ON MODULES WITH LE-DECOMPOSITION

TERJE LIE

Introduction.

Following [2] we call a module A an Le-module provided its endomorphism ring is local, and a module M has an Le-decomposition if it is isomorphic to a direct sum of Le-modules.

In the first section of this paper we will study modules with an Ledecomposition that complements direct summands. It turns out that this is the case precisely when the Le-decomposition has the finite exchange property.

This motivates the main theorem of the last section, which states that the finite exchange property of a module implies that idempotents lift modulo the Jacobson radical of its endomorphism ring, thereby generalizing a theorem of Harada [5, Theorem 3].

The terminology is standard with a few exceptions. We refer the reader to the book of Anderson and Fuller [1]. We consider left modules over an associative ring R with an identity. A ring R is local if the non-units in R form an ideal. The symbol \oplus is used for *internal sum*. If M is a module, we let J_M denote the Jacobson radical of End M. All maps between modules are R-homomorphisms.

1. Modules with Le-decomposition.

DEFINITION [3]. A module M has the exchange property if for any module Ω and for any decomposition

$$\Omega = M' \oplus L = \bigoplus_{I} N_{i}$$

with $M' \cong M$, there are submodules $N_i \subset N_i$ such that

$$\Omega \,=\, M' \oplus (\oplus_I \, N_i') \;.$$

The module M has the finite exchange property if this holds whenever the index set I is finite.

It is well known ([3], [7]) that the finite exchange, the exchange and in fact [2, Theorem 3] also the mutual exchange properties coincide for

indecomposable modules. The indecomposable modules with the exchange property are exactly the Le-modules.

For decomposable modules, however, it is not known whether the exchange and finite exchange properties coincide, so the distinction in the definition above is meaningful.

However, it is known that a finite sum of Le-modules has the exchange property. A simple proof of this is given in [2, Remark p. 397].

Let $M = \bigoplus_i A_i$ be an Le-decomposition. Let $\varepsilon_i \colon A_i \to M$ and $\pi_j \colon M \to A_j$ be the canonical injections and projections. For any $f \in \text{End } M$, let

$$f_{ii} = \pi_i f \varepsilon_i : A_i \to A_i$$
.

Harada and Sai [4] define J'_M to be the set of $f \in \operatorname{End} M$ for which f_{ij} is not an isomorphism for any $i, j \in I$. They show that J'_M is independent of the Ledecomposition and that J'_M is a two-sided ideal in End M which contains J_M .

The following proposition is also due to them, and we omit its proof.

PROPOSITION 1. Let $M = \bigoplus_I A_i$ be an Le-decomposition. The following properties are equivalent:

- (1) The Le-decomposition complements direct summands.
- $(2) \quad J'_{M} = J_{M}.$

REMARK. If $M=\bigoplus_I A_i$ is an Le-decomposition, it is possible to show that End M/J'_M is a von Neumann regular ring. If the Le-decomposition complements direct summands we therefore have, by Proposition 1, that End M/J_M is a von Neumann regular ring.

Now we are prepared to state and prove the following results:

THEOREM 2. Let $M = \bigoplus_I A_i$ be an Le-decomposition. Let S = End M and let J_M be the Jacobson radical of S. The following properties are equivalent:

- (1) The Le-decomposition complements direct summands.
- (2) M has the finite exchange property.
- (3) For all $f \in S$, there is an idempotent $e \in S$ such that $Sf + J_M = Se + J_M$.
- (4) S/J_M is von Neumann regular and idempotents lift modulo J_M .

PROOF. (1) \Rightarrow (4): By Proposition 1 and the above remark together with [5, Theorem 3]. (3) \Rightarrow (2): By [9, Theorem 2 and 3].

(4) \Rightarrow (3): Let $f \in S$. Since S/J_M is von Neumann regular there is a $g \in S$ such that $\overline{f} = \overline{f} \overline{g} \overline{f}$ where the bar denotes element of S/J_M . This implies that $\overline{g} \overline{f}$ is an idempotent in S/J_M , and by the hypothesis there is an idempotent $e \in S$ such that $\overline{g} \overline{f} = \overline{e}$. Hence $Sf + J_M = Se + J_M$.

158 TERJE LIE

(2) \Rightarrow (1): Let (0) $\neq K$ be a direct summand of M and choose a subset $J \subseteq I$ maximal with respect to $(\bigoplus_i A_i) \cap K = (0)$.

Let π be the projection of M on $\bigoplus_{I \setminus J} A_i$ along $\bigoplus_J A_j$. Then the restriction $\pi \mid K$ of π to K is a monomorphism. We will show that $\pi(K)$ is a direct summand of M.

Let $i: \pi(K) \to \bigoplus_{I \setminus J} A_i$ be the inclusion map. This is an R-monomorphism and we have to show that it splits. Since $\pi \in S$ and M has the finite exchange property, there exist, by [6, Theorem 1], $g, h \in S$ such that

(1)
$$h(1-\pi)(1-g\pi) = 1-g\pi$$
 (and $g\pi g = g$).

Multiplying (1) on the right by π , we get, since π is an idempotent of S, that $\pi = (1 - \pi + h\pi)g\pi$. Hence $(1 - h + h\pi)gi = 1_{\pi(K)}$ and $\pi(K)$ is a direct summand of $\bigoplus_{I \setminus J} A_i$. Therefore $\pi(K)$ is a direct summand of M, say $M = \pi(K) \oplus M'$.

