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ON TRINOMIALS OF TYPE x"+ Ax™+1

ANDREW BREMNER

1. Introduction.

1.1. K. Th. Vahlen [19] and Capelli [2] have given a simple criterion for the
reducibility over Q of the binomial x"+ 4, 4 € Z. The corresponding question
of reducibility of trinomials x"+ Ax™+ B, and of quadrinomials, has been
studied by several authors (Bremner [1], Jonassen [3], Ljunggren [4-5],
Schinzel [6-14], Selmer [15], and Tverberg [18]), and many questions have
been raised. For trinomials x" + Ax™ + 1, Ljunggren [5] and Tverberg [18] deal
with the case |4|=1, and Schinzel [6] with the case |4]=2. Schinzel [12] asks
the question:

Does there exist a reducible trinomial of the form x"+ Ax™+1
with n>m>0, n$£2m, A € Z, |A|>2?

The answer is affirmative; Coray in a letter to Schinzel furnished the examples
xB3=3x* 41 = B=x2+ D+, 41
xB43x7+1 = (A =x3+1D)(X°+... +1).

It is the purpose of this paper to show there are only finitely many trinomials
x"+ Ax™+1 which possess an irreducible cubic factor, and to give them
explicitly.

1.2. We suppose that x"+ Ax™+1 is divisible by the irreducible cubic
c(x) € Z[x], c¢(0)= + 1. Define the cubic irrational 6=0, by c¢(8)=0, 0 having
conjugates 6,, 6;. Then 67+ A07+1=0, i=1,2,3.

Inductively we have 0"=A4,6°+B,0+C,, 4,,B,,C, € Z, where

(AOaBOa Co) = (0,0,1), (Al’BlaCI) = (0,1,0)9 (AZ’BZ’ C2) = (1’090)
and

(1)
A, = 0,07 +a,054+0305, B, = B,01+B,05+B:05, C, = —c(04,_,,

with
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146 ANDREW BREMNER
@ = (=0,+03)/4,..., By = (05-63)/4,. ..,
4 = (91_62)(02‘63)(93_01)-
We thus seek solutions of
(4,+A4-A,)0*+ (B,+A"B,)0+ (C,+A-C,,+1) = 0

ie.of 4,+A-4,=B,+A4-B,,=C,+A-C,+1=0.
Eliminating A,

@ A,B, = A,B,,
(3) A,Cp = An(C,+1)
(3" B,C,, = B,(C,+1).

We shall use a p-adic technique of Skolem to solve for m, n these simultaneous
equations.

2. The case n odd.
We shall initially suppose that m,n are not both divisible by 3.

2.1. We consider the case when the cubic factor c(x) is of the type x*+bx
+ 1. It now follows immediately from (1) that B,= A4, ,, so that the equations
(2), (3), (3') become

(4) AmAn+ 1 = AnAm+1
(5) Ay = A4y —1)
(SI) An+1Am—l = Am+l(An-1_1)-

Cask I: |b|>1. Suppose that
(6) B +b6+1 =0, 0"+A40m"+1 =0, b > 1.

Caske I(i): n=0 (mod 3). Put n=3N, N odd, and suppose
) b*|N, A 20.
Then

3 3
Ay =Y 0N = =¥ a(1+b0)N = ——Ao——bNAl—bz(];)Az—...
i=1

i=1

I
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N
=b2<2>[-—1+b(p‘+b2q)2+ .

where ¢, ¢,,... are b-adic integers; and similar expansion gives
9 Ayr1 = BN[=14+b()+b*()+...].

Now from (7) and (8), b**2| 4,4,,., so by (4) and (9), we have b| 4,,. But if m
=3M+k, k=1,2, then as above A, =(—1)4, mod b, whence b| A4,, which
forces k=1. We now have the expansions

A,y = (—I)Mb2<1;4>[—1+b(-)+...]

A, = (=DMBM[—1+b(")+...]
Aper = (DM[—14b()+...]

and 4,_, 1~b3<]:)[1+b(-)+...].

Substituting into (4) gives after rearrangement, and removing a factor N,
N-1

(10) (M———2—>+b(-)+b2(-)+... =0,

and substitution in (5'), after removing the factor N,

<M(M-— ) (N-1)(N-2)

. 2(. =
- 2 >+b()+b()+...—0.

