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ON MODULES WITH LE-DECOMPOSITION

TERJE LIE

Introduction.

Following [2] we call a module 4 an Le-module provided its endomorphism
ring is local, and a module M has an Le-decomposition if it is isomorphic to a
direct sum of Le-modules.

In the first section of this paper we will study modules with an Le-
decomposition that complements direct summands. It turns out that this is the
case precisely when the Le-decomposition has the finite exchange property.

This motivates the main theorem of the last section, which states that the
finite exchange property of a module implies that idempotents lift modulo the
Jacobson radical of its endomorphism ring, thereby generalizing a theorem of
Harada [5, Theorem 3].

The terminology is standard with a few exceptions. We refer the reader to
the book of Anderson and Fuller [1]. We consider left modules over an
associative ring R with an identity. A ring R is local if the non-units in R form
an ideal. The symbol @ is used for internal sum. If M is a module, we let J,
denote the Jacobson radical of End M. All maps between modules are R-
homomorphisms.

1. Modules with Le-decomposition.

DEerFINITION [3]. A module M has the exchange property if for any module Q
and for any decomposition

Q= M@®L = &N,
with M'~ M, there are submodules N;< N, such that
Q=Mo(@@N).

The module M has the finite exchange property if this holds whenever the
index set I is finite.

It is well known ([3], [7]) that the finite exchange, the exchange and in fact
[2, Theorem 3] also the mutual exchange properties coincide for
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indecomposable modules. The indecomposable modules with the exchange
property are exactly the Le-modules.

For decomposable modules, however, it is not known whether the exchange
and finite exchange properties coincide, so the distinction in the definition
above is meaningful.

However, it is known that a finite sum of Le-modules has the exchange
property. A simple proof of this is given in [2, Remark p. 397].

Let M =@, A4; be an Le-decomposition. Let ¢;: 4, — M and n;: M — A; be
the canonical injections and projections. For any fe End M, let

fi=mife: Ai— A;.

Harada and Sai [4] define J)y to be the set of f € End M for which f;; is not an

isomorphism for any i,j € I. They show that J), is independent of the Le-

decomposition and that J, is a two-sided ideal in End M which contains J .
The following proposition is also due to them, and we omit its proof.

ProposITION 1. Let M=@®;A; be an Le-decomposition. The following
properties are equivalent:

(1) The Le-decomposition complements direct summands.
2) Ju=Jym.

REMARK. If M =@, A4; is an Le-decomposition, it is possible to show that
End M/J), is a von Neumann regular ring. If the Le-decomposition
complements direct summands we therefore have, by Proposition 1, that
End M/J), is a von Neumann regular ring.

Now we are prepared to state and prove the following results:

THEOREM 2. Let M = @ A, be an Le-decomposition. Let S=End M and let J
be the Jacobson radical of S. The following properties are equivalent:
(1) The Le-decomposition complements direct summands.
(2) M has the finite exchange property.
(3) For all fe S, there is an idempotent e € S such that Sf+Jy=8e+J .
(4) S/J is von Neumann regular and idempotents lift modulo J .

ProoF. (1) = (4): By Proposition 1 and the above remark together with [5,
Theorem 3]. (3) = (2): By [9, Theorem 2 and 3].

(4) = (3): Let fe S. Since S/Jy is von Neumann regular there is a ge §
such that f=7gf where the bar denotes element of S/J . This implies that gfis
an idempotent in S/Jy, and by the hypothesis there is an idempotent e € §
such that §f=¢é. Hence Sf+Jy=Se+Jp.
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(2) = (1): Let (0)*K be a direct summand of M and choose a subset J <1
maximal with respect to (®;4,)N K= (0).

Let n be the projection of M on @\, 4, along @; A; Then the restriction
n|K of n to K is a monomorphism. We will show that n(K) is a direct
summand of M.

Let i: n(K) — @ jA4; be the inclusion map. This is an R-monomorphism
and we have to show that it splits. Since 7 € § and M has the finite exchange
property, there exist, by [6, Theorem 1], g,h € S such that

1 h(1—n)(1—gn) = 1—gn  (and gng=g).

