ON TRINOMIALS OF TYPE $x^n + Ax^m + 1$

ANDREW BREMNER

1. Introduction.

1.1. K. Th. Vahlen [19] and Capelli [2] have given a simple criterion for the reducibility over Q of the binomial $x^n + A$, $A \in \mathbb{Z}$. The corresponding question of reducibility of trinomials $x^n + Ax^m + B$, and of quadrinomials, has been studied by several authors (Bremner [1], Jonassen [3], Ljunggren [4-5], Schinzel [6-14], Selmer [15], and Tverberg [18]), and many questions have been raised. For trinomials $x^n + Ax^m + 1$, Ljunggren [5] and Tverberg [18] deal with the case |A| = 1, and Schinzel [6] with the case |A| = 2. Schinzel [12] asks the question:

Does there exist a reducible trinomial of the form $x^n + Ax^m + 1$ with n > m > 0, $n \neq 2m$, $A \in \mathbb{Z}$, |A| > 2?

The answer is affirmative; Coray in a letter to Schinzel furnished the examples

$$x^{13} - 3x^4 + 1 = (x^3 - x^2 + 1)(x^{10} + \dots + 1)$$

$$x^{13} + 3x^7 + 1 = (x^4 - x^3 + 1)(x^9 + \dots + 1).$$

It is the purpose of this paper to show there are only finitely many trinomials $x^n + Ax^m + 1$ which possess an irreducible cubic factor, and to give them explicitly.

1.2. We suppose that $x^n + Ax^m + 1$ is divisible by the irreducible cubic $c(x) \in \mathbb{Z}[x]$, $c(0) = \pm 1$. Define the cubic irrational $\theta = \theta_1$ by $c(\theta) = 0$, θ having conjugates θ_2 , θ_3 . Then $\theta_i^n + A\theta_i^m + 1 = 0$, i = 1, 2, 3.

Inductively we have $\theta^r = A_r \theta^2 + B_r \theta + C_r$, $A_r, B_r, C_r \in \mathbb{Z}$, where

$$(A_0, B_0, C_0) = (0, 0, 1), \quad (A_1, B_1, C_1) = (0, 1, 0), \quad (A_2, B_2, C_2) = (1, 0, 0)$$

and

(1)
$$A_{r} = \alpha_{1}\theta_{1}^{r} + \alpha_{2}\theta_{2}^{r} + \alpha_{3}\theta_{3}^{r}, \quad B_{r} = \beta_{1}\theta_{1}^{r} + \beta_{2}\theta_{2}^{r} + \beta_{3}\theta_{3}^{r}, \quad C_{r} = -c(0)A_{r-1},$$
 with

Received June 19, 1980.

$$\alpha_1 = (-\theta_2 + \theta_3)/\Delta, \dots, \beta_1 = (\theta_2^2 - \theta_3^2)/\Delta, \dots,$$

$$\Delta = (\theta_1 - \theta_3)(\theta_3 - \theta_3)(\theta_3 - \theta_3)$$

We thus seek solutions of

$$(A_n + A \cdot A_m)\theta^2 + (B_n + A \cdot B_m)\theta + (C_n + A \cdot C_m + 1) = 0$$

i.e. of $A_n + A \cdot A_m = B_n + A \cdot B_m = C_n + A \cdot C_m + 1 = 0$. Eliminating A,

$$A_{\mathbf{m}}B_{\mathbf{n}} = A_{\mathbf{n}}B_{\mathbf{m}}$$

$$A_n C_m = A_m (C_n + 1)$$

$$(3') B_n C_m = B_m (C_n + 1) .$$

We shall use a p-adic technique of Skolem to solve for m, n these simultaneous equations.

2. The case n odd.

We shall initially suppose that m, n are not both divisible by 3.

