - P_{\lambda}(\psi_{\varepsilon}*\mu))$  and letting  $j \to \infty$  gives  $\psi_{\varepsilon}*u = P_{\lambda}(\psi_{\varepsilon}*\mu)$  and thus  $u = P_{\lambda}\mu$ .

## 5. Results for $\lambda = 0$ .

THEOREM 5.1. If r=1, Theorem 4.1 holds when  $\lambda=0$ . For r>1 and  $\lambda=0$ , let  $\sigma$  and  $\rho$  be as in Theorem 4.1, and assume  $u\in \mathscr{E}_0$ . Then u has a representation as in condition (a) of Theorem 4.1 if and only if  $(b_j)$  holds in some (or every) restricted domain. Here j is 1, 2, or 3.

We do not know whether Theorem 4.1 holds for  $\lambda = 0$ , r > 1, although this seems plausible in view of Theorem 3.4. However, conditions like

$$e^{-\sigma/p}u/e^{-\varrho} \in \Lambda_{p,\sigma}^{qp+r-1}$$
 in all of  $X$ 

also characterize the Poisson integrals of  $L^p$  functions or measures for  $\lambda = 0$ . The proof of this is left to the reader.

In the preceding section, we already used a convergence result of type  $P_{\lambda}f/\varphi_{\lambda} \to f$  at the boundary, for  $\operatorname{Re} i\lambda \in \mathfrak{a}_+$ . Michelson [10] obtains such results by proving that  $P_{\lambda}(\exp H,kM)/\varphi_{\lambda}(\exp H)$  is an approximate identity in K/M as  $H \to \infty$ . Since this expression has integral 1 and bounded  $L^1$  norm in K/M, it defines an approximate identity if and only if its  $L^1$  norm in  $K/M \setminus U$  tends to 0 as  $H \to \infty$  for any neighborhood U of eM in K/M. Whether this is true for  $\lambda = 0$  and r > 1 seems to be unknown. The following weaker result will be needed in the proof of Theorem 5.1.

THEOREM 5.2. Let  $H_0 \in S$  and  $\varepsilon > 0$ , and set  $h_t = \exp t H_0$ . There exists a Lebesgue measurable set  $F \subset \mathbb{R}_+$  such that for any T > 1 the measure of  $F \cap [T, 2T]$  is larger than  $(1 - \varepsilon)T$  and such that for any neighborhood U of  $\varepsilon M$  in K/M

$$(5.1) \qquad \frac{1}{\varphi_0(h_t)} \int_{K/M \setminus U} P_0(h_t, kM) dkM \to 0 \quad \text{as } t \to \infty, \ t \in F.$$

PROOF. As usual, we transform the integral to  $\overline{N}$ . Assume U = k(B)M, for a compact neighborhood B of  $e \in \overline{N}$ . Writing B, as in Section 3, we have

$$I(B,t) \equiv e^{\varrho(tH_0)} \int_{K/M \setminus U} P_0(h_t, kM) dkM$$
$$= \int_{\bar{N} \setminus B} e^{-\varrho(H(\bar{n}_{-t})) + t - \varrho(H(\bar{n}))} d\bar{n} .$$

Now

$$\bar{N} \setminus B = \bigcup_{j=1}^{\infty} (B_{-j} \setminus B_{-j+1}),$$

and

$$e^{-\varrho(H(\bar{n}))} \leq Ce^{-\delta j}$$
 for  $\bar{n} \notin B_{-i+1}$  and some  $\delta > 0$ ,

by Γ7, Proposition 5.51. Thus,

(5.2) 
$$I(B,t) \leq C \sum_{j=1}^{\infty} e^{-\delta j} \int_{B_{-j} \setminus B_{-j+1}} e^{-\varrho(H(\bar{n}_{-j}))+t} d\bar{n}.$$

Notice that the quantity in (5.1) is  $I(B,t)/\psi(tH_0)$  and that  $\psi(tH_0) \sim t^q$ ,  $t \to \infty$ . We must thus determine F so that  $I(B,t) = o(t^q)$ ,  $t \to \infty$ ,  $t \in F$ .

