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FINITELY GENERATED Ext ALGEBRAS

GERSON LEVIN

Introduction.

It was conjectured by the author in [6] that the algebra Extg (k, k) of a local
ring R is finitely generated.

This was demonstrated for several classes of local rings in [7]. However, the
conjecture is false. J.-E. Roos [13] has given an example of a local ring R such
that Extg (k, k) is not finitely generated.

In this paper we ask the following question. If § — R is a homomorphism of
local rings and Extg(k, k) is finitely generated, under what conditions is
Extg (k, k) finitely generated?

If § - R is a Golod homomorphism [8], it turns out that it is sufficient that
Extg (R, k) be a finitely generated left Extg (k, k)-module. (Theorem 4.3). Using
this criterion, it will be shown in the following cases, that if Extg (k, k) is finitely
generated, so is Extg (k, k).

a) R=S5/(x) where x is a non-zero divisor in m?.

b) R=S5/(0:m) where S is a Gorenstein ring.

¢) R=§/m" for sufficiently large n.

d) S is a Golod ring and S — R is a Golod homomorphism.

€) S is a complete intersection and S — R is a Golod homomorphism.

f) S is a complete intersection and S - 4 and 4 — R are Golod

homomorphisms.

For what local rings R does Extg (k, k) have finite global dimension?

Roos has shown that Extg (k, k) has global dimension one if and only if m?
=0. Furthermore, in his counter-example, Extg (k,k) has global dimension
three and m3®=0. In Theorem 5.10 we show that if Extg (k, k) has finite global
dimension, then R is artinian.

Also included is a section (section 7) on how Roos’ example can be used to
give a counter-example to another question in the homology of local rings.

NotaTioN. We will abbreviate Homg and ® as just Hom and ®.If Ais a

graded R-module, 4 denotes the elements of positive degree. If 4 is an
augmented R-algebra with augmentation &: 4 — Kk,
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I(4) = Kere
Z2(4) = Z(4) N I(A4)

H(A) = Z(A)/B(A) = Ker (H(A) 2> k)
and

Q(4) = I(4)/(I(4)*,

the indecomposable elements of A. As usual one defines the graded module
(sA); = A;_,, i21
(sd), = 0.

]

1. The action of Extg (M, N) as natural transformations.

In this section, R may be any commutative ring and M, N, P any R-modules.
Then Extg (M, N) acts as natual transformations

TorR (M, —) - TorR (N, —).

(In fact, Mehta [12] has shown that if R is a complete, local noetherian ring,
then every such natural transformation has this form.)
The action is the following. We identify

TorR (M,P) @~ H(X®P)

where X, ¢y is a projective resolution of M. Let Y, ¢y be a projective resolution
of N. Then an element o € Extgk (M,N) is represented by a cocycle
f€ Hom (X,, N) and, by the comparison theorem, there is a mapping of
complexes F: X — Y of degree —n such that eyF =f. Define the left action

L,: Tor® (M,P) - Tork , (N, P)
by
L, = (F®1p),: H(X®P) —» H,_,(Y®P) .

It can be checked that L, is independent of the choice of fand F and is natural
in P. We will also define the right action of g. Let T be the twist mapping on
X ®R Y, i.e.,

T(x®y) = (-8R .
Since the augmentation ¢y: Y — N induces an isomorphism
(1®en),: HX ®r Y) > H(X ®&N)

we can define isomorphisms
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Cu.n: TorR (M, N) = TorR (N, M)
by
Cun = (1Qepm), T(1@en), " .
Now, for an element o € Extk (M, N) the right action
R,: Tor® (P, M) - TorR , (P,N)
is defined by
R, = CnpL,Cpm -
ReMARK. If F: A —» B and G: C — D are mappings of complexes, one
defines
F®G: AQC - BQD
by
(FRG)(a®c) = (—1)*2PUBIF()@G(c) .
With this definition, F®G is also a mapping of complexes and
T(F®G) = (GRF)T.
THEOREM 1.1. If o€ Extk (M,N) is represented by a cocycle
f e Homg (X, N), then the left action L,: TorR (M, P) — TorR (N, P) is given by
L, = Cpn(1®/),T(1Q¢p), " .
PRrOOF. Let X,¢y; Y, en; and W, ep be projective resolutions of M, N and P,

respectively, and, as above, let F be a mapping of complexes F: X — Y such
that eyF=f. Then

Cen(1Q1), T(1®ep), "
= (1®¢p), T(1®ep), ' (1®enF), T(1®ep),*
= (1®2p), TURF), T(1®¢p), "
= (1®¢p),(F®1),(1®ep), " (by the above remark)
= (F®1p), = L,
by definition.