2.1. We consider the case when the cubic factor c(x) is of the type $x^3 + bx + 1$. It now follows immediately from (1) that $B_n = A_{n+1}$ so that the equations (2), (3), (3') become

$$(4) A_m A_{n+1} = A_n A_{m+1}$$

$$(5) A_n A_{m-1} = A_m (A_{n-1} - 1)$$

$$(5') A_{n+1}A_{m-1} = A_{m+1}(A_{n-1}-1).$$

Case I: |b| > 1. Suppose that

(6)
$$\theta^3 + b\theta + 1 = 0, \ \theta^n + A\theta^m + 1 = 0, \ |b| > 1.$$

Case I(i): $n \equiv 0 \pmod{3}$. Put n = 3N, N odd, and suppose

$$(7) b^{\lambda} \parallel N, \ \lambda \geq 0.$$

Then

(8)

$$A_{n} = \sum_{i=1}^{3} \alpha_{i} \theta_{i}^{3N} = -\sum_{i=1}^{3} \alpha_{i} (1 + b\theta_{i})^{N} = -A_{0} - bNA_{1} - b^{2} {N \choose 2} A_{2} - \dots$$

$$= -b^{2} {N \choose 2} + b^{5} {N \choose 4} + {N \choose 5} + b^{8} (\cdot) + \dots$$

$$=b^2\binom{N}{2}[-1+b\varphi_1+b^2\varphi_2+\ldots]$$

where $\varphi_1 \varphi_2, \ldots$ are b-adic integers; and similar expansion gives

(9)
$$A_{n+1} = bN[-1+b(\cdot)+b^2(\cdot)+\ldots].$$

Now from (7) and (8), $b^{\lambda+2} | A_n A_{m+1}$, so by (4) and (9), we have $b | A_m$. But if m = 3M + k, k = 1, 2, then as above $A_m \equiv (-1)^M A_k \mod b$, whence $b | A_k$, which forces k = 1. We now have the expansions

$$A_{m-1} = (-1)^{M} b^{2} \binom{M}{2} [-1 + b(\cdot) + \dots]$$

$$A_{m} = (-1)^{M} b M [-1 + b(\cdot) + \dots]$$

$$A_{m+1} = (-1)^{M} [-1 + b(\cdot) + \dots]$$
and
$$A_{n-1} = 1 - b^{3} \binom{N}{3} [1 + b(\cdot) + \dots].$$

Substituting into (4) gives after rearrangement, and removing a factor N,

(10)
$$\left(M - \frac{N-1}{2}\right) + b(\cdot) + b^2(\cdot) + \ldots = 0,$$

and substitution in (5'), after removing the factor N,

(11)
$$\left(\frac{M(M-1)}{2} - \frac{(N-1)(N-2)}{6}\right) + b(\cdot) + b^2(\cdot) + \dots = 0.$$

Now the simultaneous equations (10) and (11), have for a given b, at most two solutions in b-adic integers M, N (see the proof of Satz 12, Skolem [16]). But for any given b, there are two solutions to these equations, given by (M, N) = (0, 1), (-1, -1) corresponding to $\theta^3 + b\theta + 1 = 0$ and $\theta^{-3} + b\theta^{-2} + 1 = 0$. Consequently there are no further solutions with $n \equiv 0 \mod 3$, $m \not\equiv 0 \mod 3$.

Case I(ii): $n \not\equiv 0 \mod 3$. From (6) we have

(12)
$$\theta_2^{n-m} + \theta_2^{-m} = -A = \theta_3^{n-m} + \theta_3^{-m}.$$

Let $n-m=6R+\varrho$, $-m=6S+\sigma$, where $0 \le \varrho$, $\sigma < 6$.

Since $n=6(R-S)+(\varrho-\sigma)$ we are assuming that ϱ , σ have different parity and that $\varrho \not\equiv \sigma \mod 3$.