In the terms with j>t in (5.2), we transform  $\bar{n} \to \bar{n}_{-j}$ , getting

$$\sum_{j>t} \ldots \leq C \sum_{j>t} e^{-\delta j} \int_{B \setminus B_1} e^{-\varrho (H(\bar{n}_{-j-t}))+j+t} d\bar{n}.$$

Since  $H(\bar{n})$  is bounded in  $B \setminus B_1$ , the integral in the last sum is dominated by

$$C \int_{\bar{N}} e^{-\varrho(H(\bar{n}_{-j-t}))+j+t-\varrho(H(\bar{n}))} d\bar{n} = C\psi((j+t)H_0) \leq C(j+t)^q.$$

Hence,

$$\sum_{j>t} \ldots \leq C \sum_{j>t} e^{-\delta j} (j+t)^q \to 0 \quad \text{as } t \to \infty.$$

As to the other terms in (5.2), we have

$$\sum_{t=1}^{T} \sum_{j=1}^{t} e^{-\delta j} \int_{B_{-j} \setminus B_{-j+1}} e^{-\varrho(H(\bar{n}_{-i})) + t} d\bar{n} \leq \sum_{j=1}^{T} e^{-\delta j} \sum_{t=j}^{T} \int_{B_{-j-i} \setminus B_{-j-i+1}} e^{-\varrho(H(\bar{n}))} d\bar{n}$$

$$\leq \sum_{j=1}^{T} e^{-\delta j} \int_{B_{-2T}} e^{-\varrho(H(\bar{n}))} d\bar{n} ,$$

since  $B_{-j-t} \setminus B_{-j-t+1}$  are disjoint for distinct t, fixed j. Transforming  $\bar{n} \to 0$ 

 $\bar{n}_{-2T}$ , one can estimate the last integral by  $\psi(2TH_0) \le CT^q$  as before, and so the last sum is also  $O(T^q)$ .

Altogether then, we conclude

$$\sum_{t=1}^{T} I(B,t) \leq CT^{q}.$$

Because of Lemma 2.2, this estimate remains valid if we replace summation in t by integration dt. If we let  $F = \{t : I(B, t) \le Ct^{q-1}\}$  and choose C large enough, it is clear that  $I(B, t) = o(t^q)$  in F and that F is as dense at  $\infty$  as claimed.

Finally, to find an F which works for all U simultaneously, we repeat this construction as U describes a neighborhood basis at eM, choosing the values of  $\varepsilon$  suitably. The proof of Theorem 5.2 is complete.

Notice that we actually proved that

$$\int_{0}^{T} \psi(tH_{0}) \varphi_{0}(h_{t})^{-1} P_{0}(h_{t}, kM) dt / \int_{0}^{T} \psi(tH_{0}) dt$$

is an approximate identity as  $T \to \infty$ . Since this makes it possible to reconstruct f from  $P_0 f$ , we incidentally also get a proof of the fact that the value  $\lambda = 0$  is simple without using the general criterion of Helgason [5, Theorem 6.1].

PROOF OF THEOREM 5.1. We only indicate at which points this proof differs from that of Theorem 4.1, leaving the details to the reader. Assume first  $u = P_0 \mu$ ,  $\mu \ge 0$  a measure, and take  $\alpha > 0$ . As before, we need only care about the region where  $|H| \sim \log_* \alpha$ . If, further, H is in a restricted cone, we know that  $\psi(H) \sim |H|^q \sim \log_*^q \alpha$ . Now the  $(b_j)$  conditions are proved as in Section 4, by means of Theorem 3.4 instead of Theorem 3.1.

Conversely, let u satisfy  $(b_1)$ , say, in the restricted domain corresponding to  $S' \subset S$ . As in the deduction of (4.8), we have

$$\int_{1}^{T} t^{r-1} dt \int_{S'} I_{0}(tH_{0}) dH_{0} \leq CT'.$$

This implies that  $I_0(tH_0) \le C$  in "most of" the set  $\{(t,H_0): T \le t \le 2T, H_0 \in S'\}$  for every large T and some C. But then one can find an  $H_0 \in S'$  for which the same inequality holds for most t in  $[2^j,2^{j+1}]$  for infinitely many values of j. Hence, there is a sequence  $t_j \to \infty$  contained in the set F of Theorem 5.2 and such that  $I(t_jH_0)$  is bounded as  $j \to \infty$ . This is all we need to apply the reasoning at the end of the proof of Theorem 4.1, and the proof is complete.