It is now easy to calculate the right action.
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THEOREM 1.2. If 6 € Extk (M, N) is represented by a cocycle f e Homg (X, N),
then the right action

R,: TorR (P, M) - TorR (P,N)
is given by
R, = (10/),(1®epm), " .

Proor. By definition,

R, = Cn,pL,Cp M
Cn.pCp N(1®1), T(1Q¢ep),'Cp
(1), (1®eym), ' -

Il

2. The Yoneda product.
For modules M, N, P there is a pairing

¢ : Extg (N, P)®Extg (M, N) — Extg (M, P)

called the Yoneda product and defined as follows. Let X,¢), and Y,ey be
projective resolutions of M and N, respectively, and let ¢ € Extg (N, P) and
7€ Extg (M,N) be represented by cocycles fe Hom(Y,P) and
g € Hom (X, N), respectively. Let G be a mapping of complexes G: X —» Y
such that ¢yG=g. Then define

¢(e®1) = cls (fG).

Note that if W,ep is a projective resolution of P and F is a mapping of
complexes F: Y — W such that ¢pF =f, then

FoG: X > W
satisfies ¢p(FoG)=fG so that
Loeoy = LooL..

If we set P=N=M, the Yoneda product makes Extg (N, N) an associative
algebra, and with just P=N, it makes Extg (M, N) a left Extg (N, N)-module.

From this point on, R will be a noetherian, local ring with maximal ideal m
and residue field k=R/m. All modules are assumed to be finitely generated.

As defined by Assmus [2], Torg (k, k) has the structure of a Hopf algebra and
Torg (M, k) that of a right Torg (k, k)-co-module. In both cases, the product is
the usual y-product of [3] and the co-product may be defined as follows. Let
X,ep and Y, g, be free resolutions of M and k respectively and let
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h: Torg (M, k) — Torg (M,k)®Torg (k, k)
be the composite
Torg (M, k) =~ H(X®k) 1®%:', H(X®Y) > H(XRk®Y®k) —
= HX®K®H(Y®k)
=~ Torg (M, k)®Torg (k, k)

where o is the Kiinneth isomorphism which is induced by sending cycles
z, € X®k and z, € Y®k into the cycle z, ®z, in X®k® Y ®k. The coproduct
is then

4 = (1®C)h
where
C = C, ,: Torg (k,k) = Torg (k, k) .

It can be shown that C is the conjugation on the Hopf algebra Torg (k, k). In
particular, for M =k, one obtains the coproduct on Torg (k, k). Let ¢ denote the
augmentation of the Hopf algebra ¢: Torg (k,k) — k. Then the mapping, which
sends o € Extg (M, k) into ¢L,, gives an isomorphism

Extg (M,k) = Hom (TorR (M, k), k) .

Naturally, one wants to know how the dual of the coproduct on Tor® (M, k)
compares with the Yoneda product on Extg (M, k).

THEOREM 2.1. The coproduct
A: TorR (M, k) —» TorR (M, k)®TorR (k, k)
is dual to the opposite of the Yoneda product

@: Extg (k, k) @Extg (M, k) — Extg (M, k)

4* = ¢T.

ProoF. It must be shown that
4*(0®7) = (= 1)™p(z®0)
where m and n are the degrees of ¢ and 7 or i.e., that
(eL,®eL )4 = (—1)"eLy(c@q) -

Let f be a cocycle in Hom (X, k) representing . Then
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(eL,®eL )4

(eL,®eL)(1®C)h
eL.C(eL,®1)h

= (—=1)™eL . C(1®¢L,)Th

= (=)™eL C(1®f),T(1®ey),"
= (—1y™sL L,

= (=1)™Lyqgq by Theorem 1.1 .