Now $\theta_i^6 = 1 + b\xi_i$ where $\xi_i = 2\theta_i + b\theta_i^2$, i = 1, 2, 3, so (12) can be written as

$$\theta_2^{\sigma}[1+b\xi_2]^R - \theta_3^{\sigma}[1+b\xi_3]^R + \theta_2^{\sigma}[1+b\xi_2]^S - \theta_3^{\sigma}[1+b\xi_3]^S = 0$$

and expanded to give

$$\begin{split} &\left(\frac{\theta_2^o - \theta_3^o}{\theta_2 - \theta_3}\right) + bR\left(\frac{\xi_2\theta_2^o - \xi_3\theta_3^o}{\theta_2 - \theta_3}\right) + b^2(\cdot) + \dots \\ &+ \left(\frac{\theta_2^\sigma - \theta_3^\sigma}{\theta_2 - \theta_3}\right) + bS\left(\frac{\xi_2\theta_2^\sigma - \xi_3\theta_3^\sigma}{\theta_2 - \theta_3}\right) + b^2(\cdot) + \dots = 0 \ . \end{split}$$

So if

(13)
$$T_k = \frac{\theta_2^k - \theta_3^k}{\theta_2 - \theta_3} \quad \text{then} \quad T_\varrho + T_\sigma \equiv 0 \mod b \ .$$

We calculate the various possibilities:

				0 1								
		T_{i}	i l	0 1	$-\theta$	-b	$b\theta$	-1	$b^2 + \theta$			
Q	0	0	1	1	2	2	3	3	4	4	5	5
σ	1	5	0	2	1	3	2	4	3	5	0	4
$T_{\varrho} + T_{\sigma} \mod b$	1	θ	1	$1-\theta$	$1-\theta$	$-\theta$	$-\theta$	-1	-1	$-1+\theta$	θ	$-1+\theta$

(13) implies from the above table that 1/b, θ/b , or $(1-\theta)/b$ is an integer of $Q(\theta)$; the first two cases are trivially impossible for |b| > 1, and since $(1-\theta)$ has trace 3 and norm b+2, the latter instance would imply $b \mid 3$, $b^3 \mid (b+2)$, again impossible for |b| > 1.

Thus the factor $x^3 + bx + 1$ can arise only if $b = \pm 1$.

Case II(i): b = 1. We work 47-adically, noting that if $\theta^3 + \theta + 1 = 0$ then $\theta^{46} = 1 + 47\xi$, with $\xi = -27 + 13\theta + 77\theta^2$.

Put m=46M+r, n=46N+s, $0 \le r$, s < 46, s odd. Then for $\varepsilon = -1,0,1$, we have

$$(14) \quad A_{n+\epsilon} = A_{s+\epsilon} + 47N(-27A_{s+\epsilon} + 13A_{s+\epsilon+1} + 77A_{s+\epsilon+2}) + 47^2 \binom{N}{2} (\cdot) + \dots$$

(15)
$$A_{m+\epsilon} = A_{r+\epsilon} + 47M(-27A_{r+\epsilon} + 13A_{r+\epsilon+1} + 77A_{r+\epsilon+2}) + 47^2 \binom{M}{2} (\cdot) + \dots$$

Equations (4) and (5) modulo 47 give the congruences

$$A_r A_{s+1} \equiv A_s A_{r+1}$$

(17)
$$A_{s}A_{r-1} \equiv A_{r}(A_{s-1}-1)$$

A simple (machine!) calculation shows that the only solutions of (16) and (17) in the range $0 \le r$, s < 46, s odd, are the following:

$$(18) \quad (r,s) = (1,3), (2,7), (2,45), (3,1), (11,33), (24,13), (41,39), (44,43).$$

