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TRANSLATION INVARIANT SUBSPACES OF
WEIGHTED 7 AND L? SPACES

YNGVE DOMAR

We shall introduce weights on Z and R, such that the corresponding
weighted [ and LP? spaces have the family of translations to the right, or the
family of arbitrary translations, as operators. Our object is to investigate
whether there exist translation invariant subspaces, apart from the most
obvious ones. In this section we give a survey, present some new results and
raise problems. Proofs are given in Section 2 and 3.

For Z, our discussion can be interpreted in terms of invariant or
hyperinvariant subspaces for bilateral (or unilateral) weighted shifts on I?. For
the connection between these concepts and ours we refer to Shields [10] or to
Gellar and Herrero [7].

In our terminology, a subspace is always assumed to be closed.

A. Z and right translations.

w={w,}% is a decreasing sequence of positive numbers, and 1=<p=<oo.
IP(w) is the Banach space of complex-valued sequences ¢={c,}%, with

ew = {cw,}% € IP(2),

and with the norm of ¢ defined as the [” norm of cw. ¢y (w) is the closed subspace
of [ (w) of sequences c¢ for which c,w, — 0, as |n] — 00. By the monotonicity of
w, (right) translation T, defined by

Te = {Cn-—l}o—ooo ’

is an operator on every [?(w) and on ¢, (w). A subspace of IP(w) or c,(w) is called
invariant, if it is invariant under T.
For every me Z U {— o0} U {00},

P(w,m) = {celP(w): c,=0, n<m}

is an invariant subspace of [P(w), 1 <p<oo. The spaces c,(w,m) are defined
analogously and are invariant subspaces of c,(w). We call all these subspaces
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the standard invariant subspaces. Are all invariant subspaces standard? In
terms of bilateral weighted shifts: is the corresponding shift unicellular?

There are two well-known cases where non-standard invariant subspaces are
easy to construct. If

logw,

(1) lim

n-*00 n

> —00,

there exist non-standard invariant subspaces in all spaces considered, for
instance the subspace of all ¢ with

c, =e " n<0,

for some fixed a with real part smaller than the left member of (1). If

logw,

@ lim

n—o0o n

> —00,

a non-standard invariant subspace in anyone of the spaces is formed by the
elements ¢ with

for some fixed b with real part smaller than the left member of (2). In these
cases, the structure of the family of invariant subspaces is in general very
complicated and largely unknown. A special case, when the knowledge is
complete, is the case when IP(w)=I? (Helson and Lowdenslager [8]).

The following theorem shows that exponential behavior of w at infinity, as in
(1) or (2), is not the critical magnitude for existence of non-standard invariant
subspaces, at least not if we have similar growth conditions both at — oo and
00.

THEOREM 1. IP(w), 1 S p <00, and c,(w) have non-standard invariant subspaces,

if

N
3) lim (—"%ﬂﬂogmo > —00.

In]— o0

On the other hand, we have the following theorem, which gives an
affirmative answer to Question 22, p. 109 in [10].

THEOREM 2. Let logw be convex, for n<0, and concave, for n=0, and let

) Y wih < 00.

n*0
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If either

(5) lim 1052’”" > log3,
or

(6) lim 1052“’" < —log3,

then all invariant subspaces of IP(w), 1 <p <00, and cy(w), are standard.

The regularity assumption on w in Theorem 2 is in the nature of things. Thus
it is possible to find weight sequences w, with w, — 0 arbitrarily rapidly, as n
— 0, and such that /’(w,0) contains non-standard invariant subspaces. This
has been shown by N. K. Nikolskii [9, § 3.2, Theorem 4]. On the other hand,
regularity conditions on w together with the negation of (2) suffice to prevent
the existence of non-standard invariant subspaces which are included in
IP(w,0). A sufficient regularity condition is given for IP(w) in [9, § 3.2. Theorem
2]. 1t is fulfilled if {logw,—alogn} is concave for large positive values of n, for
some a>(p—1)/p, if l<p<oo, and for a=0, if p=1.

As for the structure of the family of invariant subspaces in [?(w,0), if (2)
holds, we shall here only refer to Remark 4 of [5], which gives the complete
structure, for p=1, in the so called quasi-analytic case, if w is regular enough,
then giving an affirmative anwer to a problem which was posed, for p=2, as
Question 17 p. 103 in [10]. The result in [5] can be easily extended to arbitrary
p, 1<p<oo.

