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SCISSORS CONGRUENCES, I
THE GAUSS-BONNET MAP

CHIH-HAN SAH*

Hilbert’s Third Problem was affirmatively solved by Max Dehn a few
months after it was posed. For n>2, Dehn’s solution showed that it is not
possible to have an elementary theory of volume for polytopes formed out of
geodesic simplices in n-dimensional Euclidean, spherical, elliptic, or hyperbolic
spaces by using the idea of scissors congruences (finite cutting and pasting
together with isometries). In [24], the works of many authors were
incorporated into a theory of scissors congruences. In this framework, a
number of algebraic structures (Hopf algebras, comodules, Eilenberg—
MacLane homology of classical groups) appeared rather naturally from
geometric considerations. Furthermore, a number of unresolved problems were
posed to serve as guides for the theory. Some of these problems appear to have
connections with subjects that are of current interests.

Among the various suggestions made in [24] was the vague feeling that there
ought to be a Gauss—Bonnet map relating the scissors congruence groups in
even dimensional hyperbolic and spherical spaces with the preceding odd
dimension. It was also suggested that scissors congruences ought to be
considered for extended hyperbolic spaces. These are the principal goals of the
present paper. After a short summary of some of the basic results of [24] in
section 1, we describe the Gauss—Bonnet map in section 2. This is the extended
to the “closed” hyperbolic spaces in section 3. Section 4 deals with a few
divisibility results. Appendix 1 deals with scissors congruences in an axiomatic
setting. This repairs some of the inaccuracies in [24; Chap. 1]. Appendix 2 is a
short exposition of an unpublished result of W. Thurston on the definition of
Dehn invariants for extended hyperbolic spaces. It also shows that the Gauss-
Bonnet map can be viewed as a “lifted” form of a Dehn invariant. Section 4 and
Appendix can be viewed as “applications” of the Gauss-Bonnet map.

It is perhaps reasonable to give a status report on some of the problems
mentioned in [24]. The syzygy problem [24, Chap. 5] concerning the higher
order relations among the Hadwiger invariants used in the theorem of Jessen—
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Thorup [15] can be considered as solved by the homological approach
developed by Johan Dupont [7]. The questions related to Gauss-Bonnet maps
[24; Chap. 6, 7, 8] are considered in the present paper. Other questions
concerning torsions, isomorphisms, etc., will be considered in a join work with
Dupont. The large hyperbolic simplex problem has been affirmatively and
elegantly solved by U. Haagerup and H. Munkholm [10]. The rational simplex
problem remains open. The status of the various scissors congruence problems
has not changed since [24]. Specifically, the translational scissors congruence
problem is solved in all dimensions by Jessen-Thorup [15]. The Euclidean
scissors congruence problem is solved for dimensions n <4 by Sydler [28] or
[12] and Jessen [13]. The spherical and hyperbolic scissors congruence
problems were solved classically in dimensions n<2. In all other cases, Dehn
invariants (including volume) furnish necessary conditions, but the sufficiency
remains open, see [24].

It is our pleasure to acknowledge our debt for the many useful comments
communicated to us in conversations and/or writings from many people. Aside
from our colleagues in Stony Brook, we would like to thank Robert Connelly,
Johan Dupont, Berge Jessen, John Milnor and Anders Thorup for substantial
contributions to our thinking process. Thanks are also due to the referee for
helpful suggestions in streamlining the organization of the present work.

1. Preliminaries.

We first recall a result of Tits characterizing the classical geometries, see
[8, 30].

FREE MoOBILITY THEOREM. Let X be a locally compact, connected metric space.
Then X is isometric to an n-dimensional real Euclidean, elliptic, spherical, or
hyperbolic space for a suitable natural number n if and only if X enjoys the
Sfollowing property:

(FM) For any two sufficiently small congruent triangles in X, there is a global

isometry of X extending the congruence.

A triangle is understood to be any ordered triple of points of X (degeneracies
allowed) and a congruence between two such triples is understood to be a
distance preserving map (necessarily unique) on the vertices.

We will be dealing with scissors congruence data based on one of these
classical geometries. As has been mentioned in [24], the elliptic case can be
absorbed by the spherical case. Let X =X"(¢) denote n-dimensional real
Euclidean, spherical, or hyperbolic space according to ¢é=0, 1 or —1. Let G
denote the full group of isometries of X. The group 2(X,G) of scissors
congruence classes of polytopes is generated by [4] (mod G) with A4 ranging
over the small geodesic n-simplices of X satisfying the defining relations:
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(RS) [A]=[B]+[C] where A=B]]IC ranges over all simple subdivisions
of small geodesic n-simplices 4, B, C in X.

(RC) [0A]=[A] where o ranges over G and A ranges over all small
geodesic n-simplices.

In the cases of interest to us, an n-simplex is called small if its diameter is less
than the diameter of X (this is a condition only when X is spherical). A more
detailed discussion concerning the various formulations of #(X,G) can be
found in Appendix 1. We use ] ] to denote interior disjoint union as well as
direct sum.

In order to define the Gauss—Bonnet map, we need to recall the notation of
[24]. R?** will denote an R-vector space of countable dimension with R-basis
epey,. .. <", "Y1 o Will denote the inner product so that:

{ene>1, =0, —1, 1 respectively when i=+j, i=j=0, i=j>0. (-, >, will
denote the usual positive definite inner product:

{ened1+00 = 0, 1 respectively when i%j, i=j .

R> will denote the subspace spanned by e,,e,,. ... For n=0, R!'" will denote
the subspace spanned by e,,. . .,e, while R" will denote the subspace spanned
by ey,...,e,

X"(0) can be taken to be R" and will be identified with the standard column
vectors of length n. G=G"(0) is then the semidirect product of the translation
group T(n; R) by the rotation group O(n; R). X"(1) can be taken to be the set
S(R"*1) of all unit vectors in R"*!, G=G"(1) is then O(n+1; R). X"(—1) can be
taken to be the hyperbolic space #" modelled on the rays R*x in R" with
(R*x,R*x); ,=R~™ and (R*x,R*¢y>;,,=R*. G=G"(—1) is the subgroup
Q(1,n; R) of index 2 in O(1,n; R) formed by all elements with spinor norm 1
i.e., preserving the forward light cone associated to the quadratic form: — X3
+31 <i<a X7. Contrary to the usual convention, signature (p, q) means p minus
signs and ¢ plus signs.

An Eulidean n-simplex A is determined by n+ 1 affinely independent vertices
Xos- - ., X, (viewed as points in R%):

A = cc{xg. .., %,} = {Z;ox; | %,20in R with T,o,=1} .

A spherical (n—1)-simplex B (of degree n=1+dim B) is determined by n R-
linearly independent unit vectors yy,...,y, (in S(R®)):

B = sccl {yy,. . ,yn} = {Ziwyi € S(R®) | @;20in R} .

A hyperbolic n-simplex C is determined by n+1 independent rays
R*z,,...,R*z, in #>°(R):

C = hecl{R*zy,...,R*z,} = {R* Tz, € #*(R) | «,20in R}.
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We could have identified each ray R*z with the unique vector z; with
{Zi, €001 +00=1. #"(R) is then identified with an open n-ball of radous 1 in an
affine n-space and the geodesic hyperbolic n-simplices are represented by
Euclidean n-simplices. Under this interpretation, the combinatorial aspects of
cutting and pasting has not changed. However, the group of motions has
changed so that the concepts of distance and angle have changed. Other
models of hyperbolic spaces are sometimes more convenient. We refer to
Thurston [29] for more detailed discussions.

The target group of the Gauss—Bonnet map will be 25" =2(S(R"), 0 (n; R)).
We emphasize that the superscript n denotes degree rather than dimension
when we are dealing with spherical cases. By definition, 28°=Z-[J]=Z
where ¥ denotes the unique (— 1)-simplex — the empty set. We can also use
the ray model for spherical spaces; (& then corresponds to the origin of R*.
Similarly, 28! =Z[point]=Z. We form the graded abelian group:

28 = ] #s'.
iz0
28 is given the product structure through the orthogonal join (corresponding
to orthogonal Minkowski sum in the ray model). More precisely, let P and Q
be spherical simplices in S(R*) with vertices x;,...,x,and y,,. . .,y,. Select ¢ in
O(o0; R) so that {x;, ay;>,, =0 holds for all i, j. Then the product is defined by:

[P1+[Q] = [P*0Q], P=xdQ = sccl{x,,...,x,,0);,...,00,} .