Consider, for example, (r, s) = (11, 33). From (14), (15) we have

$$A_{n-1} = 135 + 47N (1) + 47^{2}(\cdot) + \dots$$

$$A_{n} = -201 + 47N (-3) + 47^{2}(\cdot) + \dots$$

$$A_{n+1} = -335 + 47N (-8) + 47^{2}(\cdot) + \dots$$

$$A_{m-1} = -2 + 47M (8) + 47^{2}(\cdot) + \dots$$

$$A_{m} = 3 + 47M (1) + 47^{2}(\cdot) + \dots$$

$$A_{m+1} = 5 + 47M (-12) + 47^{2}(\cdot) + \dots$$

Substituting into (4), (5') gives respectively

$$(-21M - 9N) + 47(\cdot) + 47^{2}(\cdot) + \dots = 0$$

$$(-9M - 11N) + 47(\cdot) + 47^{2}(\cdot) + \dots = 0.$$

The same result as in case I(i) (Satz 12, Skolem [16]; alternatively Satz 11, Skolem [17]) shows that there is at most one solution in 47-adic integers M, N, to this system of equations, which has to satisfy $M \equiv N \equiv 0 \mod 47$. But $M = N \equiv 0$ is a solution! Indeed one readily checks that $\theta^{33} + 67\theta^{11} + 1 = 0$.

In exactly the same manner, one obtains for each pair (r, s) at (18) a unique solution for (m, n) corresponding to the vanishing of the following functions:

(19)
$$\theta^3 + \theta + 1, \ \theta + \theta^3 + 1, \ \theta^{-1} + \theta^2 + 1, \ \theta^{-3} + \theta^{-2} + 1;$$

 $\theta^7 - 2\theta^2 + 1, \ \theta^{-7} - 2\theta^{-5} + 1; \ \theta^{33} + 67\theta^{11} + 1, \ \theta^{-33} + 67\theta^{-22} + 1.$

Case II(ii): b = -1. With $\theta^3 - \theta + 1 = 0$, we have $\theta^{58} = 1 + 59\xi$, where $\xi = -11 + 19\theta - 13\theta^2 \mod 59$. Mutatis mutandis, the 59-adic calculation is similar to the case b = +1, so we omit further details. One finds precisely the solutions:

(20)
$$\theta^{3} - \theta + 1, \ \theta^{-3} - \theta^{-2} + 1;$$
$$\theta^{5} + \theta^{4} + 1, \ \theta + \theta^{-4} + 1, \ \theta^{-5} + \theta^{-1} + 1, \ \theta^{-1} + \theta^{-5} + 1;$$
$$\theta^{7} + 2\theta^{4} + 1, \ \theta^{-7} + 2\theta^{-3} + 1; \quad \theta^{13} - 3\theta^{9} + 1, \ \theta^{-13} - 3\theta^{-4} + 1.$$

2.2. We now consider the case when the cubic factor has the form $x^3 + bx - 1$. We now have from (1), $B_n = A_{n+1}$, $C_n = A_{n-1}$, so that equations (2), (3), and (3') become

$$(21) A_m A_{n+1} = A_n A_{m+1}$$

$$(22) A_n A_{m-1} = A_m (A_{n-1} + 1)$$

$$(22') A_{n+1}A_{m-1} = A_{m+1}(A_{n-1}+1)$$

Put n=3N+s, m=3M+r, r, s=0, 1, 2.

Case I: |b| > 1. With $\theta^3 + b\theta - 1 = 0$ we have $\theta^3 \equiv 1 \mod b$, and equations (21), (22), and (22') give the congruences (recalling $(A_{-1}, A_0, A_1, A_2) = (1, 0, 0, 1)$):

if
$$s=1$$
: $A_r \equiv 0 \mod b$
 $A_{r-1} \equiv A_{r+1} \mod b$,
and if $s=2$: $A_{r+1} \equiv 0 \mod b$
 $A_{r-1} \equiv A_r \mod b$.