B. Z and arbitrary translations.

w={w,}®, is now a positive sequence, satisfying

W) 0<inf!vﬂ§supv—vﬂ<oo.
IP(w), co(w) and T are defined as in A. In this situation, both T and T ' are
operators on [P(w), 1 £ p < oo, and cy(w), and a subspace is called invariant if it
is invariant under Tand T . {0} and the whole space are the trivial invariant
subspaces. For which w do we know that [’(w), 1< p <00, or cy(w) have non-
trivial invariant subspaces? The question is closely linked to the problem of the
existence of non-trivial hyperinvariant subspaces for bilateral weighted shifts.
We refer to [7] and [10] for various results. A proof in [7] has been modified
by Atzmon, giving the result [2, Theorem 5.1] that



136 YNGVE DOMAR

00

)

- 00

llog w,|
1 +n?

suffices for existence of non-trivial invariant subspaces. As for the general
problem, no w is known for which IP(w), or ¢y(w), has only trivial invariant
subspaces.

C. R and right translations.

w is a decreasing positive function on R, and 1 <p < oco. LP(w) is the Banach
space of complex-valued functions f on R with fw € L?(R), and with the norm
of f defined as the L? norm of fw. Cy(w) is the closed subspace of L*(w) of
continuous functions f, for which f(x)w(x) — 0, as |x| — oc.

For every a=0, (right) translation T,, defined by

Taf(x) :f(x_a)’ XER,

is an operator in these spaces. A subspace of L?(w), 1 <p< oo, or Cy(w), is
called invariant if it is invariant under the family {T,}. The invariant subspaces

LP(w,a) = {fe L?(w) : f(x)=0, ae, x<a},

a € RU{oo} U{—o00}, 1 Sp<o0, and the subspaces C,(w,a), defined similarly,
are the standard invariant subspaces. Are there any non-standard invariant
subspaces?

As in A, we can find non-standard invariant subspaces if

8) Jim log w(x) > —00,
xX—= —00 X
or
1
) lim og:(x) o

As for two-sided conditions, we have the following result.

THeoREM 3. LP(w), 1<p<oo, and Cy(w) have non-standard invariant
subspaces, if

* d(logw(x))
(19) f-m T
This result is less restrictive than Theorem 1 as for the order of magnitude of
w at infinity, since it holds if |log w(x)|=0(]x|*), «<2. On the other hand, we
have no correspondence to Theorem 2, for no w is known for which L?(w), or
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C,(w), has only standard invariant subspaces. Turning to the structure of the
family of invariant subspaces included in L?(w,0), 1 £p <00, and C,(w,0), our
knowledge is very incomplete. Assuming that logw is concave on R, and that
(9) is not valid, one does not know a single w, for which it is known whether or
not all invariant subspaces in L?(w,0) or Cy(w,0) are standard. For partial
results connected with this challenging open problem we refer to Allan [1],
Bade and Dales [3], Dales and McClure [4], and Domar [6].

D. R and arbitrary translations.

w is now a positive Lebesgue measurable function on R with
w(x+y) < Cw(x),

x e R, ye[—1,1], for some positive constant C. LP(w), Cy(w), and T, are
defined as in case C, now with a € R. Every T, is an operator on L?(w), 1<p
<00, and on Cy(w). A subspace is invariant, if it is invariant under {T,}. {0}
and the whole space are the trivial invariant subspaces. In contrast to case B,
the basic problem is easy to solve.

THeEOREM 4. For every w, LP(w), 1Sp<oo, and Cqy(w) have non-trivial
invariant subspaces.

To conclude this section, we shall discuss the relation between Z and R as for
these problems. To every w={w,}%_, we can associate a step-function v on R,
defined by

v(ix) =w, xel[nmn+l1[.

Starting with case A (or B), we can, for instance by using Hahn-Banach’s
theorem, map the family of invariant subspaces of I[P(w) (or cy(w)) injectively
into the family of invariant subspaces of LP(v) (or Cy(v)). This means that
existence of a non-standard (non-trivial) subspace in the discrete case implies
existence of a non-standard (non-trivial) subspace in the corresponding
continuous case. It would be desirable to have an example showing that the
converse is not generally true.

2.

This section contains the proofs of Theorems 1, 3, and 4, together with a
remark on Theorem 1, motivated by the method of its proof.

Proor oF THEOREM 1. (3) implies that there is a 41>0 such that

1"

W r
n!’

n =
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if n>0, and

if n<0. Starting from [P(w) or c,(w), we observe that a bounded linear
functional on the space is given by the mapping

c—<be) = Y b,

where b={b,}*, belongs to I”?~1(1/w) or I'(1/w). Hence there exists a
complex number a+0, such that d={d,}*, defined by

al-—n
|
d =1 d=nr "=

A 0, n>2
is in the space, and such that b={b,}* defined by

0, n<0
" (—a)

n;

, n=0

defines a bounded linear functional. Then

m+1 am+1—-n (_a)n

b, Tmdy = Y.

n=o (m+1—n)! n!