Using the modular law we get

$$\bigoplus_{I \setminus J} A_i = \pi(K) \oplus N ,$$

where $N = (\bigoplus_{I \setminus J} A_i) \cap M'$.

Let p be the projection of $\bigoplus_{I \setminus J} A_i$ on $\pi(K)$ along N in (2), and consider the decomposition

$$M = \pi(K) \oplus N \oplus (\oplus_J A_i).$$

It is easy to see that the projection of M on $\pi(K)$ in (3) is $p\pi$ and that the restriction $p\pi \mid K$ of $p\pi$ to K is an isomorphism. By [1, Proposition 5.5], we therefore have

$$(4) M = K \oplus N \oplus (\oplus_J A_i).$$

We claim that N = (0). (See also [1, p. 291] for a special case). Suppose $N \neq (0)$. By the K.R.S.A.-Theorem 4 in [2], there is a direct summand N' of N, say $N = N' \oplus N''$ such that N' is an Le-module. From (4) we get

$$(K \oplus (\bigoplus_{J} A_{i}) \oplus N'') \oplus N' = M = \bigoplus_{I} A_{i},$$

where $\bigoplus_{i} A_{i}$ is the given Le-decomposition of M.

Since, by the Azumaya-theorem, an Le-decomposition complements maximal direct summands, there is by the K.R.S.A.-theorem an $i_0 \in I$ such that

(6)
$$K \oplus (\bigoplus_J A_j) \oplus N'' \oplus A_{i_0} = M.$$

It is obvious that $i_0 \notin J$ and that $K \cap (\bigoplus_{J \cup \{i_0\}} A_j) = (0)$. This contradicts the maximality of J; hence N = (0) and this completes the proof of the theorem.

REMARK. The property (3) in the above theorem shows that the

endomorphism ring of a module with an Le-decomposition that complements direct summands is included in the class of exchange rings defined by Warfield in [9, Theorem 3].

Monk [6] has shown that the property (3) above is not a necessary condition for a module to have the finite exchange property.

2. The finite exchange property and lifting of idempotents.

The implication $(4) \Rightarrow (2)$ in Theorem 2 is always true. See [9, Remark after Theorem 3]. What about the converse? In this section we will show that the finite exchange property of a module M implies that idempotents in End M/J_M lift to End M, so that the only question is the von Neumann regularity of End M/J_M .

In the proof we use the following lemma, which is easily proved:

LEMMA 3. Let R be a ring and let $e \in R$ be an idempotent of R. Then for each $x \in R$, t = e + (1 - e)xe is also an idempotent.

THEOREM 4. Let M be a left R-module. Let $S = \operatorname{End} M$ and let J_M be the Jacobson radical of S.

If M has the finite exchange property, then idempotents in S/J_M can be lifted to S.

PROOF. Let $f \in S$ be such that $f - f^2 \in J_M$. Since M has the finite exchange property, we have by [6, Theorem 1] that there exist $g, h \in S$ such that

(1)
$$h(1-f)(1-gf) = 1-gf$$
 and

$$gfg = g.$$

Multiplying (1) on the right by f we get that f = gff + h(1-f)(1-gf)f. In the following we let, for convenience, a bar over the endomorphisms denote elements of S/J_M . An easy computation gives, using the fact that $\overline{f}^2 = \overline{f}$, that

(3)
$$\vec{f} = \vec{g}\vec{f} + \vec{h}(\vec{1} - \vec{f})\vec{g}\vec{f}.$$

By (2) gf is an idempotent of S, and therefore also t = gf + (1 - gf)(f - 1)gf is an idempotent of S by Lemma 3. Standard computations, noting that $(\overline{1} - \overline{f})f$ = $\overline{0}$, give that $\overline{t} = \overline{f}$ which completes the proof of the theorem.

COROLLARY 5. Let E be an injective R-module. Then idempotents in End E/J_E lift to End E.

160 TERJE LIE

PROOF. Injective modules have the exchange property [8]; hence the finite exchange property.

Another proof of Corollary 5 can be found in [1, p. 312].

As mentioned above the injective modules have the exchange property. On the other hand there exist injective modules which have no Le-decomposition [1, Theorem 25.6]. Therefore Theorem 4 does generalize the following result of Harada [5, Theorem 3]:

COROLLARY 6. (Harada). Let $M = \bigoplus_I A_i$ be an Le-decomposition. If $J_M = J'_M$ then idempotents in End M/J_M lift to End M.

PROOF. Proposition 1 and Theorem 2 show that $J_M = J_M' \Leftrightarrow M$ has the finite exchange property.

REFERENCES

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Graduate Texts in Mathematics 13), Springer-Verlag, Berlin - Heidelberg - New York, 1973.
- 2. I. Beck, On modules whose endomorphism ring is local, Israel J. Math. 29 (1978), 393-407.
- P. Crawley and B. Jónsson, Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math. 14 (1964), 797-855.
- M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323– 344.
- 5. M. Harada, On categories of indecomposable modules II, Osaka J. Math. 8 (1971), 309-321.
- 6. G. S. Monk, A characterization of exchange rings, Proc. Amer. Math. Soc. 35 (1972), 349-353.
- R. B. Warfield, Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.
- 8. R. B. Warfield, Jr., Decompositions of injective modules, Pacific J. Math. 31 (1969), 263-276.
- 9. R. B. Warfield, Jr., Exchange rings and decompositions of modules, Math. Ann. (1972), 31-36.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF BERGEN ALLÉGT. 53-55 5014 BERGEN NORWAY