3. Distinguished subalgebras of the minimal resolution.

Let Y,¢, be a minimal algebra resolution of k. In [10], Lofwall considers
differential graded subalgebras U of Y having the following properties,

a) Y is free as a graded U-module, i.e., there is a free graded R-module W
with Wy=R and Y>U®W as graded U modules.

b) For any R-homomorphism f: U — k, there is a mapping of complexes
F: U — U such that g F=f.

We will call any such subalgebra U of Y a distinguished subalgebra of the
minimal resolution.

If U is a distinguished subalgebra of Y, then a Yoneda product can be
defined on Hom (U, k) as in section 2, i.e., if f, g € Hom (U, k), let F: U — U be
a mapping of complexes with ¢ F=f and define

p(Eg®f) = gF .

Lofwall shows (Proposition 2.3, p. 27 of [10]) that with this product,
Hom (U, k) is a Hopf algebra and, in fact, there is an exact sequence of Hopf
algebras

k — Hom (W, k) - Hom (Y, k) - Hom (U,k) — k.

Here are some examples.
1) Let S — R be a small homomorphism of local rings. Following Avramov

[2], a homomorphism of local rings with the same residue field k is small if the
induced map

TorS (k, k) — TorR (k, k)

is injective. Then if X is a minimal algebra resolution of k as an S-module, the
algebra U=R®g X is distinguished.
Avramov proves condition a) [2, Theorem 3.1, p. 24], and since

Homg (U, k) = Homg (X, k) = Extg (k,k),
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condition b) is just the comparison theorem. Clearly, the Yoneda product on
Homg (U, k) coincides with the Yoneda product on Extg(k,k) defined in
section 2.

2) The subalgebra U=Y" of Y obtained by adjoining to R all variables of
degree <r is distinguished. Condition a) is immediate in this case. To check b),
let U=R(T,,...,T,). Using [6, Lemma 1.3.2, p. 16] it follows that each of the

derivations J; associated with the adjunction of T, may be extended to a

derivation on U. On the other hand, the augmentation &: U — k induces a
surjection

e*: R[J,,...,J;] = Homg (U, k)

where R[J,,...,J,] denotes the free algebra on J,,...,J,. This proves b).
3) Any differential graded, skew-commutative algebra satisfying

i) If du € m2U, then u e mU or u € U;
ii) Z(Uyem?*U +BU

is a distinguished subalgebra of Y. [10, Proposition 2.3].

Let U be a distinguished subalgebra of Y, and M an R-module. Then we can
define a right action of Hom (U,k) on HM®U) as follows. For
f e Hom (U, k), let F be a mapping of complexes F: U — U such that ¢, F=f
and define

R}: HM®U) » H(M®U)

by
R, = (1®F),.

With this action, Hom (H(M ® U), k) becomes a right Hom (U, k)-module with
multiplication

y: Hom (H(M®U),k)®@Hom (U, k) - Hom (H(M®U), k)
defined by
Y(g®f) = gR} .
If U is the distinguished subalgebra of example 1, then
Hom (U, k) = Extg (k, k)
and
Hom (H(M®U),k) =~ Extg(M,k)
so we can compare y with the Yoneda product

Q: Exts (k, k)@EXtS (M, k) — Exts (M, k) .
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THEOREM 3.1. Let S — R be a small homomorphism of local rings, and let M
be an R-module. Suppose that X, ¢, and Y, ¢, are minimal resolutions of k over
S and R respectively and that P, ¢, is a free resolution of M over S. Let U be
the distinguished subalgebra

= R®sX <Y
and o the isomorphism
a: TorS (M, k) = HP®sk) > HM®sX) = HM®zU)
defined by
= (em®1),(1®¢)"!
Then the diagram
Extg (M, k)®Extg (k, k) 2TU8CY , Extg (M, k)

a*®1 o*

Hom (H(M®U),k)®Hom (U, k) —%—— Hom (H(M®U), k)

is commutative.

ProoF. Let g € Hom (H(M®U), k) and f € Hom (U, k). We must show that
2*(Y(8®S)) = ¢T(1RC*)(a*g®f)
or ie.,
Y (g®f) T(ga® fC).
By definition
Y(g®f) = gR}
and one checks easily that
R; = aRa™! = a(1®/),(1Q¢g), 'a™*
by Theorem 1.2. So

Y(ERf )

gr(1®f), (1®¢),
(8a®)h = (ga®f)(1®C)4
= (ga®fC)4 .