’

for m=0. But the sum to the right vanishes, since it is the coefficient of z"*lin

the power series expansion of
eaz_e—az — 1

This means that the translates {T™d: m=0} span a proper invariant
subspace. This subspace is non-standard, since d,#+0, for n<0.

Remark. Different non-standard invariant subspaces can be obtained either
by varying a, or by starting instead from a translate of d, or —if the growth of
[logw,| at infinity is sufficiently restricted —by using other entire functions
without zeros. It would be interesting to know to what extent all these
invariant subspaces can be used to describe the family of all invariant
subspaces.

The proofs of Theorems 3 and 4 are based on a device which has been used
earlier by Vretblad [11].
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Proor oF THEOREM 3. If wy is a weight function such that w/w, is bounded
above and below by positive constants, the identity mappings of LP(w) to
LP(wg), and of Cy(w) to Cqy(w,) are isomorphisms which leave every T,, a=0,
invariant. Hence it is no loss of generality to assume that w(x)=1, if x belongs
to some neighborhood of 0. (10) shows that Poisson’s formula, applied to the
negative measure d(log w(x)) on the x-axis, gives a negative harmonic function
u in the open upper halfplane IT*. u is real part of a unique analytic function f
in IT*, such that f(z) tends to 0, as z — 0. Put

F(z) = Ulx,y)+iV(x,y) = —j f(2)dz,

where 7 is any path from 0 to z in 1", and where U and V are real. Since

x+a

(11) Ux+a,y)—Ulx) = —J u(t,y)dt,

(x,y) € I*, a € R, U increases as function of x, for every fixed y>0. (11) shows
that U is locally bounded at the x-axis, and converges to —log w(x), except
when x is a discontinuity point of w.

Put
eFD = G(z).
Then
G(z—a) _ _ _
(12) o |~ exp{U(x—a,y)-Ux,y} £ 1,

for ze 1*, az0. G is locally bounded at the x-axis, and converges, as y —
+0, almost everywhere to a function g with |g|=1/w. (12) implies that
T,g/g € H*(R), for a=0.
For 1<p=< o0, the set
K = {gh: he H’(R)}

is contained in LP(w), since ghw € LP(R). The set is isomorphic to H?(R), hence
it is a subspace of LP(w). It is invariant, since a=0 implies that

T,(gh) = T,gT,h = g(T,g/g)T,h = gk,

where k € H?(R). Obviously K is a non-standard invariant subspace of L?(w).
Putting x,(x)=€"™, t € R, x € R, we obtain more generally that

K@) = {x:f: fe K}

and
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E(T)={X—zfi fEK}

are non-standard invariant subspaces, for every t € R.

In the case when p=00, it is easy to see that the subspaces K(t) 1 C,(w) and
K(f)NCy(w) contain non-zero functions, and hence give non-standard
invariant subspaces of C,(w).

Proor oF THEOREM 4. It is no loss of generality to assume that w(0)=1, and
that logw has a bounded and continuous derivative. With the same
construction as in the proof of Theorem 3 we obtain a harmonic function u in
II*, and a harmonic function U in ITI* with boundary values —logw(x)
everywhere. u is this time bounded, and thus (11) shows that

(x,y) = U(x+a,y)—-Ul(x,y)

is bounded in IT*, for every a € R. Defining G and g as before, we obtain that
T,g/g € H*(R), for every a € R, and the arguments in the final part of the proof
of Theorem 3 go through.

3.

To prepare for the proof of Theorem 2, let us first remark that the form of
the bounded linear functionals on /?(w) and ¢, (w) was stated in the beginning
of the proof of Theorem 1. It is easy to realize that if L is an invariant subspace
of IP(w), 1 < p <00, such that every ¢ € L is included in some I (w, m(c)), m(c) +
—00, and every b € L* is included in some IP(w,n(b))*, n(b)# 00, then L is a
standard invariant subspace, and that the analogous property holds for ¢y(w).
Hence Theorem 2 is the direct corollary of the following theorem.

THEOREM 5. Let w={w,}% satisfy the assumptions of Theorem 2. Let
c={cn}= and b={b,}* be not identically vanishing sequences, such that the
sequences {c,w,} and {b,w, '} are bounded. Suppose that

(13) Y bcym =0, m>0.