For any r = 0, 1, 2 we deduce $1 \equiv 0 \mod b$, impossible for |b| > 1. Thus s = 0, and we have the expansions

$$A_n = b^2 \binom{N}{2} [1 + b(\cdot) + \dots]$$

$$A_{n+1} = bN[-1 + b(\cdot) + \dots].$$

(21) implies $b \mid A_m$, forcing r = 1; and we have modulo b^3 that $A_{m+1} \equiv 1$, $A_{m-1} \equiv b^2 \binom{M}{2}$, $A_{n+1} \equiv -bN$, $A_{n-1} \equiv 1$, so that in particular, $A_{m+1}(A_{n-1} + 1) \equiv 2 \mod b^3$, and $A_{n+1}A_{m-1} \equiv 0 \mod b^3$. But then (22') implies $2 \equiv 0 \mod b^3$, impossible for |b| > 1.

Case II: $b = \pm 1$. For b = +1 a 47-adic calculation as in 2.1, II(i), offers no difficulties; there are no solutions with n odd. Similarly for b = -1; working 59-adically, the only solutions are given by

(23)
$$\theta - \theta^3 + 1, \ \theta^{-1} - \theta^2 + 1; \ \theta^7 - 2\theta^5 + 1, \ \theta^{-7} - 2\theta^{-2} + 1.$$

2.3. Consider a cubic factor of type $x^3 + ax^2 \pm 1$. Transforming by $x \to 1/x$, we see that $x^n + Ax^m + 1 \equiv 0 \mod (x^3 + ax^2 + 1)$ if and only if $x^n + Ax^{n-m} + 1 \equiv 0 \mod (x^3 + ax + 1)$; and $x^n + Ax^m + 1 \equiv 0 \mod (x^3 + ax^2 - 1)$ if and only if

 $x^n + Ax^{n-m} + 1 \equiv 0 \mod (x^3 - ax - 1)$. So all solutions can be determined from those of sections 2.1 and 2.2

2.4. Consider a cubic factor of type $x^3 + ax^2 + bx + 1$, $ab \neq 0$. Transforming by $x \to 1/x$ if necessary, it suffices to find those trinomials $x^n + Ax^m + 1$ in which m is also odd.

Now $(\theta_2^n + \theta_3^n) + A(\theta_2^m + \theta_3^m) + 2 = 0$, so that $2 \equiv 0 \mod (\theta_2 + \theta_3)$ that is, $v = 2/(a+\theta)$ is an integer of $Q(\theta)$. But v satisfies the equation

$$v^{3} - \frac{2(a^{2} + b)}{(ab - 1)}v^{2} + \frac{8a}{(ab - 1)}v - \frac{8}{(ab - 1)} = 0,$$

so necessarily (ab-1) divides h.c.f. $(8, 2(a^2+b))$. For irreducibility, we further require $a+b \neq -2$, and $a \neq b$; and since we are assuming $ab \neq 0$, there arise the following finitely many possibilities listed in the first line of the table.

For $\theta^3 + a\theta^2 + b\theta + 1 = 0$, let p be an odd rational prime with the order of θ modulo p equal to k, where k is even. Suppose the only solution (m, n) = (r, s) of equations (2), (3), and (3') taken modulo p, in the range $0 \le r$, s < k, is (r, s) = (0, 0). Then writing m = Mk + r, n = Nk + s, we have $A_m \equiv A_r$, $A_n \equiv A_s \mod p$, and so (m, n) a solution of (2), (3), and (3') forces (r, s) = (0, 0), whence n (and m) is even. Thus there can be no solutions with n odd. The second line of the above table gives for certain of the listed possibilities (a, b) a prime p such that the above congruence condition is valid; so these possibilities cannot occur. We must dispose of the six remaining cases.

(i) Consider $\theta^3 + 7\theta^2 - \theta + 1 = 0$.