But
(82®fC)4 = ¢T(ga®fC)
by Theorem 2.1.
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4. Golod algebras.

Let Y,¢, be a minimal algebra resolution of k. A distinguished subalgebra U
of Y is called a Golod algebra if all the Massey products in H(U) vanish. (See
[8] for definitions). A small homomorphism S — R of local rings is a Golod
homomorphism if R®sX is a Golod algebra, where X is a minimal algebra
resolution of k over S.

If U is a Golod algebra, then by [9, Theorem 13] there is a free R-module V
such that as R-modules,

Y= UQT(V)
and such that d(V)< U, inducing an isomorphism

S: V®k = H(U)
4.1 7 T
vV -4 Z(U)

It was proved in [2, Theorem 3.5] and in [10, Corollary 2.4] that there is an
exact sequence of Hopf algebras

k> oA >B>% >k

where as algebras o = T(s Hom (H(U), k)), the free algebra on s Hom (H (U), k),

B x> Extg (k, k) with the Yoneda product and ¥ ~Hom (U, k) with the Yoneda

product. Since # is a Hopf algebra, # is free as a right .&/-module.
Associated with this sequence is a spectral sequence [3, Theorem 6.1, p. 349]

Tory, (Tory!, (k,k),k) = Torps, ,(k.k) .
Since & is a free algebra,
Tory, (k,k) = 0 for q+0,1,
so the spectral sequence degenerates into a long exact sequence
4.2) ... = Tor® ,(k,k) —> Tor%_, ,(Tor{(k,k),k) —
— Tor®_, , (k,k) > Toré_, , (k,k) > ...
In particular, for p=2, one obtains the exact sequence
4.3) Tor¥ , (kk) > QL ®¢ k —> QB — Q¥ — 0.
We now take a closer look at the structure of Q.o as a right ¥-module. Since

& is a sub-Hopf algebra of %, # is free as a right &/-module and there are
isomorphisms

Tor{, (k,k) — Torf , (k, B® 4 k) = Torf , (k,%) .
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Since Torf « (k,€) is naturally a right ¥-module, Q.& becomes a right %-
module via the diagram

Qo = 1oA|(14) => B(1A)/(IB)1A)
1= >

Tor , (k,k) —=—— Tor? _ (k,%)

Since o =T (sHom (H(U),k)), there is an isomorphism of graded vector
spaces

o: Hom (H(U),k) —» Qo

defined as follows. Let p; and py denote respectively the projections Y — U
and Y— V. Then it is easy to see that

p¥(Hom (V,k)) < Lo
inducing an isomorphism
7: Hom (V,k) - Q«
and o is the composite
Hom (H(U),k) 5% Hom (V,k) *» Q. .
We compute the multiplication
7: QA RE — QA

by computing y(1g®f), for g € Hom (V, k) and f € Hom (U, k). In [14], Sjodin
gives an explicit formula for lifting elements g € Hom (V, k) to mappings of
complexes G: Y — Y. Namely, let g: ¥V — R lift g and then for x e V, y € Y,
u € U, define

G®x) = (—1)desNeg¥ya(y)  and  G(u) = 0.

Then G is a mapping of complexes Y=U@(Y®V) — Y lifting g. If ve V,
G(v) € R or G(v)=0. Hence for ' € I# and g € Hom (V,k), o(f' ®18)=f"G,
and thus all elements of (I%)(I.«/) must vanish on V. Then the restriction
¢: Hom (Y, k) - Hom (U, k) induces a map

Blot|(IB)] o4 — Hom (V, k)
which makes the diagram

Hom (V,k) = Qo

l;
BloA | (I1B)(1A)

commute. Hence
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Y(18®f) = tep(pPe®pEf) .
Now, recall from section 3 that Hom (B (U), k) is also a right #-module via the

multiplication ¢.

THEOREM 4.1. The isomorphism
o: Hom (A(U),k) —» Qo

is an isomorphism of right €-modules.