This product is independent of the choice of ¢ as long as the orthogonality
condition is satisfied. With this product, S becomes a commutative ring
graded by degree and [ (] is the unit element. The graded ideal generated by
[point] is denoted by ¥S and its ith power is denoted by €,S; these powers
define the decreasing point-adic filtration of #2S. We note that [S(R")]
=2"[point]*". Since we are over R, the spherical (n—1)-simplex P has an
invariant (n—1)-dimensional volume: vol,_,; (P)>0. Following Schéfli, this
volume is normalized so that vol,_, (S(R")=2". We then have a graded ring
homomorphism:

gr. vol.: S — R[T1], gr. vol. [P] = vol,_,(P)- T".

In general, (X" (¢), G) is 2-divisible when n=1, [24; Prop. 1.4.3, p. 17]. Using
this, #8%*! =25% «[point], [24; Prop. 6.2.2, p. 105]. The evenly graded
commutative ring #S/¥S is actually a Hopf algebra over Z. #S/¢S has
additive torsion (at least in degree 2). From Hopf-Leray theorem, 2S/%S mod
torsion is an integral domain. Using the volume msp, 2S/Tor (#S) is an
integral domain. It is unknown if Tor (#S) is zero or not. For more details, see
[24; Chap. 6].
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Set
PE" = P(X"(0),G) = 2(R", T(n; R)O(n; R)) for n>0
and set ZE°=R. As in the spherical case, form the graded abelian group:

PE = || 2E".

nz0

One of the consequences of the theorem of Jessen-Thorup, see [15] or [24], is
the fact that 2E" has an R-vector space structure (in a very complicated way).
This can be incorporated into 2E together with the product arising from
orthogonal Minkowski sum. 2E then becomes a commutative R-algebra
graded by dimension. It is unknown if 2E is an integral domain. However, we
always have a graded R-algebra homomorphism through volume:

gr. vol.: E — R[T1], gr. vol. [P] = vol, (P)-T",
where vol, (P)>0 is the absolute volume of the n-simplex P.

It should be noted that the volume is definable purely algebraically in the
present case.
Set

PH" = P(X"(—1),6) = P(#",Q(1,n; R), n20.
PH® = Z-[point] = Z .

As before, form the graded abelian group:
2 = || 2#".
nz0
We only have a homomorphism of graded abelian group:
gr. vol.: 24 — R[T].

In all cases, S, PE, P A are right comodules for the Hopf algebra 25/¢S
with structure map given by the total Dehn invariant. There are natural
compatibility results with the product structures, see [24; Chap. 6, 7, §].

2. The Gauss—-Bonnet map.

The basic idea of a general Gauss—-Bonnet map was already present in
Poincaré [23], Dehn [5], Hopf [11], see Klein [16; pp. 200-205]. Instead of
the usual procedure of using analysis to measure angles, we lift the definition to
the level of the scissors congruence groups. The free mobility theorem allows us
to replace integration by a finite sum. See [1, 2, 3, 4, 6] among others for
discussions and uses of the Gauss—Bonnet formula.
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Let A be a small geodesic n-simplex in X"(¢), n>0. Let F denote an i-
dimensional face of 4, 0<i<n. Let x(F) be any interior point of F (e.g., the
barycenter of F through the underlying linear structure). Define 6(F, 4) to be
the (n—1)-dimensional spherical polytope formed by the closure of the set of
all interior unit vectors with origin at x(F). Recall that we also have the interior
angle 6 ,4(F) at the face F of A formed by all the interior unit vectors normal to
the face F with origin x(F). We have:

(2.1) [0(F, 4)] = [04(F)]1*[S(R)] = 2i[point]* x[04(F)], i=dimF .

Using free mobility property (FM), [6(F, 4)] does not depend on the choice of
x(F). To the n-simplex A, associate the element e(A4) € #S" as follows:

(22 e(d) = Y (—1)¥mF[9(F, 4)], F a nonempty face of 4 .
F

Leaving out the terms corresponding to dim F=n—1 and n, composing the
result with the volume function, we then have the generalized angle sum, see
Klein [16; p. 204]. The volume of A is related to e(A) by:

vol,_, (¢(4)) = x,°vol, (4), %, is a universal constant .

In this formula, volume has to be normalized appropriately. The universal
constant x,, is proportional to the product of ¢ and the Euler characteristic of
an n-sphere. In view of Dehn’s solution to Hilbert’s third problem, e(A) carries
more information than vol,_, (e(4)); see Dupont [6] for other uses of
vol,_, (e(A4)). We will call e the Gauss—Bonnet map. When n=0, set e to be an
isomorphisms for ¢+0 and 0 when e¢=0.

THEOREM 2.3. Let n>0 and let 2X"(e)=2P(X"(¢), G). The Gauss—Bonnet map
e induces an additive homomorphism:

e: 2X"(e) > PS" = PX""(1).
When £¢=0, ¢=0.

Proor. From its definition, e(4) depends only on the congruence class of
the n-simplex A. Let A=B]]C be a simple subdivision. We assert that ¢(A4)
=¢(B)+¢(C).

Let H be the hyperplane subdividing 4 into B and C so that H contains all
but two of the vertices of 4. We group together the terms in e(A4)—e(B)—e(C)
in accordance with the following cases:

Cask 1. All vertices of F lie in H.
F is therefore a face of 4, B as well as C. 0 4(F)=0g(F) L1 6(F) with H doing
the subdivision. We obtain from (2.1):
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(=)™ F([6(F, A)]—[O(F,B)]1—[0(F,C)]) = 0.

Caskt 2. Exactly one vertex of F lies outside of H.
F is therefore a face of B or of C according to the exceptional vertex of F is

part of B or part of C. §(F, A) is then equal to §(F, B) or §(F,C) and we have
cancellation in either case.

Cask 3. Exactly two of the vertices of F lie outside of H.

F is therefore subdivided by H into BN Fand CNFand BACNF=HNFis
a common (i — 1)-dimensional face of B and C. We note that i=1 and HNF is
not a face of 4. We have the following terms:

(- )™ F{[6(F, 41— [6(F N B, B)]-[8(FNC,C)]
+[0(HNF,B]+[0(HNF,C)1} .

The interior point x(F) can be moved to an interior point of BN F or of CNF
so that 85(F NB) = 0 ,4(F)=0c(F N C). Similarly, if x(F) is moved to a point of
HNF, then 6(F, A) is subdivided by H into 6(HNF, B) and 6(HNF, C). We
have cancellation again.

These cases partition all the terms in e(4)—e(B)—¢(C) so that the map e is
additive with respect to simple subdivisions of n-simplices. The functorial
properties of 2X"(¢) imply that ¢ induces an additive homomorphism.

Assume ¢=0. The group 2X"(0)=2E" is a direct sum of weight spaces for
weights i with [<i<n and n—i even, see [24; Chap. 7]. This means that E" is
an R-vector space and a vector in 2E" has weight i if the homothety by 4 in R*
multiplies this vector by A'. We note that the existence of the R-vector space
structure is quite difficult whole the existence of a Q-vector space structure on
PE" is relatively easy. For our purposes, the existence of the Q-vector space
structure and the associated Q-weight structure is enough. Breaking up [A4]
into its weight components and applying the homothety AI, to 4 to get A0 A,
the components of [loA] are obtained from those of [A] through
multiplication by appropriate powers of 4. The map e is clearly of weight 0.
Since n>0, such maps must be 0 from weight considerations. We note that e
has been defined to be 0 when n=0=e¢.

When n=2, angles can be measured in radians and e(A) is just a+ f+y—3n
+2n. This is just ¢ times the area of 4. In general, if n is even, then we need a
positive constant times "2 for the factor. The positive constant depends on the
normalization of the invariant volume of the unit sphere.

The vanishing of ¢ when ¢=0 is equivalent to a relation among the various
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face angles of a polytope in Euclidean space. After composing with the volume
function, this has been studied extensively, see [9, 19, 20, 22, 26, 27] for
example. Its possible use in the study of scissors congruences in Euclidean
spaces has not as yet received much attention.

For the remaining part of this section, we consider the cases é= +1. When
n=0, e[point] =[] and PS' = PS° =P # =7 through ¢. When n=1, ¢ can
be seen to be 0 from its definition.

In the spherical case, #5%'*! =[point] *25%, [24; Prop. 6.2.2, p. 105]. The
question of isomorphism between 25%*! and #5% was left open. This will
now be settled in the affirmative.

PROPOSITION 2.4. Let P and Q be spherical simplices of dimensions p and gq,
respectively. Assume {Lsp (P), Lsp (Q))., =0 where Lsp denotes the linear span.
Then,

e[PxQ] = e[P]+[Q]+[P]+e[Q]—2[point]*xe[P]*e[Q] .

PrROOF. A face F of PxQ has the form P'xQ’ where P’ and Q' are faces
(possibly empty) of P and Q respectively. We have the following cases:

Case 1. P’ and Q' are both nonempty.
From the orthogonality assumption, we have:

Op.o(P'xQ) = 0p(P)x0p(Q) .