= 00

Then there is a p € Z such that b,=0, n>p, and c,=0, n<p.
REMARK. (4) and the assumed regularity of w imply that

iﬂ"—ﬂ<oo.

- 00 Wn

Hence the series in (13) converges absolutely, for m>0.
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Proor orF THEOREM 5. Let us first consider the case when there is an integer
N>0 such that ¢,=0, for n< —N. Then T"c is in I'(w,0), and since the
assumptions on w imply that ['(w,0) contains no non-standard invariant
subspace (cf. the discussion after Theorem 2), TV¢ and its right translates span
a standard invariant subspace. b is in the annihilator, and the conclusion
follows easily. Changing the role of b and ¢, we can prove the theorem
similarly, if there is an integer N >0 such that b,=0, if n> N.

Thus it is enough to show that we obtain a contradiction, if ¢,+0 for
infinitely many negative n, while b,=+0 for infinitely many positive n.

Since the sequences {w,} and {1/w_,} give equivalent cases of the theorem,
we can assume that (5) holds. Without loss of generality we can assume that

(14) le,, < w;t <1 for ng0,

(15) bl <w, <1 fornz0.

We define the positive sequence u=1{u,} in the following way: uy=1,
{logu,}® . is the largest convex minorant of { —log|c,|}° ., and {logu,}3 is the
smallest concave majorant of {log|b,|}&.

Then u is a decreasing sequence, and by (14) and (15) it satisfies
n<0,
0.

u, = w

n n>

v

u

IIA

w,, h

n

These inequalities and (4) show that

Y ulh < o0,
n¥0

and hence, by the regularity of (u,)*,

(16) z%ﬂ<oo.

It follows from the construction of u that

(17) led Sug', neZ,

(18) b, = u,, neZ,
and that the set EcZ of all n for which
(19) un+lun—l 4: ur% ’

is unbounded above and below, and has the property that
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lea = u;t, fne(=ZY)NE
bal = u,, ifneZ*NE.

By (16) and the regularity properties of u, u, , ,/u, decreases monotonically to
0,if n<0, n > —o0, and if n20, n —» o0.

Let 4 and yu, A <y, be strictly included between the two members of (5). (5)
implies that

u, > et
for an infinite sequence of negative integers n. Since the second difference of the
sequence {un’} takes the constant value 2u> 24, we must have arbitrarily large
positive integers m, such that
logu_,,_,—2logu_,+logu_, ., = 24.

The last inequality means that for such integers m

(20) Uom gt

Uom+i u

u__l_
m-le .

IIA

The definition of E, by (19), shows that —m e E. Furthermore, by the
monotonicity properties of u,,,/u,, there exists, if m is large enough, a pe E
such that

- U_,,— u
pl< mle—ls P

U_m up+1

(21

Since —me E, peE, we have |c_,|=uZ,, |b|=u, Thus (13), with m
substituted to m+ p, gives
ul’

Z bn+pcn—m .

n*0

By (17) and (18) we obtain

(22) Mo

U_m n+0 Un—m

un+p
b

I\

and we shall show that this gives a contradiction, if g=m+ p is large enough.
The right hand member of (22) can be written

T4 T 4L =S54,

n<m n—m

(20) and (21) give
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<e "—,
U+t U_p
and
U,_1 _, u
p <e A_P ,
U_m-1 U_m

and since logu,, ,/u,,_, is concave for n € [ —p, m], these inequalities give

u _ u
(23) _ptn_ < e i 2
U—mtn U_pm
n € [ —p,m]. Hence
S, € Y ehit Yo _ Y ,
n¥0 U m U_m

where

C=Y et < ¥y 37 =1,

n¥0 n¥0

Thus, to obtain a contradiction in (22), it is enough to show that
u_nuy 'S, and  u_,u, 'S,

tend to 0, as g=m+p — oco. We prove this for the second of these products.
The first is treated similarly.
Taking n=m in (23), we find that

Up s _ u
sy = 2 S T < 2
U U_p  U_p,
Using this inequality, we obtain
- Up 4 Un+
(24) U_pt,'8; £ Yy —F— = =1,
n>m un—mum+p n>0 unuq

By the concavity of {logu,}J,

un+q
u, u,

Up+y
3

A

for g=0. Hence the terms in

un+q

n>0 unuq

are dominated by a constant times the corresponding terms in the convergent
series (16). Furthermore, for fixed n,
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.U . u
lim "4 < lim 4 = 0.

g=oo Uplly gm0 Uy
Hence the right hand member of (24) tends to 0, as ¢ — oo, proving that
u_,u, 'S3 - 0,

as g — oo.
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