Proor. We will show that

S*Y = 0@ (p¥S*®pY)

from which it follows that

oy = tS*y = we(pPS*@pf) = y(15*@1) = y(¢®1)
as desired.

Let g € Hom (H(U), k) and f € Hom (U, k). Sjodin’s argument in [14] can be
modified to show that there is a mapping of complexes F: Y — Y such that ¢F
=f, F(U)cU and F(V)cU@®V. Namely since U is a Golod algebra, there is a
mapping of complexes F: U — U such that ¢F=f Then because of the
isomorphism S; V®k — H(U), F can be extended to F: Y — Y such that F(V)
cU®V.

Let ve V and put F(v)=u+v, ue U, v' € V. Then

@ (p¥S*g®@pt f)(v) = gSpyF(v) = gS(v).
On the other hand
(S*Y(8®)(v) = gF,S(v)
so to finish the proof we need only note that the diagram
Vv -E£, UV
14 14
VAU ALY
! l
AWy £ A)
commutes because F is a mapping of complexes.
THEOREM 4.2. Let U be a distinguished Golod algebra. Then Extg (k,k) is a

finitely generated algebra if Hom (U, k) is a finitely generated algebra and
Hom (A (U), k) is a finitely generated right Hom (U, k)-module. Furthermore if
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Hom (U, k) is finitely generated and finitely presented, then Extg (k,k) is a
finitely generated algebra if and only if Hom (H(U),k) is a finitely generated
Hom (U, k)-module.

ProoF. The proof is now immediate from exact sequence (4.3) and Theorem
4.1.

We can apply this to both of the examples of distinguished subalgebras given
in section 3. It will be applied to Example 2 in section 7.

THEOREM 4.3. Let S — R be a Golod homomorphism. Then Extg (k,k) is a
finitely generated algebra if Extg(k,k) is a finitely generated algebra and if
Exts (R, k) is a finitely generated left Extg(k,k)-module. Furthermore, if
Extg (k, k) is finitely generated and finitely presented, then Extg (k,k) is a finitely
generated algebra if and only if Extg (R, k) is a finitely generated left Extg (k, k)-
module.

PROOF. Let X be a minimal algebra resolution of k over S. Then with U
=R®gs X, U is a distinguished Golod algebra. But

Hom (H(U),k) = IExtg(R,k).

By Theorem 3.1 with M =R, Hom (H(U),k) is a finitely generated right
Extg (k, k)-module via the product y if and only if I Extg(R,k) is a finitely
generated left Extg (k, k)-module via the product ¢. Now Theorem 4.3 follows
from Theorem 4.2.

As an easy application of Theorem 4.3, consider the case where R =S5/(x), x a
non-zero divisor in m%. Then S — R is a Golod homomorphism [8, Theorem
3.7] and Ext§ (R, k)=0 for i> 1. Thus Extg (R, k) is certainly finitely generated
as an Extg(k, k)-module, so Extg (k,k) is a finitely generated algebra if
Extg (k, k) is.

5, Examples of finitely generated Ext algebras.

First we state some easy lemmas about the Yoneda product. See [11,
Chapter 3] for proofs.

LEMMA 5.1. If0 - A — B — C — 0 is a short exact sequence of R-modules,
then the connecting homomorphism
0 : sExtg(A4,k) > Extg(C,k)

is a homomorphism of left Extg (k, k)-modules.
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LEMMA 5.2. For any homomorphism f: A — B of R-modules, the induced
homomorphism

Extg (B,k) — Extg (A4, k)

is a homomorphism of left Extg (k, k)-modules.

LEMMA 5.3. The isomorphisms
Extg (A®B, k) = Extg (4, kY@ Exty (B, k)
are isomorphisms of left Extg (k, k)-modules.
THEOREM 5.4. Let a be an ideal contained in the socle of R. Then
I Extg (R/a,k) is a free left Extg (k,k)-module on r generators r=dim, a.
ProoF. By Lemmas 5.1 and 5.3, there are Exty (k, k)-isomorphisms
I Extg (R/a,k) =~ Extg (a,k) = a®Extg (k, k) .
THEOREM 5.5. If a is an ideal contained in (0:m) and R — R/a is a small
homomorphism, then
Qi(EXtR/a (k, k)) >~ Qi(EXtR (k, k)) for l=’=2
and
TorExtre &k (k k) >~ TorEx=®H (k, k)  for i>1.
In particular, Extgy, (k, k) is finitely generated if and only if Extg (k, k) is finitely

generated and Extg, (k, k) is finitely presented if and only if Extg (k, k) is finitely
presented.