From (1.1), we conclude:

[6(P'xQ',PxQ)] = 2[point] *[6(P', P)]*[6(Q’, Q)] .

Case 2. Exactly one of P, Q' is empty, say Q'=J.
We therefore have: '

0p.o(P) = 0p(P)*Q .

From (1.1), we conclude:

(6P, PxQ)] = [0(P',P)]*[Q] .

Breaking up e¢[P Q] into three groups of terms according to the face P'xQ’ is
such that Q'=J, P'= or both P’ and Q' are nonempty, we obtain the
desired assertion. We note that the join product is compatible with the degree
gradation, not the dimension gradation. This explains the factor of —1. The
join product with 2[point] is just orthogonal suspension. The definition of e
together with the preceding remark explain the presence of this factor in our
formula.
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Except for differences in notation, the next result goes back to Poincaré [23].

PROPOSITION 2.5. Let A be any n-simplex in X"(g). Then,

2[point] xe(e(4)) = 0

PROOF. e is understodd to be the zero map on 2S°. We already noted that
e=0ifeither e=0o0r n=1. We may therefore assume n> 1 and e= + 1. Actually,
our argument is formal and applies to the case ¢=0.

Combining (2.1) and Proposition 2.4, we have:

e(0(F, A)) = e(0,(F))*[S(RY™F)],  provided that dim F is even;
e(O(F, A)) = 2{[04(F)]—e(84(F))x[point] x[S(RI™F-NH]1 provided
that dim F is odd .

The interior angle 0,(F) at the face F of A is a spherical simplex of degree
(number of vertices) equal to the codimension of F in A. In fact, if R*x is a
vertex of A not in F (in the ray model when ¢+ 0), then the unit vector along
the normal projection of x to the linear subspace Lsp (F) leads to a vertex of
04(F). 1t follows that a face of 0,4(F) is uniquely represented as the normal
projection to Lsp (F) of a face G of A with G containing F. This yields:
Q(OA(F)) — Z (_l)dimG—dimF—l[gA(G)J*[S(RdimG—dimF—l)] ,
G>F
where the sum extends over all faces G of A properly containing F.
Combining the preceding calculations, we have:

2[point] *e(e(4)) = } ; GZF (—1)timG-dimF=1rg(G, 4)]

+ Z Z (_l)dimG—dimF—l[e(G’A)]
dimFodd G>F

— 0(F,A
2 dim;odd [ ( )]

__{Z (___1)dimF Z (—l)dimG[H(G, A)]}

F G2F

+;[9(F,A)]—2d Y [6(F,4)].

im F odd

The last two sums can be combined to yield e(A). In the remaining double sum,
we reverse the summation. Leaving aside the facpor —1 at the front, the
coefficient of (—1)4mC[0(G, A)] is just Ty<e(—1)%™H, wheré H ranges over
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the nonempty faces of G. Since dim H is 1 less than the number of vertices of H,
binomial theorem shows that:

As a consequence, the double sum in question is just:
=Y (=1)¥™O0(G,A)] = —e(A).
G
We therefore have cancellation.

THEOREM 2.6. Let ¢= + 1. The following assertions hold:

(@) e: PS**Y o PS? is an isomorphism inverse to the map:
[point]*: #§% — PpS§2+!
(b) e: P(X?**1(e)) » PS**! is the zero map.

Proor. The assertions have already been noted for i=0. We will now verify
the assertions for the case e=1 (essentially due to Poincaré¢) by complete
induction on the degree n.

Cast 1. n=2i+1 is odd so that i>0.
Consider the composition of the maps in the following sequences:

gsZi [point]* Qslii—l BN ysli'

Since e[point] =[], Proposition 2.4 and induction hypothesis imply that the
composition is the identity map. Since i>0, the first map is surjective, [24;
Prop. 6.2.2, p. 105]. Thus (a) holds.

CASE 2. n=2i+2 is even so that i=0.

Let A be any spherical simplex of degree n. By Proposition 2.5,
2[point] xe(e(4))=0. Now e(A) has odd degree n—1. Induction hypothesis
together with (a) imply that 2e(4)=[point] xe(2(e(A)))=0. If n=2, then 28"~ !
=PS' = Z is torsion free so that e(4) =0 (this can also be checked directly). If n
>2, then 28" is 2-divisible, [24; Prop. 1.4.3, p. 17]. It follows that ¢(4)=0 in
all cases when n is even and e=1. We have (b) for e=1.

Suppose that ¢e= —1 and that A is a hyperbolic (2i+ 1)-simplex. It follows
that e(4) € 25%*!, From assertion (a), we have:

¢(A) = [point] xe(e(4)) .

Proposition 2.5 shows that 2e(4)=0. Just as in the spherical case, #**! is
2-divisible when i 20, [24; Prop. 1.4.3, p. 17]. It follows that e is the zero map.
This is just (b) for e= —1.
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CoROLLARY 2.7. Let 2S*=11;,,2S* and let P#S°*°=]1;,,PS**!. Then
[point] *: 28 — 25°4 is an isomorphism with ¢ as inverse. They are
isomorphisms of free ?S% modules of rank 1 as well as right comodules for the
Hopf algebra ?S/¥S.

COROLLARY 2.8. The additive homomorphism [point]: 25°4 — @S has
kernel equal to Tor (2§°%)=Tor (2§%). (It is unknown if Tor (2S) is zero or
not.)

COROLLARY 2.9. PS/€S=PS%/[point]*? + S - [point]*2 « PSY is torsion
free and we have:
Tor (25/4S) = (Q/Z) ] (]_[ Tor (95“)) = (Q/Z) |] Tor (#5) .
i>1
The arguments can be easily supplied from the results in [24; Chap. 6]. We
omit the details. The torsion Q/Z comes from the fact that (2S/€S)? is

isomorphic to R/Z through the length map. This is the trivial torsion in
PS/6S.

3. Extended Gauss—Bonnet map.

In [24; Chap. 8], we presented some vague ideas suggesting that it might be
interesting to study the scissors congruence problem for the extended
hyperbolic n-space #"= #"U 0#" where the geometry of J#" is that of the
conformal geometry of (n— 1)-sphere. We will now pursue some of these vague
ideas. It should be noted that 0#" will not be considered by itself. In
particular, when n<3, the multiple transitivity of the conformal group
trivializes the scissors congruence problem on 0" when 0#" is viewed as an
(n—1)-dimensional space. Aside from this, the absence. of an invariant metric
makes it rather difficult to talk about geodesic (n— 1)-simplices. However, 0.#"
can be used to construct an n-dimensional scissors congruence problem in the
sense of Dupont [7]. More precisely, the simple subdivision process can be
replaced by the homological subdivision process. This possibility will be
considered elsewhere with Dupont. In the present section, we will have
occasion to consider a natural homomorphic image sitting inside the scissors
congruence group arising from #". According to Dupont, using his
homological approach, the scissors congruence group 2#™" is actually
isomorphic to the scissors congruence group 2#", n>2. However, there is a
subtle difference between the geometric interpretations of these two groups.
The difference is that Zylev’s cancellation theorem holds for scissors
congruence in #", but fails for #" when n> 1. For more details on this point,
we refer to Appendix 1.
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As indicated in the preceding section, #" can be modelled either on the rays
in R!'" interior to the forward light cone or on an open n-ball. For the
description of #7", it is more convenient to use the ball model. A point of #" is
identified with a vector v € R»" satisfying the conditions:

{v,eg)14n =1 and <v,0),,=0.

In this identification, v lies on 0" if and only if {v,v), ,=0. As before, we
allow n to go to oo and view everything as part of #>. Points of d#" are
called infinite while points of #" are called finite. A geoedesic n-simplex in #"
is represented by an affine n-simplex contained in a closed n-ball. Except for
vertices, all its points are finite. Such a simplex will be called i-asymptotic if
exactly i of its vertices are on 0.#". An (n+ 1)-asymptotic n-simplex will also be
called totally asymptotic (or ideal by other authors). All such simplices have
finite invariant volume. Simple subdivisions are defined as usual. In a proper
simple subdivision, the division point must be finite. The group 2#"
=P (#",Q(1,n; R)) is defined in a manner completely analogous to that of
PH". We note that Q(1,n; R) has a subgroup of index 2 preserving the
orientation of #". When n> 1, this subgroup is transitive on both #" and
0H".