(11

Now the simultaneous equations (10) and (11), have for a given b, at most two
solutions in b-adic integers M, N (see the proof of Satz 12, Skolem [16]). But
for any given b, there are two solutions to these equations, given by (M, N)
=(0,1),(—1, —1) corresponding to 8*+bfO+1=0 and 6 3+b672+1=0.
Consequently there are no further solutions with n=0 mod 3, m#%0 mod 3.

Cask I(ii): n£0 mod 3. From (6) we have

12) O My 0;m = —A = 0O

Let n—m=6R+p, —m=6S +0, where 0<¢, 0 <6.

Since n=6(R —S)+ (¢ —o) we are assuming that p, ¢ have different parity
and that o £¢ mod 3.

Now 08 =1+b¢, where £,=26,+b6?, i=1,2,3, so (12) can be written as

0311 +bE,1% — 6§11 +b¢31% +03[1 +bE,1° — 03[ 14 6¢,1° = 0
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and expanded to give

(05—Og>+bR(éng_63eg>+bz(')+ .

6,0, 6,6,
0503 ¢,07 —&,65 2
+<02_03)+b8< 5. 70 +b* )+ =0.
So if
Bk_ek
(13) T, =_>—2 then T,+T,=0modb.
02'—93

We calculate the various possibilities:

kIOI 2 3 4 5

TkIO 1 -6 —b bo—1 b*+6

e loo1 1 2 2 3 3 4 4 5 5

4 1 50 2 1 32 4 3 5 0o 4

T,+T,modb|1 6 1 1-0 1-60 -0 -6 -1 -1 —-140 0 —1+0

(13) implies from the above table that 1/b, 6/b, or (1 —6)/b is an integer of Q(6);
the first two cases are trivially impossible for |b| > 1, and since (1 —6) has trace
3 and norm b+2, the latter instance would imply b|3, b*|(b+2), again
impossible for |b|>1.

Thus the factor x>+ bx+1 can arise only if b= +1.

Cask II(i): b=1. We work 47-adically, noting that if 6>+ 6+ 1=0 then 6*¢
=1+47¢, with ¢=—27+130+776>.

Put m=46M+r, n=46N +s, 0<r, s<46, s odd. Then for e=—1,0,1, we
have

N
(14) A4,,, = As+£+47N(—27AH5+13As+e+1+77As+¢+2)+472<2)(-)+...

M
(15 A,., = A,+5+47M(—27A,+£+13A,+e+1+77A,+e+2)+472<2)(-)+...
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Equations (4) and (5) modulo 47 give the congruences
(16) A Ay = AA 4
(17) AsAr—l = Ar(As—l _1)

A simple (machine!) calculation shows that the only solutions of (16) and (17)
in the range 0<r, s<46, s odd, are the following:

(18)  (r,5) = (1,3),(2,7),(2,45), (3, 1), (11, 33), (24, 13), (41,39), (44,43) .
Consider, for example, (r,s)=(11,33). From (14), (15) we have

A,_y = 13544IN(  D+472()+...
A, = —201+47N( =3)+47*()+...
Aper = —335+4TIN ( —8)+472(")+...
Ap-1 = —2+4TM( 8)+47%()+...
A, = 3+4TM( D) +472()+...
Ay =  S+4TM(—12)+472()+. ..

Substituting into (4), (5) gives respectively

Il

(=21M —9N)+47(-)+473()+... = 0
(—=9M —11N)+47(-)+472(")+... = 0.

The same result as in case I1(i) (Satz 12, Skolem [16]; alternatively Satz 11,
Skolem [17]) shows that there is at most one solution in 47-adic integers M, N,
to this system of equations, which has to satisfy M=N=0mod47. Bt M=N
=0 is a solution! Indeed one readily checks that 6334670 +1=0.

In exactly the same manner, one obtains for each pair (r,s) at (18) a unique
solution for (m,n) corresponding to the vanishing of the following functions:

(19) 03+0+1,9+03+1, 071 +0%+1, 0—3+9—2+1;
07 —20%+1,0"7=20"5+1; 6°34+676' 41,0733 467072241
Case I1(ii): b= — 1. With 3 —0+1=0, we have 6°® =1+ 59¢, where ¢ = — 11

+196 —136* mod 59. Mutatis mutandis, the 59-adic calculation is similar to
the case b= +1, so we omit further details. One finds precisely the solutions:

