ON ROTATION-AUTOMORPHIC FUNCTIONS

RAUNO AULASKARI and TUOMAS SORVALI

1.

In this paper we shall consider classes of analytic or meromorphic functions of a complex variable which are generalizations of classical automorphic functions, the main interest being in the normality of the functions.

Let (X,d) and (Y,ϱ) be metric spaces. Consider a family \mathscr{F} of continuous functions $f\colon X\to Y$. The family \mathscr{F} is *normal* if every sequence $(f_n)\subset \mathscr{F}$ contains a subsequence (f_k) which converges uniformly on every compact subset of X.

Let Ω be a group of isometric automorphisms of X.

DEFINITION 1. A function $f: X \to Y$ is normal (with respect to Ω) if $\{f \circ T \mid T \in \Omega\}$ is a normal family.

If f is a meromorphic function, then the normality of f is closely related to the following property of f.

DEFINITION 2. A function $f: X \to Y$ is of bounded stretching if there exists an M > 0 such that

(1.1)
$$\limsup_{x' \to x} \frac{\varrho(f(x), f(x'))}{d(x, x')} \le M$$

for all $x \in X$.

Let Ω' be the group of the isometric automorphisms of Y.

DEFINITION 3. A function $f: X \to Y$ is homomorphism-automorphic with respect to a subgroup $\Gamma \subset \Omega$ if for every $T \in \Gamma$ there exists a $j(T) \in \Omega'$ such that

$$(1.2) f \circ T = j(T) \circ f.$$

REMARK 1. Let f be a homomorphism-automorphic function and let F be a fundamental set of Γ . Then f is of bounded stretching if and only if there exists an M > 0 such that (1.1) holds for all $x \in F$.

2.

Let X be the unit disk D and let d be the non-euclidean metric of D. For the space (Y, ϱ) we choose the Rieman sphere $\hat{\mathbb{C}}$ with the spherical metric ϱ . Then, by (1.1), a meromorphic function $f: D \to \hat{\mathbb{C}}$ is of bounded stretching if and only if

(2.1)
$$\sup_{z \in D} (1 - |z|^2) \frac{|f'(z)|}{1 + |f(z)|^2} \le M$$

for some M > 0.

Let Ω be the group of the Möbius transformations $T: D \to D$. Then we have ([3]):

THEOREM 1. A meromorphic function $f: D \to \hat{\mathbb{C}}$ is normal in D if and only if (2.1) holds, i.e., f is of bounded stretching.

3.

Suppose that Γ is a Fuchsian group acting on D, and let f be a non-constant meromorphic function in D. Suppose that f is homomorphism-automorphic with respect to Γ . Since f is meromorphic and T is conformal, it follows from (1.2) that j(T) is sense-preserving, i.e., j(T) is a rotation. On the other hand, if T is given, then (1.2) defines j(T) uniquely. It follows that $\Gamma' = \{j(T) \mid T \in \Gamma\}$ is a group of rotations of the sphere and $j: \Gamma \to \Gamma'$ is a homomorphism. In this case we call f a rotation-automorphic function. The following special cases are well-known:

- (1) If Γ' contains only rotations $w \mapsto e^{i\varphi}w$, then f is a character-automorphic function (cf. $\lceil 4 \rceil$).
 - (2) If Γ' is trivial, then f is an automorphic function.

Combining Remark 1 and Theorem 1 we obtain

THEOREM 2. Let $f: D \to \hat{\mathbb{C}}$ be a rotation-automorphic function with respect to a Fuchsian group Γ , and let F be a fundamental set of Γ . Then f is normal if and only if

(3.1)
$$\sup_{z \in F} (1 - |z|^2) \frac{|f'(z)|}{1 + |f(z)|^2} \le M$$

holds for some M > 0.

4.

Let (Y, ϱ) be the finite plane C with the euclidean metric, and let $f: D \to C$ be a non-constant analytic function. Then f is of bounded stretching if and only if

$$\sup_{z \in D} (1 - |z|^2)|f'(z)| \le M$$

for some M>0, i.e., if and only if f is a Bloch function.

A Bloch function f need not be normal in the sense of Definition 1. However, every sequence $f \circ T_n$, $T_n \in \Omega$, contains a subsequence which converges either to an analytic function or to ∞ , uniformly on compact subsets of D. Hence a Bloch function is normal if the euclidean metric of C is replaced by the spherical metric.

Let $f: D \to C$ be a homomorphism-automorphic function with respect to a Fuchsian group Γ . Then Γ' consists of translations $w \mapsto w + \omega$, and f is called an *additive automorphic function* (cf. [2]). Especially, if Γ' is trivial then f is automorphic.

Let F be a fundamental set of Γ . By Remark 1, an additive automorphic function f is a Bloch function if and only if

$$\sup_{z \in F} (1 - |z|^2)|f'(z)| \leq M$$

holds for some M > 0.