Continuing with the ball model, fix the origin e, of #". Each geodesic ray in
H" starting from e, “terminates” at a unique point e, +v in d#" with v in
S(R"). In this manner, S(R") can be identified with the unit tangent sphere at e,
as well as with 0" It is important to note the identification with 0#"
depends on the choice of the origin e,. Two different choices differ by a
conformal automorphism of 0.#", not necessarily an isometry of S(R"). For
obvious reasons, we will also use “visual sphere at e,” interchangeably with
“unit tangent sphere at e,”. The isotropy group of e, in Q(1, n; R) is just
O(n; R) so that the visual sphere at ¢, yields the spherical scissors congruence
data in dimension n— 1. This is the manner 6(F, A) is defined in the Gauss—
Bonnet map of the preceding section. We note that an infinite geodesic can
never be cut up into a finite number of pieces and placed inside #", n>0. As a
consequence, stable scissors congruence and scissors congruence are definitely
not equivalent for (#", Q(1,n; R)), n>0. In this respect, we have a more
natural geometric example than the usual example of Hilbert based on non-
Archimedean ordered fields.

Each n-simplex of »#" is also one of #", we therefore have the natural
inclusion homomorphism:

1, PH" — PH", n20.

1, is an isomorphism of Z because #° and #° reduce to points. We have:
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PROPOSITION 3.1. 1, is the zero map. PH#* is isomorphic to Z with the class of a
1-asymptotic 1-simplex (an infinite half line in #') as a generator. PH"' is
isomorphic to the multiplicative group R™* of positive real numbers.

The straightforward proof will be omitted. We note that #' can be
identified with the connected component of Q(1,1; R), hence with R™.

At an infinite point p (of 03#™), we can speak of the collection of geodesics
of #" ending at p, (or incident to p, or emanating from p_.). This collection
is called the horosphere at p and its geometry is that of the similarity
geometry in (n—1)-dimensional Euclidean space—R" equipped with the
group of all similarity maps (the semidirect product of T(n—1; R) by the direct
product of O(n—1; R)yand R* -1, _,). In the upper half space model for #", p
is placed at oo above the horizontal hyperplane (identified with d.#" —{p.}).
The geodesics ending at p, are the vertical half lines and the remaining
geodesics are semicircles orthogonal to the horizontal hyperplane. The
geometry of the horosphere is now faithfully reproduced on the horizontal
hyperplane R"~! with its similarity group of motions identified with the
isotropy group of p,, in 2(1,n; R). We now recall that ZE"~! is a direct sum of
weight spaces for R*-weights i, 1<i<n—1 and n—1—i even. As a
consequence, the scissors congruence group associated to the horosphere (i.e.,
R"~! with the similarity group of motions) is 0 when n>1.

We now define the extension € of the Gauss—Bonnet map e. Let F be any
nonempty face of an n-simplex A in #”". When F is not an infinite vertex, the
barycenter x(F) lies in #" and 0(F, A) makes perfectly good sense. When F is
an infinite vertex, we define O(F, A) to be 0. €(A4) is then defined by formula
(2.2). @ evidently extends e on n-simplices of s#". We note that 6(F, 4) can be
thought of as local curvature dara and summation plays the role of integration.
The proof of Theorem 2.3 extends without difficulty to yield:

THEOREM 3.2. The extended Gauss—Bonnet map @ is an additive homomorphism
and we have the following commutative diagram of maps:

PH" 1oy PH"
x \/é
PS" = 2X" (1)

When n=0, all three maps are isomorphisms (of Z). When n=1, all three maps
are 0.

PROPOSITION 3.3. Let n>1. The map 1,: PH" — P H" is surjective. For any
fixed i, 0Li<n, PH" can be generated by the classes of all i-asymptotic n-
simplices. In particular, € =0 for odd n.

Math. Scand. 49 - 13
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ProoF. We first take care of the generation assertion for 1 <i<n. Let A be
any i-asymptotic n-simplex with i<n. A then has at least two finite vertices.
Extend the edge joining two finite vertices (in either direction) to an infinite
point and superdivide at this point. [ 4] then becomes [ B]-[C], where B and C
are (i+ 1)-asymptotic n-simplices. Conversely, repeated simple subdivisions at
finite points lying on edges joining 2 infinite vertices imply that each i-
asymptotic n-simplex with i>1 is an interior disjoint union of 1-asymptotic n-
simplices.

The surjectivity of 1, is equivalent with the generation assertion with i=0.
For this, it suffices to show that the quotient group 2#"/1,(?#™) is 0. This
quotient group can be generated by the cosets of the classes of 1-asymptotic n-
simplices in #". Since Q(1,n; R) is transitive on 0#", we can take the
generating set of 1-asymptotic n-simplices to have the common infinite vertex
Ps- We now use the upper half space model for #" with the horizontal
hyperplane identified with R"~!. Let B be any Euclidean (n—1)-simplex with
vertices w,,...,w, in R""!. On the vertical half lines starting from w,,...,w,
(corrésponding to geodesics ending at p,) select random points v,,. . .,v, at
“finite” positive heights corresponding to points of #". The hyperbolic convex
closure of p,, =vy,v,,...,0, is then a 1-asymptotic n-simplex B'. If we alter the
choices of v,...,v, (one at a time) to get B”, then [B']—[B"] lies in 1,(? #™").
It follows that the coset [B'] mod 1,(# #") depends only on B and we have a
well defined map from the set of all (n— 1)-simplices in the Euclidean space
R"~! to the group PH#"/1,(P#™). This map is evidently additive with respect
to simple subdivision and the image covers a set of generators for the group
PH"1,(P A" in accordance with the generation assertion of the preceding
paragraph. Since the isotropy group of p in Q(1,n; R) is just the group of all
similarity transformations of R"~!, our map is constant on similarity classes of
(n—1)-simplices in R"~'. As remarked earlier, the scissors congruence group
based on similarity group of motions in R""! is 0 when n> 1. This means that
our map induces a surjective map from the 0 group to Z#"/1,(?#™. In other
words, 1, is surjective for n> 1. The vanishing of € for odd n now follows from
the surjectivity of 1, and the corresponding result for e in Theorem 2.6 (the case
n=1 is trivial).

REMARK 3.4. Proposition 3.3 does not say that every polytope in #", n>1,is
Q(1,n; R)-scissors congruent to a polytope in #". It only asserts stable
Q(1,n; R)-scissors congruence. The bijectivity of 1, simply means that stable
Q(1,n; R)-scissors congruence in #" is equivalent with Q(1,n; R)-scissors
congruence in J#", n> 1. In any event, the volume map is compatible with 1,, n
> 1, so that no information is lost on the level of volume if we work with 2 .#"
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for n>1. This was the idea behind Gauss’ proof of the defect formula for the
area of a hyperbolic triangle.

It seems plausible that € is an isomorphism for n even. With this possibility
in mind, we will carry out a simple geometric construction to get a “partial
inverse™ of e. As it will become clear, this construction uses ¢ #" in an essential
way.

We already noted that orthogonal join does not make sense in hyperbolic
spaces. Nevertheless, geometric join can be formed through geodesic convexity.
Recall that S(R™ can be identified with the visual sphere at R*e, of #": the
unit vector x € S(R") is identified with R* (e, + x) or e, + x in ™. In general,
let 4=sccl{x,,...,x,} be a spherical (n—1)-simplex on the visual sphere of
R*e,. Define j(A4) to be the n-asymptotic n-simplex given by:

(3.5) f(4)

heel {R* e, R* (eg + x,),- - ., R* (g + x,)}

ccl{eg, €0+ Xy,. - .,€0+X,} in the ball model .

Evidently, f(A) is the cone (geometric join) with apex R *e, and base a totally
asymptotic (n—1)-simplex: hccl {R*(eg+x,),...,R"(eo+x,)}. We already
noted that the isotropy group of R*e, in Q(1,n; R) is O(n; R) so that the
construction f is equivariant with the action of O(n; R). It follows that we have
a bijective correspondence between the O(n; R)-congruence classes of spherical
(n—1)-simplices and the Q(1,n; R)-congruence classes of n-asymptotic n-
simplices in #". However, { is not additive with respect to simple subdivision.
Suppose that A=B[]C is a simple subdivision at the point z=uax,
+8x,eS(R", n>1,a,8 € R* and a+§>1. Then:

(3.6)
§(4) || hecl {R* (g +2),R* (€g+X,),. . .,R* (eg+x,)} = {(B) ]_[ f(C).

PROPOSITION 3.7. Let P #", be the subgroup of P #" generated by the classes
of all the totally asymptotic n-simplices in #". Then the extended Gauss—Bonnet
homomorphism &: PH — PS" carries PH", into 2[point] *PS" " and induces
isomorphisms:

& PHYPH", - PS"/2[point] xPS""!,  n>0.
In particular, PH|PH ., = PS/2¥S so that:
PHYPH. ~Z[2Z and PHY = PHZU for i>0;
dimg Q® (PH#/PHY) = |R| for i>0.