Proor. It was proved in [8, Theorem 3.9] that for ac (0:m), R — R/a is
Golod if and only if it is small. By Theorems 3.1 and 4.1, the composite
B = a(a*)"': I Extg (R/a,k) > Qsf
satisfies
BeT(1®C*) = y(f®1)

and since I Extg (R/a,k) is a free left Extg (k, k)-module, Q.o is a free right
Extp (k, k)-module, so

TorE= &b (0ot k) = 0

for i>0. Now the result follows from the exact sequence (4.2).
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THEOREM 5.6. If R is a local Gorenstein ring with socle a, then Extg (k, k) is
finitely generated if and only if Extg, (k,k) is finitely generated.

ProoF. It is a result of the author and L. Avramov [9, Theorem 2.9] that for
R a local Gorenstein ring, R —» R/a is a Golod homomorphism. Apply
Theorem 5.5.

In Theorem 5.5, I Extg (R/a, k) is generated by elements of degree one as a
left Extg (k, k)-module. In fact,

I Extg (R/a, k) =~ Extg (a,k)
which is generated by its elements of degree zero.

LeEMMA 5.7. For any R-module M, Extg (M, k) is generated as a left Extyg (k, k)-
module by its elements of degree zero if and only if the induced homomorphism
Extg (M, k) — Extg (mM, k)

is zero.
Proor. The elements of degree zero generate Extg (M, k) if and only if the
Yoneda product
o: Extk (k, k) ® Ext% (M, k) — Extk (M, k)
is surjective for each i=0. By Lemmas 5.1 and 5.2, the exact sequence
O-mM->M-> MmM-—>0
yields a commutative diagram

Extk (k, k)QExt% (M/mM, k) 2> Extk (M/mM, k)

o |
Extk (k, k) ® Extg (M, k) —2— Extk (M, k)
| e

Extk (k, k) @ Ext%(mM, k) —— Extk (mM, k) .

By Lemma 5.3, ¢’ is an isomorphism. Since u is always an isomorphism, ¢ is
surjective if and only if v=0.

THEOREM 5.8. Suppose that R — R/a is a Golod homomorphism such that the
induced homomorphism
I Extg (R/a,k) — I Extg (R/ma,k)

is zero. Then
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Q:(Extgyq (k, k) = Q;(Extg (k,k))
for i#2.

Proor. By Lemma 5.7, Extg (a, k) is generated by its elements of degree zero,
$0

Q;(I Extg (R/a,k)) = 0

for i>1. The result then follows from exact sequence (4.3).

We obtain as a corollary a result of Sjodin [14].

THEOREM 5.9. If R is a regular local ring, then for any integer n>2,
Extg/m (k, k) is generated as an algebra by its elements of degree 1 and 2.
ProoF. Since Extg (k, k) is the exterior algebra on Ext'p (k, k),
Q:(Extg (k,k)) = 0
for i+ 1, by Theorem 5.8, it is sufficient to prove that
(5.1) I Extg (R/m", k) — I Extg (R/m"*1 k)
is zero. But if K is the Koszul complex of R,

ney . M'KNZ(K)
H(m"'K) = WBEK)
and (5.1) just says that

m"*1K N Z(K) = m"B(K)

which is well-known for regular local rings.

THEOREM 5.10. For any local ring R there is an integer n, such that for n=n,
Q,(Extg/m (k,k)) = Q;(Extg (k, k)
SJor i+2.
ProoF. In [8, Theorem 3.15], it was shown that there is an integer r, such
that for n>r,
I Extg (R/m", k) — I Extg (R/m"*! k)

is zero. It follows that R — R/m"*! is Golod. Put ny=ry,+1 and apply
Theorem 5.8.
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Note that in this case, I Extg (R/a, k) is not free, but it is possible to give a
minimal resolution of it as a left Extg (k, k)-module. Namely, it was shown in
[9, Theorem 4.9} that for any R-module M there is an integer n, such that for n
2N,