REMARK 2. Let (X,d) and (Y,ϱ) be unit disks with the non-euclidean metric d and let $f: D \to D$ be an analytic homomorphism-automorphic function with respect to a Fuchsian group Γ . If Γ' is a Fuchsian group, then f induces an analytic function from D/Γ into D/Γ' . In this sense, analytic functions between Riemann surfaces are special cases of homomorphism-automorphic functions.

5.

In this section we consider the existence of homomorphism-, rotation-, and additive automorphic functions.

Let X and Y be Riemann surfaces and $f: X \to Y$ a non-constant analytic function. Suppose that the covering surface (X,f) of Y is universal, let Γ_0 be the cover transformation group and denote by H' the group of all conformal self-mappings of Y. A conformal mapping $T: X \to X$ is a lifting of $S \in H'$ if $f \circ T = S \circ f$. It follows that every $S \in H'$ has liftings. Especially, all cover transformations are obtained as liftings of the identity mapping of Y.

Let H be the set of all liftings of the mappings of H'. Then H is a group and $j: H \to H'$, j(T) = S, is a homomorphism whose kernel is the cover transformation group Γ_0 . This can be stated differently also as follows:

THEOREM 3. The mapping $f: X \to Y$ is automorphic with respect to Γ_0 and homomorphism-automorphic with respect to H. The group H contains as a subgroup every group Γ with respect to which f is homomorphism-automorphic.

If Γ' is a subgroup of H', then we can similarly as above define Γ as the group of all liftings of the mappings of Γ' . Then $\Gamma \subset H$ and f is homomorphism-automorphic with respect to Γ . Suppose that Γ' is properly discontinuous in Y. Then the same holds true of Γ in X. In this case Γ can also be characterized as a cover transformation group (cf. $\lceil 1, II.4C \rceil$):

THEOREM 4. Γ is the cover transformation group of $(X, \varphi \circ f)$ over $Z = Y/\Gamma'$ where $\varphi \colon Y \to Z$ is the canonical projection.

PROOF. Evidently Γ is a subgroup of the cover transformation group in question. From the construction of Z it follows that whenever x_1 and x_2 are two points of X lying over the same point of Z, there is an $S \in \Gamma$ for which $S(x_1) = x_2$. From this it follows that Γ contains all cover transformations of $(X, \varphi \circ f)$.

Note that $(X, \varphi \circ f)$ is a universal covering surface of Z only if Γ' is in addition also fixed point free in Y.

Suppose now that Y is a domain in $\hat{\mathbb{C}}$ having the unit disk D as a universal covering surface. If Γ' is a properly discontinuous group of conformal self-mappings of Y, then Γ is a Fuchsian group and the projection $f: D \to Y$ is homomorphism-automorphic with respect to Γ .

In order to construct a rotation-automorphic function $f: D \to \hat{\mathbb{C}}$, choose Y such that there exists a properly discontinuous group Γ' of rotations of the sphere mapping Y onto itself. This can be done e.g. by choosing for the group Γ' a group of a regular solid and letting Y be the sphere $\hat{\mathbb{C}}$ punctured at the fixed points of Γ' .

To obtain an additive automorphic function $f: D \to C$, let Γ' be the group generated by the translations $z \to z + \omega_1$ and $z \to z + \omega_2$, Im $(\omega_1/\omega_2) > 0$, and let Y be the plane C punctured at the points $m\omega_1 + n\omega_2$, m and n integers.

6.

Next we give an explicit example of a rotation-automorphic function such that Γ' is not fixed point free in Y.

Let Γ be the group generated by the parabolic transformations

$$T_1(z) = \frac{(1-i)z+1}{z+1+i}, \quad T_2(z) = \frac{(1+i)z+1}{z+1-i}.$$

Then Γ has a fundamental polygon F whose sides lie on the circles

Figure 1.

The transformation T_1 sends C_1 onto C_2 and T_2 sends C_3 onto C_4 (see Figure 1.).

Let S_2 be the rotation

Figure 2.

and S_1 the rotation whose fixed points are $-\sqrt{2}/2$ and $\sqrt{2}$ and multiplier equals $e^{2\pi i/3}$. Let Γ' be the group generated by S_1 and S_2 . Define a homomorphism $j: \Gamma \to \Gamma'$ by $j(T_i) = S_i$, i = 1, 2. Let F' be the domain bounded by the rays $w = te^{\pm \pi i/3}$, $t \ge 0$, and by the circular arcs through the fixed points $\sqrt{2}$ and $-\sqrt{2}/2$ (Figure 2). Consider F and F' as quadrilaterals. By symmetry, both have the modulus one. Hence there is a conformal mapping f from F onto

F' which sends vertices onto vertices and equivalent sides onto equivalent sides, respectively. The function f can be continued to D by the formula (1.2). Then f is analytic in D. Moreover, f is rotation-automorphic with respect to Γ . Since Γ' is a subgroup of the cubic group, it is properly discontinuous in \hat{C} . Moreover, the transformations of Γ' keep

$$Y = \hat{C} \setminus \{0, \sqrt{2}, -\sqrt{2}/2, \sqrt{2}e^{2\pi i/3}, \sqrt{2}e^{-2\pi i/3}, (-\sqrt{2}/2)e^{2\pi i/3}, (-\sqrt{2}/2)e^{-2\pi i/3}, \infty\}$$

invariant. Since $S_1(S_2^{-1}(S_1(F'))) = F'$, the rotation $S_1 \circ S_2^{-1} \circ S_1 \neq id$ has a fixed point in F'. Hence Γ' is not fixed point free in Y.