PROOF. Let A4 be any totally asymptotic n-simplex in #". For any vertex F of
A, 0(F, A)=0 so that
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&(4) e [S(R)]*x2S"~! = 2[point] *PS"~ ! .

As a consequence, € induces a homomorphism on the quotient groups as
exhibited. The generation assertion of Proposition 3.3 shows that the induced
homomorphism is surjective. The equivariance and (3.6) shows that { induces a
homomorphism:

(3.8) 7. PS" - PHPH", .

Let A=sccl{x,,...,x,} be any spherical (n—1)-simplex in S(R") and define
7;A to be sccl {x,,..., —x;,...,x,}. We then have:

(39) (A) []f(r;4) = heel {R*(eg—x),R* (eg+x,),...,R* (e +x,)} .

In fact, the left hand side of (3.9) results from a simple subdivision of the right
hand side at the point R*e,. If x, is orthogonal to x; for i>1, then 4 and 7,4
are O(n; R)-congruent so that f(4) and f(r,A4) are Q(1,n; R)-congruent. (3.8)
and (3.9) together imply that we have an induced homomorphism:

f: #S"/2[point]+ PS"~! — PH"/PH", .

Checking on the generating set of n-asymptotic n-simplices, foé=1d. Since e is
surjective, it is an isomorphism with f as its inverse. The remaining assertions
follow from the discussions in [24; Chapt. 6 and App. 2].

REMARK 3.10. The equality Z# %t =2 #2*1 i >0, may be verified directly
from Proposition 3.3 and (3.9) as in [24; Prop. 6.2.2, p. 105].

COROLLARY 3.11. When n=2,1,, —e and — € in Theorem 3.2 are isomorphisms
of R.

Proor. If we compose — e with the length map from 252 to R, then we have
the area map from ##?2 to R. The surjectivity is clear from continuity. The
injectivity is just the classical theorem of Bolyai, see Moise [21; pp. 334-336].
Theorem 3.2 shows that the bijectivity of 1, is equivalent with the bijectivity of
—&. Proposition 3.7 reduces the bijectivity of € to the bijectivity of its
restriction:

¢ PH? — 2point]*PS' = Z-2[point]*? .

‘Since the action of 2(1,2; R) on 82 is just the action of PGL (2, R) on P!(R),
this action is triply transitive. It follows that 2#?2 is a cyclic group generated
by the class of any totally asymptotic 2-simplex. Direct calculation shows that
the restriction is surjective. Since the image is infinite cyclic, we must have
bijectivity.
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4. Some Divisibility Results.

An examination of the major steps leading to the Dehn—Sydler and Jessen—
Thorup theorems shows that divisibility of the relevant scissors congruence
groups played a decisive role. From the divisibility followed the absence of
torsion. As a result, the vector space approach became possible. For these
cases, the divisibility depended on the existence of homotheties. These
homotheties are not available in either the spherical or the hyperbolic case. As
in the Euclidean case, the known Dehn invariants all have values in vector
spaces of characteristic 0. Evidently, divisibility and torsion questions are
connected with the determination of the image and the kernel of the Dehn
invariants. We recall that 2" and 25" *! are both 2-divisible when n >0, [24;
Prop. 1.4.3, p. 17]. The same holds for Z#", n> 1. In all these cases, the proof
is based on the existence of an inscribed sphere in an n-simplex. Connected
with this construction is an open question related to the possible existence of 2-
torsion in 28"*!, n=3. We will have occasion to use this construction again
and therefore will repeat the construction.

Let A be any n-simplex (Euclidean, spherical or extended hyperbolic) with
ordered vertices v,,. . ., v, Let z be the center of the inscribed sphere. Let z; be
the foot of the perpendicular from z to the hyperplane spanned by the
codimensional 1 face A; of 4 opposite the vertex v; of 4, 0<i<n. For 0si=j
<n, let P;; denote the n-simplex spanned by z, z; and v,, s+i or j. The
hyperplane reflection with respect to the hyperplane determined by z and
A;N A; therefore carries P; ; onto P; ;. On the visual sphere S(R") at z, P, ;
determines a spherical (n—1)-simplex 6, ;. Evidently, S(R"=11;1;0; ; and 0, ;
is O(n; R)-congruent to 0; ;. It follows that

2 Z [Oi,j] = [S(R")] .
i<j

PROBLEM:

4.1 Is it true that [];;0; ; is O(n; R) scissors congruent to
a hemisphere when n=4?

We already know that 25" is torsion free when n<4 so that (4.1) has an
affirmative answer for n<4. If (4.1) has a negative answer, then 28" has
2-torsion.

In view of Theorem 2.6, we can limit ourselves to even n in (4.1). Related to
this, we note the following result: (cf. Corollaries 2.8 and 2.9)

ProOPOSITION 4.2. Tor (#S) is equal to the annihilator ideal of [point]*? in
the commutative, graded ring £8.
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In [24; p. 128], we proposed some candidates for possible torsions in 25 by
using the fundamental domains of finite groups acting orthogonally on the
sphere. Using his homological approach [7], Dupont has shown that these
candidates can be dismissed in dimension 3 (corresponding to n=4). By using
results from finite group theory, we have been able to eliminate these
candidates for all n. The details will be given elsewhere in a joint work with
Dupont. We note that (4.1) can be viewed as a question concerning the
fundamental domain of a self scissors congruence of order 2. General questions
can then be raised. They will be considered elsewhere. For the rest of this
section, we concentrate on divisibility questions.

We recall that an n-simplex A with ordered vertices v,,...,v, is called
orthogonal (or an orthoscheme) if for each i, 0<i<n, the face spanned by
Vgs. - -, U; is orthogonal to the face spanned by v,,. . .,v,. This definition makes
sense for n>2 and for Euclidean, spherical, or extended hyperbolic spaces. We
note that when A lies in #", then v;, 1 Si<n—1, must lie in »#". In general, the
orthogonality of 4 determines the ordering of the vertices up to a complete
reversal. The following result is wellknown:

ProrosITION 4.3. The scissors congruence groups can be generated by the
classes of orthogonal simplices.

We recall the argument. Let 4 be any n-simplex. Let x(F) be a point on the i-
dimensional hyperplane determined by the i-dimensional face F of A. Using
x(F) in place of the barycenter of F, we can carry out a fake barycentric
subdivision of 4. The class [ 4] is then a sum and difference of the classes of the
n-simplices in this fake barycentric subdivision (the class of a degenerate
simplex is taken to be 0). We can keep track of the signs by using the ordering
of the vertices and the orientation of the underlying space. In particular, the.
resulting (n+ 1)! n-simplices in the fake barycentric subdivision may be labelled
by the (n+ 1)! ordering of the vertices of 4. To be precise, for a permutation o
of 0,...,n, (v,0)-Vsm) denotes the n-simplex (possibly degenerate) with
vertices x(F), F ranges over the faces of 4 having vertices v,y . - ., Vg, 0SiSn.
If x(A) is selected at random and x(4,) is taken to be the foot of the
perpendicular from x(4) to the hyperplane determined by the codimensional
face A; opposite v;, then we can repeat this process with each 4, starting from
x(A). This construction will be called the orthogonal fake barycentric
subdivision starting from x(4). We note that x(v;) is always v;. At the end of
this orthogonal fake barycentric subdivision, the resulting n-simplices are
either orthogonal or degenerate. Proposition 4.3 now follows easily.
Orthogonal n-simplices can also be characterized as follows:
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PROPOSITION 4.4. Let A be an n-simplex with ordered vertices Vos- - -, U, For
0<i<n,let F(i) and B(i) be the faces of A determined respectively by v,,. . .,v; and
V- - -, Uy Then A is an orthogonal n-simplex in the given ordering if and only if:

04(v) = Op(v)*0p,(v), O<i<n.

Here x denotes the orthogonal join.

The proof is straightforward and is reduced to the case n=3. For n=3, it
amounts to the statement that two “non-coplanar” geodesics have a unique
common perpendicular. We omit further details.

THEOREM 4.5. Let n=3. Then P #", is 2-divisible.

Proor. For odd n, the assertion follows from Proposition 3.7. We now give a
uniform proof using only n=3. Let 4 be any totally asymptotic n-simplex with
ordered vertices v,...,v, Carry out the orthogonal fake barycentric
subdivision from the vertex v,. This yields n! orthogonal 2-asymptotic n-
simplices of the form: (v, ., Vgm—1y V), 0 @ permutation of 0,...,n—1.

We next examine the step where we carry out the perpendicular construction
from a fake barycenter of a 2-dimensional face of 4 to the three 1-dimensional
edges. This step amounts to an orthogonal bisection leading to pairs of n-
simplices of the form (v, Vg1y- - -) @0d (Ug(1), Ug(oys - - -) Where the undisplayed
vertices are identical in the order given. It follows that these two n-simplices are
congruent under a hyperplane reflection and that they appear with the same
sign when [A] is written as a sum and difference of [(vy0)- + -» Vgn—1)Un)); €@ @
permutation of 0,...,n—1.