 θ satisfies

$$\theta = \left(\frac{-\theta^2 - 6\theta + 3}{4}\right)^7 = \varphi^7$$
, where $\varphi^3 - \varphi + 1 = 0$,

and consequently $\varphi^n + A\varphi^m + 1 = 0$ implies $\theta^{n/7} + A\theta^{m/7} + 1 = 0$, where $\theta^{1/7} = \varphi$. Since 1/7 is *p*-adic integral for all $p \neq 7$, we can use a 59-adic method as in the previous particular examples, and one finds that the only 59-adic solutions are precisely those corresponding to the solutions listed at (20) (i.e. $\theta^{3/7} - \theta^{1/7} + 1$, etc.). Thus there are certainly no solutions with *n* a natural integer; and in

exactly the same way there are no solutions corresponding to $\theta^3 - \theta^2 + 7\theta + 1$

(ii) Consider $\theta^3 + 3\theta^2 - \theta + 1 = 0$. We have $(\theta + 1)^3 = 4\theta$, so that $\theta - 2^{2/3}\theta^{1/3} + 1 = 0. \qquad \theta^{-1} - 2^{2/3}\theta^{-2/3} + 1 = 0.$

Working 53-adically confirms that these are the only 53-adic solutions, so no natural integer solutions. Similarly for $\theta^3 - \theta^2 + 3\theta + 1 = 0$.

(iii) Consider $\theta^3 + \theta^2 - \theta + 1 = 0$. Corresponding to the identities

$$x^{2}(x+1)^{3} + 2 = (x^{3} + x^{2} - x + 1)(x^{2} + 2x + 2)$$
$$(x^{3} + 1)^{3} - 2x^{7} = (x^{3} + x^{2} - x + 1)(x^{6} - x^{5} + x^{3} + x + 1)$$

we obtain equations

$$\theta + 2^{1/3}\theta^{-2/3} + 1 = 0 = \theta^{-1} + 2^{1/3}\theta^{-5/3} + 1$$

$$\theta^3 - 2^{1/3}\theta^{7/3} + 1 = 0 = \theta^{-3} - 2^{1/3}\theta^{-2/3} + 1$$

and a 47-adic argument shows that these are the only 47-adic solutions; in particular there are again no natural integer solutions.

- 2.5. For a cubic factor of type $x^3 + ax^2 + bx 1$, $ab \neq 0$, we obtain as above that (ab+1) divides h.c.f. $(8, 2(a^2+b))$, and there are only finitely many possibilities for (a, b). There is no difficulty with the *p*-adic treatment, and we omit details. No rational integral solutions arise, with n odd.
- 2.6. We now have to turn to the case where $m \equiv n \equiv 0 \mod 3$, and we show that are no solutions in this instance. For if $x^{3N} + Ax^{3M} + 1$ has the irreducible factor $x^3 + ax^2 + bx + 1$, then $y^N + Ay^M + 1$ has the irreducible factor $y^3 + (a^3 3ab + 3)y^2 + (b^3 3ab + 3)y + 1$. The coefficients of this latter cubic are all non-zero because $a^3 3ab + 3$ has no zero mod 9. But for $3 \nmid (M, N)$, N odd, we have seen in sections 2.4 and 2.5 that no such factors can arise. Similarly for a factor $x^3 + ax^2 + bx 1$.

3. The case n even.

Transforming by $x \to -x$ if necessary, it suffices to find those cubic factors with constant coefficient +1. Suppose in the first instance that $n \equiv 0 \mod 2$, $m \equiv 1 \mod 2$. If $\theta^3 + a\theta^2 + b\theta + 1 = 0$, and $\theta^n + A\theta^m + 1 = 0$, then $\theta^{n-m} + A = -\theta^{-m}$, and taking norms,

$$-(-1)^{-m} = (\theta_1^{n-m} + A)(\theta_2^{n-m} + A)(\theta_3^{n-m} + A)$$

that is

$$1 = -1 - A \sum_{i} \theta_{i}^{m-n} + A^{2} \sum_{i} \theta_{i}^{n-m} + A^{3}$$

so

$$A(A^2 + A \sum_{i} \theta_i^{n-m} - \sum_{i} \theta_i^{m-n}) = 2,$$

whence $A = \pm 1, \pm 2$. Now when $A = \pm 1$, Ljunggren [5] shows that $x^n + Ax^m + 1 = g(x)h(x)$, where g(x) is irreducible and $h(x) = \prod (x - \lambda)$, with the product over roots of unity λ .