03—0+1,073-072+41;
(20) 05 +6%+1, 0404 +1,075+071+1, 07 +075+1;
07 +20%+1,0774+2073+1; 03-30°+1,0°13-30"%+1.
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2.2. We now consider the case when the cubic factor has the form x3 + bx — 1.
We now have from (1), B,=A4,,,, C,=A4,_,, so that equations (2), (3), and
(3') become

21 ApAns1 = ApAm+1
22 AAm-1 = An(Ap-1+1)
(22) Aps1Am-1 = Ame1(4p-1+1)

Put n=3N+s, m=3M+r, r,5=0,1,2.
CaseI: |b|> 1. With 6% 4+ b0 —1=0 we have 6% =1 mod b, and equations (21),
(22), and (22) give the congruences (recalling (4_,, Ay, 4, 4,)=(1,0,0,1)):
if s=1: A, = Omodb
A,_, = A,,; modb,
and if s=2: A,,;, = O0modb
A,_, = A, modb .

For any r=0, 1,2 we deduce 1 =0 mod b, impossible for |b| > 1. Thus s=0, and
we have the expansions

A, = b2<1;]>[1+b(-)+...]

Ayey = BN[=1+b()+...].

(21) implies b| A4,,, forcing r=1; and we have modulo b* that 4,,,,=1, 4,,_,

M
Eb2<2), A,.1=—-bN, A,_;=1, so that in particular, A, ,,(4,-,+1)=2

modb*, and A,,,4,_,=0 modb>. But then (22)) implies 2=0 mod b3,
impossible for |b|>1.

Case II: b= +1. For b= +1 a 47-adic calculation as in 2.1, II(i), offers no
difficulties; there are no solutions with n odd. Similarly for b= —1; working
59-adically, the only solutions are given by

(23) 0-0*+1,0"'-602+1; 6"-205+1,0"7-20"2+1.
2.3. Consider a cubic factor of type x*+ax?+ 1. Transforming by x — 1/x,

we see that x"+ Ax™+1=0 mod (x* +ax? +1) if and only if X"+ Ax" ™ +1=0
mod (x*+ax+1); and x"+Ax"+1=0 mod (x*+ax?>—1) if and only if
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x"+ Ax" ™+ 1=0 mod (x> —ax —1). So all solutions can be determined from
those of sections 2.1 and 2.2.

2.4. Consider a cubic factor of type x*+ax?+bx+1, ab+0. Transforming
by x — 1/x if necessary, it suffices to find those trinomials x"+ Ax™+1 in
which m is also odd.

Now (03+0%)+ A(05 +63)+2=0, so that 2=0 mod (6, +05) that is, v=
2/(a+0) is an integer of Q(6). But v satisfies the equation

3 2@*+b) ,  8a 8
@—1) " T @0’ @-1

=90,

so necessarily (ab— 1) divides h.c.f. (8,2(a®+b)). For irreducibility, we further
require a+b=+ —2, and a+b; and since we are assuming ab+0, there arise
the following finitely many possibilities listed in the first line of the table.

@b (=9, -1 (=1,-9) (=5 -1) (=1,=95) (=3,-1) (=1,=3) (=2,-1) (—-1,-2)
)4 13 13 67 67 67 67 13 13
(ab)|(51) (1,S) 31 (1,3) 2,1) (1,2 (7,-1) (-L,7) 3, -1 (-1,3) (1,-1) (—1,1)

P 31 31 157 157 101 101

For 6% +af*+b0+1=0, let p be an odd rational prime with the order of 6
modulo p equal to k, where k is even. Suppose the only solution (m, n)= (r,s) of
equations (2), (3), and (3') taken modulo p, in the range 0<r, s<k, is (r,s)
=(0,0). Then writing m=Mk+r, n=Nk+s, we have A,,=A4,, A,=A; mod p,
and so (m, n) a solution of (2), (3), and (3') forces (r, s)= (0, 0), whence n (and m)
is even. Thus there can be no solutions with n odd. The second line of the above
table gives for certain of the listed possibilities (a,b) a prime p such that the
above congruence condition is valid; so these possibilities cannot occur. We
must dispose of the six remaining cases.

(i) Consider 0°+76%>—0+1=0.
0 satisfies

—92— 3
0=< 0> —60+

;
2 ) = ¢, where p*—0+1 =0,

and consequently ¢"+ Ap™+1=0 implies 6”7 + 46™7 +1=0, where 6'/" = ¢.
Since 1/7 is p-adic integral for all p#7, we can use a 59-adic method as in the
previous particular examples, and one finds that the only 59-adic solutions are
precisely those corresponding to the solutions listed at (20) (ie. 67 —6"" +1,
etc.). Thus there are certainly no solutions with n a natural integer; and in
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exactly the same way there are no solutions corresponding to 6° — 02 +760 +1
=0.