From the description in the preceding paragraph, we can write [A4] as twice
the sum and difference of [(v,0)p Vpy: - +» Upn-1yp Ua), @ @ permutation of
0,...,n—1 satisfying the restriction that ¢(0) <g(1). Call this restricted sum z.
We claim that z lies in 2#", when n=3. In view of Proposition 3.7, it is
enough to show that e(z) lies in 2[point]*2S"~ . For this, we only need to
compute the angle at the vertices. The vertices of the n-simplex
(Vgoy - - -»Ugm—1y Uw) are the fake barycenters and are finite except for v, and
v,. At an infinite vertex, the angle is defined to be 0. At a fake barycenter of an i-
dimension face F of 4, 1 <i<n—1, we can consider all the terms in z of the
form +[(vyop- - -» Uy - - -)] Where g(j) for i <j<n—1 are fixed. The sum of the
vertex angles at this fake barycenter is therefore of the form:

(61«01,

where 2[0]=[S(R)] and [0'] € #5""". Since n—i>1, #S"~! is 2-divisible. It
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follows that the sum of the vertex angles lies in 2[point]*#S8"~! as long as we
are not at a fake barycenter of an i-dimensional face, l <i<n—1. If i=1 or
n—1, the vertex angle for each individual n-simplex already lies in

[point] *2S"~! = 2[point] *2§"~!

because #S""! is 2-divisible when n>3. Finally, we started from v, so that
there is only one nondegenerate n-simplex at the fake barycenter x(A4). Since v,
is infinite, the vertex angle is 0. These arguments imply that e(z) lies in 2[point]
so that z € ZH#Y and [A] € 2P # .

REMARK 4.6. The proof shows that the possible existence of 2-torsion posed
by (4.1) is bypassed because of the presence of 2-divisibility. If (4.1) had an
affirmative answer, then the preceding argument can be shortened through the
inscribed sphere construction.

So far, our divisibility results are connected with the prime 2 and with the
existence of hyperplane reflections. We next consider a special results. It is
based on the study of the volume function in #> carried out by Lobatchevskii.
A simpler treatment can be found in Milnor [18] or Thurston [29; Chap. 7].

Let 0<f<mn/2 be identified with a spherical 1-simplex (an arc) in radian
measurement. Define £(0)=[f({point}*26)]. Note f({point}*26) is a 3-
asymptotic 3-simplex so that it and its mirror image with respect to the base:
f(260) together form a totally asymptotic 3-simplex having the dihedral angles
20, /2 -0, m/2 — 0 along any three incident edges. We now extend [ to a map:

4.7 L:R— PH#3, L0) = L(n/2) =0, Lisoddand
periodic with period 7.

Let A(a, 8,7) be a totally asymptotic 3-simplex with dihedral angles a, 3, y so
that O<a, 3,7 and a+ S+y=mn We recall the important fact that opposite
dihedral angles in a totally asymptotic 3-simplex are equal so that the
parameters: o, 8, y do not depend on the choice if an infinite vertex.
Constructing a perpendicular from any vertex of A(«, ,7) to the plane of the
opposite face shows that the choice of (4.7) yields:

(4.8) [A@,B,7)] = L+ LB+ L) .

We already know that ##> can be generated by totally asymptotic 3-
simplices. (4.8) shows that L(0), 0<0<n/2, also form a set of generators.
Divisibility questions concerning #2#° can be reduced to corresponding
questions about L(6).

The volume of L(f), 0<6<mn/2, is given by the formula:
(]

4.9 vol. L(8) = —j log|2sint|dt .
0
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The volume of £(0) is therefore a periodic function with period = from R to R.
It is known to satisfy the distribution relations:

4.10) fnb) =n Y f(O+jn/n).

0=j<|n|

The validity of this relation for the volume of £(6) can be checked by factorizing
Z"—1 first and followed by taking logarithm of the absolute value of the
imaginary part with Z=exp (—2:0). We note that if (4.10) holds for the group
valued function £, then the divisibility of Z#3 would follow as a corollary. A
formal exercise based on the unique factorization theorem in Z shows that the
validity for arbitrary n in Z is a consequence of (4.10) for n ranging over primes
as long as fis odd (corresponding to n= —1) and periodic with period n. For a
general discussion on distribution relations, see Lang [17]. In view of the
definition given in (4.7), the verification of (4.10) can always be reduced to the
case where 0<6<mn/2n.

ProrosITION 4.11. Let 0<O<n/4. Then 2L(0)=L(20)+2LEn—6). In
particular, L satisfies the distribution relation (4.10) for n=2.

Proor. Reflecting f({point} * (x —26)) about the base f(r—26) shows that
2LG3rn—60)=[A(x—26,0,0)]. The desired equation follows from (4.7) and (4.8).

ProposiTioN 4.12. L satisfies the distribution relation (4.10) for n=3. In
particular, P> is 3-divisible.

Proor. We adapt a construction of Thurston [29; Chap. 7]. We begin with
an isosocles triangle in #2 with apex angle 2n/3. By rotation, three of these
then make up a regular hyperbolic triangle. Embed #? in #° and construct
orthogonal geodesics in both directions from the vertices of our regular
hyperbolic triangle until we reach d3#3. The convex closure of these 6 infinite
vertices is then an “orthogonal” prism with a finite regular triangle for its
“midsection”. If the isosocles triangle had base angles equal to 6 (we must have
0<0<m/6), then the dihedral angles as seen from any of the six vertices of the
prism are: 26, «, « with a =1n — 6. Here 20 is the interior dihedral angle along
the three vertical edges of the prism while a is the interior dihedral angle along
the six base edges of the prism. Construct the orthogonal geodesic through the
center of the regular triangle (the apex of our isosocles triangles) and let this
geodesic meet the top and bottom bases of our prism at p* and p~ respectively.
Extend this geodesic until it meets 0> at ¢* and g~ respectively. Let v, 1 <i
<3, denote the finite vertices of our regular triangle and let v;" and v;” denote
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the corresponding infinite vertices of our prism. If P denotes our prism and
Q=hccl{p*,p~,v{,v{,v5,v;}, then rotational symmetric yields:

(4.13) [P] = 3[Q].

We next note that R* =hccl{g*,p*,v],v;} is congruent to R~
={q*,p”,v;,v; }. Indeed, moving p*, p~ in turn to R*e,, both R* and R~

are equal to 3-asymptotic 3-simplices of the form: f({point} *2n/3). It is now
evident that:

4.19) Q LIR* = R~ [] hecl{q*,vf,v5,v7,0;},

heel {g*,v{,v5,v7,v7%} is just an infinite cone with apex q* and a
“rectangular” base. The dihedral angles along the 4 base edges are: 0, a +4x, 0,
and o —3n. In general, (4.8) can be extended to infinite cones provided that all
the angles are interpreted as the interior dihedral angles along the edges at the
base. The verification proceeds in the same manner: construct a perpendicular
from the apex of the cone to the hyperplane determined by the base. The
definition of £ together with the basic property that opposite dihedral angles of
a totally asymptotic 3-simplex are equal take care of the rest. As a
consequence, we have:

(415  [heel{g*,vf,v5,07,05}] = 2LO) + L@ +3n)+ L(e—in) .
Since 20+ 26 =n, we can combine Proposition 4.11, (4.7), (4.13)-(4.15) to get:
4.16)
X n 2n N
3(£(oz)+£(a+§) +£(a+—3—)> = [P]1+3L(0)—6L(0) = [P]
+3L2a)—3L(a) .

Viewing P as an abstract prism (i.e, a “product” of a 1-simplex with a 2-
simplex), we can decompose P into a disjoint union of 3 totally asymptotic 3-
simplices. Because of the symmetry, this can be carried out without losing track
of the dihedral angles. (4.7) can be used to yield:

(4.17) [P] = 3L(20)+3L(a)+ L (. —20) .
Using (4.7), (4.16), (4.17), and the relation 20+ 260 =m, we have:
. n 2n X
(4.18) 3<L(a)+£(oc+§)+£<a+?)> = L(a—20) = L(30) .
Since 0 <0< n/6, we have 0 <a<m/3.

REMARK 4.19. Thurston’s construction can be carried out with # in place of 3.
However, the argument we used does not appear to generalize immediately. In
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several places, we have used the fact tha 3—1=2. As mentioned earlier,
Dupont had shown that 2#" and ##™ are isomorphic for n>3. Using this
and a continuity argument, Dupont obtained a Dehn invariant for £(6):

(4.20) Dehn inv. (£(0)) = log|sin20|®80 .