Extg (m"M, k) — Extg (m"*M, k)
is zero. Then for n=n, one obtains exact sequences
0 — Exth (m"*1M, k) — Exti'! (m"M/m"*1M, k) — Exti'!(m"M,k) — 0

for any i=0. Since Extg (m"M/m"*'M,k) is a free Extg (k, k)-module,
composing these exact sequences yields a free resolution

.—> F,—> F, - Fy— Extg (m"M,k) - 0
where
F; = s Extg (m"YViM/m"* ¥ 1M k).
This is a minimal resolution because
dF; = F,_; = (I Extg (k,k)) Extk (m"* " 'M/m"*‘M,k) .

We obtain some easy consequences of this resolution.

THEOREM 5.11. For any local ring R, if the algebra Extg (k, k) has finite global
dimension, then R is artinian.

ProoF. Assume that m" 0 for all n. Then for sufficiently large n, the above
resolution shows that Extg (R/m", k) has infinite projective dimension.

If C=C, ; is a bigraded vector space over k, let the Poincaré series of C,

P(x,y) = Z Z (dimkci,j)xiyj-

i=0 j=0

THEOREM 5.12. For any R-module M, there is an integer n, such that for n=n,,
the Poincaré series of

TorEX* &K) (k Extg (m"M, k))

is a rational function.
Proor. Because of the resolution given above

P(x,y) = Z dlmk (mu+iM/mn+i+1M)xiyi
i=0
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By the Hilbert theory, dim, (m"*‘M/m"**' M) is a polynomial in i for large i
so P(x,y) is a rational function.

6. Noetherian Ext algebras.

Let R be a complete intersection, i.e., suppose R=5/(a,,...,a,) where S is a
regular local ring and a,,...,a, is an S-sequence in m$. Gulliksen [4] has
shown that for any R-modules M, N, Extp (M, N) may be regarded as a module
over a polynomial ring S[x,,...,x,] and as such is a noetherian module. In
[12], Mehta has shown that there is a homomorphism from the free R-module

Y Re; = Ext§(R,R) % Extk (M, M)
i=1

such that the action of x; above is just left multiplication by 6(e;) with the
Yoneda product. Hence Extg (M, N) is also noetherian as a left Extg (M, M)-
module. In particular, Extg (M, M) is a left noetherian ring. For M =k, this can
be reversed.

THEOREM 6.1. Let R be a local ring such that Extg (k,k) is a left noetherian
ring. Then for any R-module M, Extg (M, k) is noetherian as a left Extg (k, k)-
module. Consequently, Ext, (k,k) is a finitely generated algebra for any Golod
homomorphism R — A. (In general, Ext, (k, k) will not be noetherian.)

ProoF. We first prove the result for modules M of finite length by induction
on /(M). The case /=1 is obvious.
Let

O-M->M->-M -0

be an exact sequence of R-modules where M’ and M" have smaller length than
M. Then Extg (M, k) and Extg (M", k) are noetherian by induction and the
long exact sequence shows that Extg (M, k) is noetherian.

For the general case, as noted in section 5, there is an integer n, such that for
n2n,

Extg (m"M, k) — Extg (m"*'M,k)
is zero. Then the connecting homomorphism
s Extg(m"M/m"* M, k) — Extg (m"M, k) — 0

is a surjective homomorphism of Extg (k,k)-modules. Since (Lemma 5.3),

Math. Scand. 49 - 12
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Extg (m"M/m"*'M,k) is a finitely generated free Extg (k, k)}-module,
Extg (m"M, k) is noetherian.
Now consider the short exact sequence

O-»m"M->M-—-> Mm"M— 0.

Since M/m"M has finite length, Extg (M/m"M, k) is noetherian and then the
long exact sequence shows that Extg (M, k) is noetherian.

In particular, if R — A is a Golod homomorphism, Exty (4, k) is noetherian,
hence finitely generated as a Extg (k,k)-module. Since Extg(k,k) is left
noetherian, the ideal IExtg (k,k)=~sExtg(m,k) is finitely generated so
Extg (k, k) is a finitely generated algebra, and by Theorem 4.3, Ext 4 (k,k) is a
finitely generated algebra.