# 6. The case when $\sigma$ is between 0 and $2\rho$ .

We say that the maximum theorem holds for a p>1 and a  $\lambda$ , Re  $i\lambda \in \mathfrak{a}_+^*$  or  $\lambda=0$ . if

$$u^*(kM) \equiv \sup\{|u(k\exp H)|/\varphi_{\lambda'}(\exp H): H \in \mathfrak{a}_+\} \in L^p(K/M)$$

whenever  $u = P_{\lambda} f$  and  $f \in L^p(K/M)$ . This is true for all such p and  $\lambda$  when r = 1 (see Michelson [10, Sec. 3]). For r > 1, the maximum theorem holds for p large enough, at least when  $i\lambda = \varrho$  (see Lindahl [8]). The following result generalizes a theorem of Lohoué and Rychener [9, Proposition 1].

THEOREM 6.1. Let p>1 and  $\operatorname{Re} i\lambda \in \mathfrak{a}_+^*$  or  $\lambda=0$ , and assume  $\sigma \in {}_+\mathfrak{a}^* \cup (-{}_+\mathfrak{a}^*)$ . If the maximal theorem holds for these p and  $\lambda$ , then conditions (a), (b<sub>2</sub>), and (b<sub>3</sub>) are equivalent.

To prove (a)  $\Rightarrow$  (b<sub>j</sub>), one estimates u by means of  $u^*$ . The details are left to the reader (see also [9]). For the converse implications, the corresponding proofs given in Sections 4 and 5 carry over without change.

However, (a) does not in general imply  $(b_1)$  under the hypotheses of Theorem 6.1. To get a counterexample, consider a bi-disk  $U^2$ , U being the noneuclidean unit disk, and write each coordinate  $z_i \in U$  as  $(r_i \cos \theta_i, r_i \sin \theta_i)$ ,  $-\pi < \theta_i \le \pi$ , i = 1, 2. Then  $dm_{\sigma}$  is essentially the product of the measures  $r_i(1-r_i)^{-1-s_i}dr_id\theta_i$ , i = 1, 2, and we let  $0 < s_i < 1$ , which means choosing  $\sigma$  strictly "between" 0 and  $2\rho$ . Given  $p \ge 1$  and  $\varepsilon > 0$ , choose

$$f(\theta_1, \theta_2) = f(\theta_1) = |\theta_1|^{-1/p} \log_{*}^{-(1+\epsilon)/p} |\theta_1|$$

which is an  $L^p$  function on the boundary  $\partial U \times \partial U$ . If

$$v(z_1, z_2) = (1 - r_1)^{s_1/p} (1 - r_2)^{s_2/p} P_{\lambda} f/\phi_{\lambda}$$

and  $i\lambda \in \mathfrak{a}_{+}^{*}$ , it is easily seen that

(6.1) 
$$v \ge (1-r_1)^{s_1/p}(1-r_2)^{s_2/p}f(\max(|\theta_1|,1-r_1))/C.$$

Let  $0 < \varepsilon' < 1 - s_1$  and  $\alpha > 0$ . Suppose

$$(6.2) (1-r_1)^{1-s_1-\varepsilon'} < (1-r_2)^{s_2}\alpha^{-p} < 1$$

so that

$$\log_{+}(1-r_1)^{s_1}(1-r_2)^{s_2}\alpha^{-p} \sim \log_{+}(1-r_1)$$
.

If in addition

$$(6.3) 1-r_1 < |\theta_1| < (1-r_1)^{s_1}(1-r_2)^{s_2}\alpha^{-p}\log_+^{-1-\epsilon}(1-r_1)/C,$$

it follows from (6.1) that  $v > \alpha$ . For  $r_2$  fixed, we integrate  $r_1(1-r_1)^{-1-s_1}dr_1d\theta_1$  over the set of  $(r_1, \theta_1)$  defined by (6.2) and (6.3), getting at least

$$(1-r_2)^{s_2}\alpha^{-p}\log_{+}^{-\epsilon}((1-r_2)^{s_2}\alpha^{-p})/C$$
.