Note the striking similarity between (4.20) and (4.9). By exactly the same
reasoning, the Dehn invariant of £(6) also satisfies the distribution relations
(4.10). Dupont’s formula was already known (but not written down) to
Thurston. Thurston’s formulation is geometric and can be extended to higher
dimensions with the help of the vanishing of ¢ for Euclidean spaces. Dupont’s
formula (4.20) connects up to the scissors congruence group ##> and the
algebraic K-group K,(C)~, see Sah-Wagoner [25], and answers a question
raised by Dennis Sullivan, see [24; p. 148] and Dupont [7]. A short exposition
of Thurston’s definition of Dehn invariants can be found in Appendix 2.

REMARK 4.20. Most of the results in the present paper can be extended with
minor modifications for spaces based on an ordered, square root closed fields,
see [24]. When volume is needed, we need to impose the Archimedean axiom
on the underlying field.

Appendix 1. Axiomatic Scissors Congruences.

Geometric scissors congruence data consist of a set X (usually nonempty)
and a specified family of distinguished subsets (usually nonempty) of X called
cells (or n-cells when n is understood to be the dimension in a suitable sense).
With these primitive data, we define the concept of interior disjoint union:

Two cells 4 and B are said to be interior disjoint or to form an interior
disjoint union when the following conditions hold:

(D1) AN B contains no nonempty cells; and
(D2) If C is a cell contained in AUB, then Cc A if and only if CNB
contains no nonempty cells.

A finite union of pairwise interior disjoint cells will be called a polytope.
Replacing the word cell by polytope throughout (D1) and (D2) yields the
definition of interior disjoint union of polytopes. The empty set is allowed to be
a polytope. 1] will be used to denote interior disjoint union. If P=L1I; P; with
P, denoting cells (respectively polytopes), then the finite collection of P;’s will
be called a cell (respectively polytope) decomposition of P.

If A=B][]C with A, B, C denoting cells, then we say A is simply subdivided
into B and C, or that B and C form a simple pasting of A. If P=11; P; is a cell
decomposition, then a simple subdivision (respectively pasting) of P is
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understood to be one involving one (respectively two) of the finite number of
cells displayed. Any finite iteration of simple subdivisions (respectively
pastings) beginning with P=]1, P, is called a subdivision (respectively pasting)
of P=1]; P, A finite iteration of both subdivisions and pastings will be called a
cut and paste. The cut and paste process evidently defines an equivalence
relation among cell decompositions P=[1; P, of any given polytope P. In order
to assure ourselves an ample supply of small cells to carry out cut and paste
processes, we impose the axiom:

(CP) Let P=]1; P, and Q=11;Q; be cell decompositions. Then there exist
cut and paste processes leading to cell decompositions P=]1,R,, Q
=11,S, such that each R, (respectively S,) is either interior disjoint
from Q (respectively P) or coincides with one of the S,’s (respectively)
R)s).

In the classical case of Euclidean, spherical, or hyperbolic spaces, we can
interprete cells to mean convex closures of finite number of points having
geometric dimension n. With the usual interpretation of interior disjoint union,
axiom (CP) evidently holds. However, if we interprete cells to mean geodesic n-
simplices, the validity of (CP) is no longer completely obvious. I am indebted
to Robert Connolly for pointing this out and for informing me that a
replacement of the simple subdivision process by a stellar subdivision process
leads to difficult problems. However, the following unpublished “folklore”
result was communicated to us by Thorup:

THEOREM. Let X be the underlying space of one of the classical geometries of
dimension n. Let cells on X be interpreted to mean geodesic n-simplices of
dimension n having diameters strictly less than the diameter of X. (CP) then
holds with the usual interpretation of interior disjoint union.

A more homological proof of this result can be found in Dupont [7].
Thorup’s proof is based on central projection from a vertex and works for any
ordered, square root closed field k in place of R. Indeed, the cut and paste
processes in (CP) can even be replaced by subdivisions.

In order to speak of geometric scissors congruence, we specify a group G of
bijective maps (called motions) of X. We then impose the axiom:

(C) The set of cells on X is closed under the action induced by G.

Axiom (C) implies the compatibility of the action of G with the concept of
interior disjoint union. These axioms complete the geometric G-scissors
congruence data and we abbreviate our data to (X, G).

A G-scissor between polytopes P and Q (written P~ Q, or P~Q mod G, or



SCISSORS CONGRUENCES, 1. THE GAUSS-BONNET MAP 205

simply P~Q when there is no chance of confusion) consists of cell
decompositions: P=[]; P, Q=11;Q,, 1<i<t, so that P, and Q, are G-
congruent for each i. Axiom (C) shows that the concept of G-scissors
congruence between P and Q does not depend on the particular choices of cell
decompositions of P and Q. The geometric G-scissors congruence problem is:

Find reasonable necessary and sufficient conditions for two polytopes P and
Q on X to be G-scissors congruent.

With the idea of volume as a guide, necessary conditions usually appear in the
form of G-invariant Jessen functionals. These are abelian group valued
functions on cells that are additive with respect to simple subdivisions and are
invariant under the action of G. In general, these functionals can not be
expected to solve the G-scissors congruence problem. They lead to the more
complicated concept of stable G-scissors congruence. This is the equivalence
relation on polytopes generated by the relation:

The polytopes P and Q are G-scissors congruent by adjunction if there exist
polytopes R and S interior disjoint from P and Q respectively so that:
R~gS and (PLIR)~¢ (QLIS).

We will use £ to signify stable G-scissors congruence. It is evident that G-
invariant Jessen functionals are constant on stable G-scissors congruence
classes. Using empty polytopes, G-scissors congruence implies stable G-scissors
congruence. Note that the space X may not be large enough so that the
relation of G-scissors congruence by adjunction is not necessarily transitive.
However, in classical cases, we can use Jordan approximation to deduce the
desired transitivity so that stable G-scissors congruence then becomes the same
as G-scissors congruence by adjunction. For the same reason, neither ~ ¢ nor
R ¢ necessarily lead to well defined operation of sum on the set of equivalence
classes.

In general, an equivalence relation =on the set of polytopes of X is said to be
cancellative or subtractive if it satisfies:

If P=P' 1P’ and Q=Q'[1Q" are polytope decompositions, then P=Q
and P'=Q’ together imply P'=Q".

Neither £, nor ~ is subtractive in general. In fact, ~ is subtractive
precisely when ~ and < coincide. Sufficient conditions for ~g to be
identical with £ are supplied by a theorem of Zylev, see [24; Thm. 1.3.1, p. 6].
In particular, these conditions are satisfied when we deal with classical scissors
congruences. However, it was noted earlier that ~; and < are distinct
concepts in the case of extended hyperbolic spaces.

The algebraic G-scissors congruence problem is the determination of all
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abelian group valued functions on cells so that they are G-invariant and that
they are additive with respect to simple subdivisions. Since the target group is
not specified in advance, this problem has to be understood in the sense of a
Grothendieck group. To be precise, we form a universal group out of the
polytopes.

We begin by ignoring the group G of motions. The group 2(X,{1}) of
polytopes (on X) is defined to be the quotient group of the free abelian group
based on cells modulo the subgroup generated by the relators:

(RS) A—B-C, with A=B]]C range over simple subdivisions.

The coset of 4 will be denoted by [A]. We then let 2(X, G) be the quotient
group of (X, {1}) modulo the subgroup generated by the relators:

(RC) [6A]—-[A4], o ranges over G and A ranges over cells.

When there is no chance of confusion, the coset of [4]mod G in (X, G) will
be abbreviated to [A]. In general, if PR ;Q, then [P]=[Q]mod G. By an
abuse of language, 2(X, G) will be called the group of G-scissors congruence
classes of polytopes on X.

The proof of the following result is not difficult but is tedious and will be
omitted.

THEOREM. Assume the scissors congruence data (X,G) is such that ~g is
subtractive. Then P~ Q holds for polytopes P and Q on X if and only if [ P]
© =[Q] mod G holds in (X, G).

We note that the main difficulty lies with the fact that n[ P] does not have a
natural geometric interpretation for an arbitrary integer n. We need a
bookkeeping device to construct a G-scissors congruence out of the assumption
that [P]=[Q] mod G in the abelian group 2(X, G). This can not be done
purely algebraically because the sum [R] +[S] is not necessarily the class of a
polytope T unless X is large enough with respect to the action of G.