In general, Ext, (k,k) will not be noetherian, e.g. if R is regular and A
= R/m?, Ext, (k, k) is a free algebra which is non-noetherian if dim m/m?>1. In
fact, it is not known whether there are any non-complete intersections R for
which Extg (k, k) is noetherian.

CoroLLARY 6.2, If R is a complete intersection, then Ext, (k,k) is finitely
generated for every Golod homomorphism R — A.

One can ask what happens to the Ext algebra under a composite of Golod
homomorphisms.

THEOREM 6.3. If R — A is a Golod homomorphism and M is an A-module such
that Extg (M, k) is noetherian as a left Extg (k, k)-module, then Ext, (M,k) is
finitely generated as a left Ext, (k,k)-module.

Proor. From [9, Theorem 1.5] one has an exact sequence of complexes

05 ARrX > Y>> YR V—-0

which splits as graded modules, where X is a minimal resolution of k over R, Y
is a minimal resolution of k over A and V is a free graded A-module with
differential zero. This yields an exact sequence

and
. — Torg (M, k) £ Tor, (M, k) %> Tor, (M, k)@ 4V — ...

and an exact sequence of dual vector spaces
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. = Exty (M, k)@ V* 25 Ext, (M, k) £ Extg (M k) —> ... .

The image of B* is a sub Extg (k, k)-module of Extg (M, k), hence finitely
generated. Thus it is sufficient to show that a* is just the product  which by
Theorem 3.1, with S=R=4, is pT(1QC*).

As in the proof of Theorem 4.1, one lifts g € V* to a mapping of complexes
G: Y — Y defined by

G(x+y®v) = yg(v)
for xe A®Qr X, ye Y, ve V. Then for fe Exty (M,k)~Hom (H(M ® 4 Y), k),
Y(f®g) = f(1u®G)
= (f®ga = «*(f®g) .

COROLLARY 6.4. If Extp (k, k) is noetherian (e.g. if R is a complete intersection)
and R — A and A — B are Golod homomorphisms, then Extg (k,k) is a finitely
generated algebra.

Proor. By Theorem 6.1, Extg(A4,k) and Extg (B,k) are noetherian
Extg (k, k)-modules so Ext, (k, k) is a finitely generated algebra. By Theorem
6.3, Ext, (B,k) is a finitely generated Ext, (k,k)-module, so Extg(k, k) is a
finitely generated algebra by Theorem 4.3.

7. A counter-example.

The methods of this paper may be used to provide a negative answer to a
question raised by a theorem of Gulliksen. Let Y be a minimal algebra
resolution of k. As in section 3, example 2, Y" denotes the subalgebra of Y
obtained by adjoining all variables of degree <r. It was shown in section 3 that
Y™ is a distinguished subalgebra. i

In [5], Gulliksen has shown that if Y" is a Golod algebra, then the
Poincaré series of R is a rational function. Thus the question arises: Is it true
that for every local ring R, some Y" is a Golod algebra? In the light of
Gulliksen’s theorem a positive answer would prove Kaplansky’s conjecture
that the Poincaré series is always a rational function. The answer, however,
is no, and as a counter-example we may take the example of Roos [13].

THEOREM 7.1. If some Y' is a Golod algebra, then Extg (k,k) is finitely
generated.

ProoF. Let J,,. . .,J, be the derivations associated with the variables of even
degree <r. These induce homomorphisms
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Jigt H(Y) — H(Y")
defining a homomorphism
Hom (H(Y"),k)®T(/J,,. ..,J,) — Hom (A(Y"),k)

(as noted in section 3), where T(J,,...,J,) is the free algebra on J,.. B
From [5] it follows that Hom (H(Y"), k) is noetherian as a right T(J,,. . .,J -
module.

Sending J; — &J; defines a ring homomorphism

T(,,...,d,) - Hom (Y",k) .

Since J;: Y™ — Y" extends ¢J, left multiplication by J; on Hom (H (Y"), k) is the
same as left multiplication by f(J;). Thus Hom (A (Y"), k) is also noetherian as a
right Hom (Y",k)-module. Then by Theorem 4.2, Extg(k,k) is finitely
generated.

In the example of Roos [13], Extg (k, k) is not finitely generated, so no Y”
can be Golod.
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