(ii) Consider 6> +36>—6+1=0.
We have (0+1)3=46, so that

0—223913 41 =0, 07 1-2239"2341=0.

Working 53-adically confirms that these are the only 53-adic solutions, so no
natural integer solutions. Similarly for 6% —62+30+1=0.

(iii) Consider 6°+62—0+1=0.
Corresponding to the identities

X(x+1P+2 = (B+xr—x+1)(x2+2x+2)
3412 =2x" = (B+x2—x+1D)x—x+x3+x+1)
we obtain equations
0+2'P0723+1 =0 = 071 +2'39733 41
63—=213¢73+1 = 0 = 6732139723 11

and a 47-adic argument shows that these are the only 47-adic solutions; in
particular there are again no natural integer solutions.

2.5. For a cubic factor of type x> +ax?+bx—1, ab+0, we obtain as above
that (ab+1) divides h.cf. (8,2(a®>+b)), and there are only finitely many
possibilities for (a, b). There is no difficulty with the p-adic treatment, and we
omit details. No rational integral solutions arise, with n odd.

2.6. We now have to turn to the case where m=n=0 mod 3, and we show
that are no solutions in this instance. For if x3N + Ax3™ 4+ 1 has the irreducible
factor x*+ax?+bx+1, then yV¥+ AyM+1 has the irreducible factor y* + (a®
—3ab+3)y*+ (b*—3ab+3)y+1. The coefficients of this latter cubic are all
non-zero because a® — 3ab + 3 has no zero mod 9. But for 3 } (M, N), N odd, we
have seen in sections 2.4 and 2.5 that no such factors can arise. Similarly for a
factor x3 +ax?+bx—1.

3. The case n even.

Transforming by x — — x if necessary, it suffices to find those cubic factors
with constant coefficient + 1. Suppose in the first instance that n=0 mod 2, m
=1mod2. If 6*+af?>+b6+1=0, and 0"+ A0™+1=0, then 0" "+ A= —0"",
and taking norms,
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= (=1)"" = (077" + "+ (637" + 4)
that is
l=—-1-A4AY 6 "+A42Y ™+ 43
S0
AAP+AY i m=Y gr M =2,
whence A= +1, +2. Now when A= +1, Ljunggren [5] shows that x"+ 4Ax™
+ 1 =g(x)h(x), where g(x) is irreducible and h(x)=[T (x — A), with the product
over roots of unity A.

Accordingly, since no root of an irreducible cubic can be a root of unity, we
must have g(x)=x>+ax?+bx + 1 so that deg h(x) is odd, forcing h(+1)=0, an
immediate contradiction.

For A= 12, Schinzel [6] shows inter alia that if n is even, m odd, n>m>0,

then (x"+2x™+1)/(x"™™ +1) is irreducible. So we must have in our instance
that

X"+ 2x"+1 = (x"™"+1)(x*+ax?+bx+1).

Then (m,n)+3=n, so (m,n) divides 3. Clearly (m,n)=3 is impossible, and if
(m,n)=1 it is easy to check that the only possibilities are
(24) x*42x3 41 = (x+ D)3 +x2=x+1)

X*H2x4+1 = (x+D(xP=x24+x+1).

Consider now n=2N, m=2M. Then y¥ + AyM 4+ 1 has the irreducible factor
y® — (a? - 2b)y* + (b* —2a)y— 1; but from the above, the only such factors for
2 (M,N)are y*—y—1,yp*+y*—1, y*+y*+y—1, y*~y*—y—1, and modulo
4 there are no solutions to any of the possibilities (a? —2b, b>—2a)= (0, — 1),

(" 1’0)’ (_ 1, 1)’ (1’ - 1)
From (19), (20), (23), (24), we thus deduce

THEOREM. Suppose x"+Ax"+1€ Z[x], nme Z, nz2m>0, has an
irreducible factor in Z[x] of degree 3. Then, if n>3, the only possibilities are
the following:

x*+2x+1 = (x+1)x3=x2+x+1); x*-2x+1 = (x-1)(x>+x2+x-1);
S+x+1 = (P+x+1D)03—x2+1);

xT—2x*+1

x=DES+x2-1)(x>+x+1);

X742 41 = (B=x2+ D)+ x>+ x2+1);
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xPB-3x* 41 = (B=-x2+ D)0+, +1);

x3B¥4+6Tx1M+1 = (B+x+1)(x*°—...=1).