We conclude this appendix with some remarks. First of all, the present
axiomatization is intended to replace the inadequate axiomatization of [24].
Secondly, in the classical cases, Dupont [7] has given an equivalent
axiomatization which is more homological. More precisely, the generators for
P(X,{1}) are taken to be the abstract n-simplices of diameter less than the
diameter of X; the relators (RS) are replaced by:

(RD) (ag,. - -,a,)=0 if a,,...,a, lie on a geodesic subspace of dimension
less than n;
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(RB) ¥, (—1)(ag,. . -, dy,- . .,a,+1)=0, where (ay,...,a,,,) ranges over all
small abstract (n+1)-simplices of X, ie., a,...,a,,, are any n+2
points of X such that the distance between a; and a; is less than the
diameter of X.

The relation (RC) is modified to take into account the orientation:

(RCY (gay,. . .,0a,)=det () (ay,. . .,a,), 6 in G and (ay,. . .,a,) ranges over
all small abstract n-simplices.

In the extended hyperbolic spaces, Dupont’s scissors congruence group may
differ a bit from the one used by us. Both of these are closely related to the
scissors congruence groups considered by Thurston in unpublished works.

Appendix 2. Extended Dehn invariants.

The degeneracy of the map 1,: Z#*' — PH* prevents us from doing the
obvious in trying to extend the definition of Dehn invariant to extended
hyperbolic spaces. Actually, there is no problem as long as we avoid this case.
In particular, there is no problem for Z#2% or for Z#%*! provided that we
avoid the codimensional 2i case. As mentioned earlier, Dupont found a
definition extending the old definition for 7. In an oral communication,
Milnor told us of an earlier definition due to Thurston. We will now describe
Thurston’s definition and generalize it to #%*! by using the Gauss—Bonnet
map.

Let A be any (2i+ 1)-simplex in #2*1, For each infinite vertex v of 4, delete
from A a small horoball about v. Arrange the choice so that these horoballs are
disjoint. Let A’ be the compact set left over from A after this deletion process.
A’ then has a finite number of geodesic edges of finite length in bijective
correspondence with those of 4. A’ also has a finite (possibly empty) set of
horo-edges. If F’ denotes one of the geodesic edges of A’ lying on the geodesic
edge F of A, then we have:

04(F) = 04(F).
We define the codimensional 2i Dehn invariant HP?? of 4 by:

HY?(4) = Y [F1®[04(F)] € 2#'®(PS*/€5%).
F
If Aliesin w?'*!, this is just the old definition, see [24; p. 157]. If 4 has infinite
vertices, we must show that the definition is independent of the choices of the
horoballs. To see this, we use the upper half space model and place the infinite
vertex v at p,.. Changing the horoball at p,, modifies A’ by a “prism”. This
prism can be viewed as the orthogonal product of a 1-simplex with a Euclidean
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(n—1)-simplex B(v) lying on the horosphere of v. The ambiguity in the
computations of H¥P?Y(4) then has the form:

[L1®Y [0pwmwW)] ,

where w ranges over the vertices of B(v) and L is the hyperbolic 1-simplex
orthogonal to and bounded by the two horospheres at v. The sum in the right
hand factor lies in 2S*/€S* and is therefore equal to e¢(B(v)). B(v) is
Euclidean, therefore e¢(B(v))=0 by Theorem 2.3. Since the horoballs can be
changed one at a time, HP?(A4) is well defined. This definition is evidently
invariant under isometries and is additive with respect to simple subdivisions
(necessarily at finite points). It follows that we have an additive
homomorphism:

HPC): D) & pop' @ (PS*/%S%);  and
HP®o1y,, = HY®, i>0.

In passing, we note that, for dimension 2i, e (and &) can be viewed as a lifting of
the codimension 2i Dehn invariant for either the spherical or the hyperbolic
(respectively the extended hyperbolic) spaces. To be more precise, the
codimensional 2i Dehn invariant can be recovered from the Gauss-Bonnet
map through the composition with the natural projection from #2S% to
PS*/€S%. It should be noted that codimensional 2i Dehn invariant for 2i
dimensional spaces was not defined in [24] because the analogous invariant for
Euclidean spaces is always 0.

We note also that 2(A4) can be computed for a totally asymptotic 4-simplex
A. Using essentially the observation that e(B(v))=0 for each vertex v of 4, we
have the following formula:

¢4) = 2[p0int]*z*{2[S(R2)—d. ZF_Z [04(F)T}

where F ranges over the codimensional 2 faces of A. Except for a constant of
normalization, this formula was found by Thurston on the level of volume:

vol,(4)=4n(4n —sum of interior dihedral angels of A),
A any totally asymptotic 4-simplex.

REFERENCES

1. C. B. Allendorfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans.
Amer. Math. Soc. 53 (1943), 165-179.

2. T. Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geom. 1
(1967), 245-267.

3. 8. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian
manifolds, Ann. of Math. 45 (1944), 747-752.



SCISSORS CONGRUENCES, I. THE GAUSS-BONNET MAP 209

4. S. S. Chern, On the curvature integral in a Riemannian manifold, Ann. of Math. 46 (1945), 674—
684.
5. M. Dehn, Die Eulersche Formel im Zusammenhang mit dem Inhalt in der nicht-euklidschen
Geometrie, Math. Ann. 61 (1906), 561-586.
6. J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles,
Topology 15 (1976), 233-245.
7. J. L. Dupont, Algebra of polytopes and homology of flag complexes, (to appear in Osaka J.
Math.).
H. Freudenthal and H.-G. Steiner, Group theory and geometry, in Fundamentals of Mathematics
II (ed. H. Behnke et al) MIT Press, Cambridge, Mass. - London, 1974.
9. B. Grunbaum, Grassman angles of convex polytopes, Acta Math. 121 (1968), 293-302.
10. U. Haagerup and H. J. Munkholm, Simplices of maximal volume in hyperbolic n-space,
Acta Math. 147 (1981), 1-12.
11. H. Hopf, Die curvatura integra Clifford-Kleinscher Raumformen, Nachr. Akad. Wiss. Gottingen
Math.-Phys. KL 1T (1925), 131-141.
12. B. Jessen, The algebra of polyhedra and the Dehn—Sydler theorem, Math. Scand. 22 (1968), 241
256.
13. B. Jessen, Zur Algebra der Polytope, Nachr. Akad. Wiss. Gottingen Math.-Phys. K1. IT (1972),
47-53. .
14. B. Jessen, Einige Bemerkungen zur Algebra der Polyeder in nicht-euklidischen Rdumen,
Comment. Math. Helv. 53 (1978), 525-528.
15. B. Jessen and’ A. Thorup, The algebra of polytopes in affine spaces, Math. Scand. 43 (1978),
211-240.
16. F. Klein, Vorlesungen iiber nicht-euklidsche Geometrie (Die Grundlehren der mathematische
Wissenschaften 26), Springer-Verlag, Berlin - Heidelberg - New York, 1928.
17. S. Lang, Cyclotomic Fields (Graduate Texts in Mathematics 59), Springer-Verlag, Berlin -
Heidelberg - New York, 1978.
18. J. W. Milnor, Hyperbolic geometry: The first 150 years, Bull Amer. Math. Soc. N. S. 6 (1982),
9-24.
19. P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes, Math. Proc.
Cambridge Philos. Soc. 78 (1975), 247-261.
20. P. McMullen, Valuations and Euler-type relations of certain classes of convex polytopes, Proc.
London Math. Soc. 35 (1977), 113-135.
21. E. E. Moise, Elementary geometry from an advanced viewpoint, Addison Wesley Publishing
Company, Reading, 1963.
22. M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. 21 (1967),
199-218.
23. H. Poincaré, Sur la generalization d’un theoreme elementaire de geometric, C. R. Acad. Sci. Paris
Sér. A-B 140 (1905), 113-117.
24. C. H. Sah, Hilbert's third problem: scissors congruence (Research Notes in Mathematics 33),
Pitman Publishing Ltd., London, 1979.
25. C. H. Sah and J. B. Wagoner, Second homology of Lie groups made discrete, Comm. Algebra 5
(1977), 611-642.
26. G. C. Shephard, Angle deficiencies of convex polytopes, J. London Math. Soc. 43 (1968),
325-336.
27. D. M. Y. Sommerville, The relations connecting the angle-sums and volume of a polytope in space
of n dimensions, Proc. Roy. Soc. Lond. 115 (1927), 57-63.
28. J. P. Sydler, Conditions necessaires et suffisantes pour lequivalence des polydres lespace
euclidien a trois dimensions, Comment. Math. Helv. 40 (1965), 43-80.

*x

Math. Scand. 49 - 14



210 CHIH-HAN SAH

29. W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University,
Princeton, N.J., 1977-78.

30. J. Tits, Sur certaines classes d’espaces homogenes de groupes de Lie, Acad. Roy. Belg. Cl. Sci.
Mém. Collect. 8° 29 (1955), fasc. 3.

DEPARTMENT OF MATHEMATICS
STATE UNIVERSITY OF NEW YORK
STONY BROOK, N.Y. 11794, US.A.