Multiplying (1) on the right by n, we get, since = is an idempotent of S, that =

= (1 —n+hn)gn. Hence (1 —h+hn)gi=1,, and n(K) is a direct summand of

@<y A;. Therefore n(K) is a direct summand of M, say M=n(K)®M'.
Using the modular law we get

) D14 = n(K)®N,

where N= (@ sjA) N M.
Let p be the projection of @, y 4; on n(K) along N in (2), and consider the
decomposition

3) M =nK)ON®(D,4) .

It is easy to see that the projection of M on n(K) in (3) is pr and that the
restriction pn|K of prn to K is an isomorphism. By [1, Proposition 5.5], we
therefore have

@) M=K®ND(P,;4).

We claim that N = (0). (See also [1, p. 291] for a special case). Suppose N
% (0). By the K.R.S.A-Theorem 4 in [2], there is a direct summand N’ of N,
say N=N'@N" such that N’ is an Le-module. From (4) we get

©) (KO(@®;4)BN)ON = M = ®,4;,

where @, A; is the given Le-decomposition of M.
Since, by the Azumaya-theorem, an Le-decomposition complements
maximal direct summands, there is by the K.R.S.A.-theorem an i; € I such that

(6) K®(@,4)ON" @A, = M.

It is obvious that i, ¢ J and that KN (®,yy;,) 4;)= (0). This contradicts the
maximality of J; hence N =(0) and this completes the proof of the theorem.

ReMARK. The property (3) in the above theorem shows that the
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endomorphism ring of a module with an Le-decomposition that complements
direct summands is included in the class of exchange rings defined by Warfield
in [9, Theorem 3].

Monk [6] has shown that the property (3) above is not a necessary
condition for a module to have the finite exchange property.

2. The finite exchange property and lifting of idempotents.

The implication (4) = (2) in Theorem 2 is always true. See [9, Remark after
Theorem 3]. What about the converse? In this section we will show that the
finite exchange property of a module M implies that idempotents in End M/J
lift to End M, so that the only question is the von Neumann regularity of
End M/J ;.

In the proof we use the following lemma, which is easily proved:

LEMMA 3. Let R be a ring and let e € R be an idempotent of R. Then for each
x € R, t=e+ (1 —e)xe is also an idempotent.

THEOREM 4. Let M be a left R-module. Let S=End M and let J); be the
Jacobson radical of S.

If M has the finite exchange property, then idempotents in S/J y can be lifted
to S.

PrOOF. Let f e S be such that f—f? € Jy. Since M has the finite exchange
property, we have by [6, Theorem 1] that there exist g,h € S such that

(1 h(1-f)1—-gf) = 1—gf and
(2 gfge=2¢.

Multiplying (1) on the right by f we get that f=gff+h(1 —f)(1 —gf)f. In the
following we let, for convenience, a bar over the endomorphisms denote
elements of S/Jy. An easy computation gives, using the fact that f2=7, that

3) f=gf+hd-1gef.

By (2) gfis an idempotent of S, and therefore also t=gf+ (1 —gf)(f—1)gfis
an idempotent of S by Lemma 3. Standard computations, noting that (1—7)f
=0, give that =1 which completes the proof of the theorem.

COROLLARY 5. Let E be an injective R-module. Then idempotents in End E/J g
lift to End E.
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Proor. Injective modules have the exchange property [8]; hence the finite
exchange property.

Another proof of Corollary 5 can be found in [1, p. 312].

As mentioned above the injective modules have the exchange property. On
the other hand there exist injective modules which have no Le-decomposition
[1, Theorem 25.6]. Therefore Theorem 4 does generalize the following result of
Harada [5, Theorem 3]:

CoRoLLARY 6. (Harada). Let M= @ A; be an Le-decomposition. If Jyy=J'p
then idempotents in End M/J, lift to End M.

ProoF. Proposition 1 and Theorem 2 show that Jy=J) < M has the
finite exchange property.
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