4. Postscript.

It should be similarly straightforward to find all cubic factors of trinomials
x"+Ax™—1, n>m>0. The previous sections will furnish all solutions if n is
odd, by considering x — —x. When n is even, tutczyk (see Schinzel [12])
gave the example

B+3xP -1 = (B+x-D)*—x3+x2+x+1);
we note the further example
xM4d4xS—1 = B+x2-1D)(x1—... +1),
and also the one parameter family given by

xS+ (Aut —dp)x? —1 = (3 +2ux? +2u2x+ 1)(x* = 2ux? +2u*x—1), p#+0,1.

The following trinomials with their corresponding cubic factor also came to
light whilst the above calculations were being carried out:

xB43x4+2(x3+x+1); xB=Tx—4(3+x*+2x+1);

x®—36x—13(x3+x2+3x+1);

x4 4 dx+3(x3—x2+1); x1+7x3+3(x3 = x2+1); x'0+Tx? —4(x* —x* +1);
x16+7x% —2(x® —x+1); x10=56x3—9(x>—x*+x+1);

x174+103x+56(x* —x2+x+1).

BIBLIOGRAPHY

1. A. Bremner, On the reducibility of trinomials, Glasgow Math. J. 22 (1981), 155-156.

2. A. Capelli, Sulla riduttibilita della funzione x"— A in campo qualunque di rationalitd, Math. Ann.
54 (1901), 602-603.

3. A. T. Jonassen, On the irreducibility of the trinomials x™ + x" + 4, Math. Scand. 21 (1967), 177~
189.

4. W. Ljunggren, On the irreducibility of certain lacunary polynomials. Norske Vid. Selsk. Skr.
(Trondheim) 36 (1963), 159-164.

5. W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Math. Scand. 8
(1960), 65-70.



ON TRINOMIALS OF TYPE x"+Ax"+1 155

6. A. Schinzel, Solution d’un probléme de K. Zarankiewicz sur les suites de puissances consécutives
de nombres irrationnels, Colloq. Math. 9 (1962), 291-296.
. A. Schinzel, Some unsolved problems on polynomials, Matematicka Biblioteka 25 (1963), 63-70.
A. Schinzel, On the reducibility of polynomials and in particular of trinomials, Acta Arith. 11
(1965), 1-34.
9. A. Schinzel, Reducibility of lacunary polynomials 1, Acta Arith. 16 (1969), 123-159.

10. A. Schinzel, Reducibility of lacunary polynonials 11, Acta Arith. 16 (1970), 371-392.

11. A. Schinzel, Reducibility of lacunary polynomials in 1969 Number Theory Institute, (ed. D. J.
Lewis), Proc. Symp. Pure Math. 20, pp. 135-149, American Mathematical Society,
Providence, 1971.

12. A. Schinzel, Reducibility of polynomials, in Computers in Number Theory, (eds. A. O. L. Atkins
and B. J. Birch), pp. 73-75, Academic Press, London - New York, 1971.

13. A. Schinzel, Reducibility of Polynomials, Actes du Congrés International des Mathématiciens,
Nice 1970, vol. 1 pp. 491-496, Paris 1971, Gauthier-Villars, Paris 1971.

14. A. Schinzel, Reducibility of Lacunary polynomials 111, Acta Arith. 34 (1978), 227-266.

15. E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302.

16. Th. Skolem, Einige Sdtze iiber gewisse Reihenentwicklungen und exponentiale Beziehungen mit
Anwendung auf Diophantische Gleichungen, Mat.-Natur. KI. Skr. (N.S.), No. 6, 1933.

17. Th. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen, 8de
Skandinaviska Matematikerkongressen, Stockholm, 1934, pp. 163-188, Lund 1935.

18. H. Tverberg, On the irreducibility of x"+x™+ 1, Math. Scand. 8 (1960), 121-126.

19. K. Th. Vahlen, Uber reductible Binome, Acta Math. 19 (1895), 195-198.

o

EMMANUEL COLLEGE
CAMBRIDGE CB2 3AP
ENGLAND