Since f omits eight values, f is normal in D.

7.

Let f be a rotation-automorphic function with respect to Γ . We consider conditions under which f is normal in D.

Let F be a normal fundamental polygon of Γ .

DEFINITION 4. (cf. [2]) The fundamental domain F is thick if for each sequence $z_n \in F$, $n=1,2,\ldots$, there is a sequence z'_n and constants r>0, r'>0 such that $d(z_n,z'_n)< r$ and

$$U(z'_n,r') = \{z \mid d(z'_n,z) < r'\} \subset F.$$

LEMMA. Let $z_n \in F$ such that $|z_n| \to 1$ as $n \to \infty$. If r > 0 and 0 < R < 1, denote $U_n = U(z_n, r)$ and $D_R = \{z \mid |z| < R\}$. Then $T(U_n) \cap D_R \neq \emptyset$ for finitely many $T \in \Gamma$ and $n \in \mathbb{N}$ only.

PROOF. Choose $R' \in]R, 1[$ such that $U(z,r) \cap D_R = \emptyset$ if $|z| \ge R'$. Then $T(\overline{F}) \cap D_{R'} \ne \emptyset$ for finitely many transformations $T \in \Gamma$ only. On the other hand, for every $T \in \Gamma$ the set $\{T(z_n) \mid n=1,2,\ldots\} \cap D_{R'}$ is finite. Combining these trivial observations we infer that $|T(z_n)| < R'$ for at most finitely many $T \in \Gamma$ and $n \in \mathbb{N}$.

THEOREM 5. If F is thick and

(7.1)
$$\iint_F \left(\frac{|f'(z)|}{1+|f(z)|^2}\right)^2 d\sigma_z < \infty,$$

then f is normal in D.

PROOF. Suppose, on the contrary, that f is not normal in D. Then (3.1) does not hold. Thus there is a sequence $z_n \in F$ such that $|z_n| \to 1$ and

(7.2)
$$(1 - |z_n|^2) \frac{|f'(z_n)|}{1 + |f(z_n)|^2} \to \infty$$

as $n \to \infty$.

Choose r > 0. By the above lemma, the thickness of F and (7.1), we have

(7.3)
$$\lim_{n \to \infty} \iint_{U(z,r)} \left(\frac{|f'(z)|}{1 + |f(z)|^2} \right)^2 d\sigma_z = 0.$$

We can select a subsequence, also denoted by z_n , such that

(7.4)
$$\sum_{n=1}^{\infty} \iint_{U(z,r)} \left(\frac{|f'(z)|}{1 + |f(z)|^2} \right)^2 d\sigma_z < \pi.$$

Let

$$g_n(\zeta) = f\left(\frac{\zeta + z_n}{1 + \tilde{z}_n \zeta}\right).$$

Then

(7.5)
$$\iint_{U(0,r)} \left(\frac{|g'_n(\zeta)|}{1 + |g_n(\zeta)|^2} \right)^2 d\sigma_{\zeta} = \iint_{U(z_n,r)} \left(\frac{|f'(z)|}{1 + |f(z)|^2} \right)^2 d\sigma_{z}$$

is equal to the spherical area of the surface onto which g_n maps the disk U(0,r). It follows from (7.4) and (7.5) that the family $\{g_n\}$ omits in U(0,r) a set of positive spherical area. Hence the family $\{g_n\}$ is normal in U(0,r). Therefore

$$\frac{|g_n'(0)|}{1+|g_n(0)|^2} = (1-|z_n|^2) \frac{|f'(z_n)|}{1+|f(z_n)|^2} \le M < \infty$$

for $n = 1, 2, \ldots$ This contradicts (7.2).

REFERENCES

- L. V. Ahlfors and L. Sario, Riemann surfaces, (Princeton Mathematical Series 26) Princeton University Press, Princeton, N.J., 1960.
- R. Aulaskari, On normal additive automorphic functions, Ann. Acad. Sci. Fenn. Ser.A I Math. Dissertationes 23 (1978), 1-53.
- O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65.
- 4. Ch. Pommerenke, On normal and automorphic functions, Michigan Math. J. 21 (1974), 193-202.

JOENSUUN KORKEAKOULU PL 111 80101 JOENSUU 10 FINLAND