Accordingly, since no root of an irreducible cubic can be a root of unity, we must have $g(x) = x^3 + ax^2 + bx + 1$ so that deg h(x) is odd, forcing $h(\pm 1) = 0$, an immediate contradiction.

For $A = \pm 2$, Schinzel [6] shows inter alia that if n is even, m odd, n > m > 0, then $(x^n + 2x^m + 1)/(x^{(m,n)} + 1)$ is irreducible. So we must have in our instance that

$$x^{n} + 2x^{m} + 1 = (x^{(m,n)} + 1)(x^{3} + ax^{2} + bx + 1)$$
.

Then (m, n) + 3 = n, so (m, n) divides 3. Clearly (m, n) = 3 is impossible, and if (m, n) = 1 it is easy to check that the only possibilities are

(24)
$$x^{4} + 2x^{3} + 1 = (x+1)(x^{3} + x^{2} - x + 1)$$
$$x^{4} + 2x + 1 = (x+1)(x^{3} - x^{2} + x + 1).$$

Consider now n=2N, m=2M. Then $y^N + Ay^M + 1$ has the irreducible factor $y^3 - (a^2 - 2b)y^2 + (b^2 - 2a)y - 1$; but from the above, the only such factors for $2 \nmid (M, N)$ are $y^3 - y - 1$, $y^3 + y^2 - 1$, $y^3 + y^2 + y - 1$, $y^3 - y^2 - y - 1$, and modulo 4 there are no solutions to any of the possibilities $(a^2 - 2b, b^2 - 2a) = (0, -1)$, (-1, 0), (-1, 1), (1, -1).

From (19), (20), (23), (24), we thus deduce

THEOREM. Suppose $x^n + Ax^m + 1 \in \mathbb{Z}[x]$, $n, m \in \mathbb{Z}$, $n \ge 2m > 0$, has an irreducible factor in $\mathbb{Z}[x]$ of degree 3. Then, if n > 3, the only possibilities are the following:

$$x^{4} + 2x + 1 = (x+1)(x^{3} - x^{2} + x + 1); x^{4} - 2x + 1 = (x-1)(x^{3} + x^{2} + x - 1);$$
$$x^{5} + x + 1 = (x^{2} + x + 1)(x^{3} - x^{2} + 1);$$
$$x^{7} - 2x^{2} + 1 = (x-1)(x^{3} + x^{2} - 1)(x^{3} + x + 1);$$
$$x^{7} + 2x^{3} + 1 = (x^{3} - x^{2} + 1)(x^{4} + x^{3} + x^{2} + 1);$$

$$x^{13} - 3x^4 + 1 = (x^3 - x^2 + 1)(x^{10} + \dots + 1);$$

$$x^{33} + 67x^{11} + 1 = (x^3 + x + 1)(x^{30} - \dots - 1).$$

4. Postscript.

It should be similarly straightforward to find all cubic factors of trinomials $x^n + Ax^m - 1$, n > m > 0. The previous sections will furnish all solutions if n is odd, by considering $x \to -x$. When n is even, Łutczyk (see Schinzel [12]) gave the example

$$x^{8} + 3x^{3} - 1 = (x^{3} + x - 1)(x^{5} - x^{3} + x^{2} + x + 1);$$

we note the further example

$$x^{14} + 4x^5 - 1 = (x^3 + x^2 - 1)(x^{11} - \dots + 1)$$

and also the one parameter family given by

$$x^{6} + (4\mu^{4} - 4\mu)x^{2} - 1 = (x^{3} + 2\mu x^{2} + 2\mu^{2}x + 1)(x^{3} - 2\mu x^{2} + 2\mu^{2}x - 1), \quad \mu \neq 0, 1$$