Integrating now in  $r_2$  and  $\theta_2$ , we see that  $m_{\sigma}\{v>\alpha\}=\infty$ , so that  $v\notin \Lambda^1_{p,\sigma}$ . Next, we give examples showing that Theorem 6.1 is false for p=1 and  $\sigma$ "between" 0 and  $2\rho$ . When  $\sigma = 0$ , the function  $u = P_1 1 = \varphi_1$  does not satisfy any (b<sub>i</sub>). For other  $\sigma$ , we consider only the ordinary Poisson kernel P in the unit disk, or, more conveniently, the upper half-plane  $R_{+}^{2} = \{(x, t) : t > 0\}$ . We choose measures in  $0 \le x \le 1$  and estimate their Poisson integrals in  $\mathbb{R}^2$  near this interval. If  $\sigma = s \cdot 2\rho$ ,  $0 < s \le 1$ , we have  $e^{-\sigma} \sim t^s$  and  $dm_{\sigma} \sim t^{-s-1} dx dt$  here. For s=1,  $\sigma=2\rho$ , consider the Dirac measure  $\delta_0$ . It is easily verified that  $tP\delta_0 \sim t^2/2$  $(x^2+t^2)$  is not in  $\Lambda_{1,\sigma}$ . And when 0 < s < 1, we use measures of Cantor type, carried by Cantor sets of ration  $2^{-\kappa}$ ,  $\kappa = 1/(1-s) > 1$ , constructed as follows. Choose two 1st step intervals  $[0, 2^{-\kappa}]$  and  $[1-2^{-\kappa}, 1]$ , thus situated at the ends of [0, 1], and then four 2nd step intervals, each of length  $2^{-2x}$ , at the ends of the two 1st step intervals. Continuing in this way, we get at the nth step 2" intervals of length  $2^{-nx}$ . There exists a measure  $\mu$  such that each of these nth step intervals has measure  $2^{-n}$ . It is easily verified that at points (x, t) with t  $\sim 2^{-\kappa n}$  and x in an nth step interval, we have  $t^s P \mu(x,t) \sim 1$ . Hence,  $m_{\sigma} \{ t^s P \mu(x,t) \}$  $\sim 1$ } =  $\infty$ , and we are done.

## REFERENCES

- Harish-Chandra, Spherical functions on a semisimple Lie group, I, Amer. J. Math. 80 (1958), 241-310.
- 2. Harish-Chandra, Discrete series for semisimple Lie groups, II, Acta. Math. 116 (1966), 1-111.
- 3. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 1-154.
- 5. S. Helgason, A duality for symmetric spaces with applications to group representations, II.

  Differential equations and eigenspace representations, Adv. in Math. 22 (1976), 187-219.
- M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), 1-39.
- A. W. Knapp and R. E. Williamson, Poisson integrals and semisimple groups, J. Analyse Math. 24 (1971), 53-76.
- 8. L.-Å. Lindahl, Fatou's theorem for symmetric spaces, Ark. Mat. 10 (1972), 33-47.
- 9. N. Lohoué and T. Rychener, Some function spaces on symmetric spaces related to convolution operators, to appear.
- H. L. Michelson, Fatou theorems for eigenfunctions of the invariant differential operators on symmetric spaces, Trans. Amer. Math. Soc. 177 (1973), 257-274.

- J. Serrin, On the Harnack inequality for linear elliptic equations. J. Analyse Math. 4 (1954-56), 292-308.
- 12. P. Sjögren, Weak L<sub>1</sub> characterizations of Poisson integrals, Green potentials, and H<sup>p</sup> spaces, Trans. Amer. Math. Soc. 233 (1977), 179-196.
- P. Sjögren, Generalized Poisson integrals in a half-space and weak L<sup>1</sup>, Uppsala University, Department of Mathematics. Report No. 9, 1977.

DEPARTMENT OF MATHEMATICS CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GÖTEBORG S-412 96 GÖTEBORG SWEDEN