The following trinomials with their corresponding cubic factor also came to light whilst the above calculations were being carried out:

$$x^{8} + 3x + 2(x^{3} + x + 1); \quad x^{8} - 7x - 4(x^{3} + x^{2} + 2x + 1);$$

$$x^{8} - 36x - 13(x^{3} + x^{2} + 3x + 1);$$

$$x^{14} + 4x + 3(x^{3} - x^{2} + 1); \quad x^{16} + 7x^{3} + 3(x^{3} - x^{2} + 1); \quad x^{16} + 7x^{2} - 4(x^{3} - x^{2} + 1);$$

$$x^{16} + 7x^{9} - 2(x^{3} - x + 1); \quad x^{16} - 56x^{3} - 9(x^{3} - x^{2} + x + 1);$$

$$x^{17} + 103x + 56(x^{3} - x^{2} + x + 1).$$

BIBLIOGRAPHY

- 1. A. Bremner, On the reducibility of trinomials, Glasgow Math. J. 22 (1981), 155-156.
- A. Capelli, Sulla riduttibilità della funzione x" A in campo qualunque di rationalità, Math. Ann. 54 (1901), 602-603.
- A. T. Jonassen, On the irreducibility of the trinomials x^m ± xⁿ ± 4, Math. Scand. 21 (1967), 177– 189.
- 4. W. Ljunggren, On the irreducibility of certain lacunary polynomials. Norske Vid. Selsk. Skr. (Trondheim) 36 (1963), 159-164.
- W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Math. Scand. 8 (1960), 65-70.

- A. Schinzel, Solution d'un problème de K. Zarankiewicz sur les suites de puissances consécutives de nombres irrationnels. Collog. Math. 9 (1962). 291–296.
- 7. A. Schinzel, Some unsolved problems on polynomials, Matematička Biblioteka 25 (1963), 63-70.
- 8. A. Schinzel, On the reducibility of polynomials and in particular of trinomials, Acta Arith. 11 (1965), 1-34.
- 9 A Schinzel, Reducibility of lacunary polynomials I, Acta Arith. 16 (1969), 123-159.
- 10. A. Schinzel, Reducibility of lacunary polynonials II, Acta Arith. 16 (1970), 371-392.
- A. Schinzel, Reducibility of lacunary polynomials in 1969 Number Theory Institute, (ed. D. J. Lewis), Proc. Symp. Pure Math. 20, pp. 135-149, American Mathematical Society, Providence, 1971.
- 12. A. Schinzel, Reducibility of polynomials, in Computers in Number Theory, (eds. A. O. L. Atkins and B. J. Birch), pp. 73-75, Academic Press, London New York, 1971.
- 13. A. Schinzel, *Reducibility of Polynomials*, Actes du Congrès International des Mathématiciens, Nice 1970, vol. 1 pp. 491-496, Paris 1971, Gauthier-Villars, Paris 1971.
- 14. A. Schinzel, Reducibility of Lacunary polynomials III, Acta Arith. 34 (1978), 227-266.
- 15. E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302.
- 16. Th. Skolem, Einige Sätze über gewisse Reihenentwicklungen und exponentiale Beziehungen mit Anwendung auf Diophantische Gleichungen, Mat.-Natur. Kl. Skr. (N.S.), No. 6, 1933.
- 17. Th. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen, 8de Skandinaviska Matematikerkongressen, Stockholm, 1934, pp. 163-188, Lund 1935.
- 18. H. Tverberg, On the irreducibility of $x^n \pm x^m + 1$, Math. Scand. 8 (1960), 121–126.
- 19. K. Th. Vahlen, Über reductible Binome, Acta Math. 19 (1895), 195-198.

EMMANUEL COLLEGE CAMBRIDGE CB2 3AP ENGLAND