SOME REMARKS ON LARGEST SUBHARMONIC MINORANTS

P I RIPPON

1. Introduction.

Let E be an open connected subset of k-dimensional Euclidean space \mathbb{R}^k and let $F: E \to [0, \infty]$ be an upper semicontinuous function. Following Domar [1] we denote by $\{F\}$ the family of all functions u subharmonic in E which satisfy

$$u(x) \leq F(x), \quad x \in E$$
.

and we put

$$M(x) = \sup_{u \in \{F\}} u(x), \quad x \in E.$$

In this paper we examine the sharpness of the restriction on F under which the following theorem holds.

Theorem 1. Let φ be a non-negative, increasing function on $[0,\infty]$ and suppose that

(1.1)
$$\int_{1}^{\infty} \frac{dt}{[\varphi(t)]^{1/(k-1)}} < \infty.$$

 \cdot If

(1.2)
$$\int_{E} \varphi(\log^{+} F(x)) dx < \infty,$$

then M(x) is bounded above on each compact subset of E, and is therefore subharmonic in E.

A proof of this result for the case $\varphi(t) = t^{k-1+\varepsilon}$, $\varepsilon > 0$, was given by Domar [1, Theorem 2] and only minor modifications to his argument yield the above slight generalisation. Domar showed [1, Theorem 4] that the result is false if $\varphi(t) = t^{k-1}$, but it seems worthwhile to point out that (at least when k = 2) the condition (1.1) is best possible for a wide class of functions φ .

Received July 7, 1980.

Theorem 2. Suppose that φ is a strictly positive, increasing function on $(0,\infty)$ and that

$$\int_{1}^{\infty} \frac{dt}{\varphi(t)} = \infty.$$

If φ is $C^{(1)}$ on $(0, \infty)$ and $\varphi'(t) = o(\varphi(t))$ as $t \to \infty$, then Theorem 1 is false in \mathbb{R}^2 for this φ .

To prove Theorem 2 we construct an example which is closely related to both [1, Theorem 4] and [2]. It will be clear from the method that the restriction $\varphi'(t) = o(\varphi(t))$ could be relaxed a little, but it would of course be desirable to omit it altogether.

2. Proof of Theorem 2.

In [2] we used a theorem of Warschawski to obtain a certain harmonic function in a strip-like domain. Since this is needed in the present construction we recall it here.

LEMMA. Let θ be strictly positive and $C^{(1)}$ on $(-\infty, \infty)$, and satisfy $|\theta'(x)| \leq m$, $-\infty < x < \infty$. If

(2.1)
$$S = \{x + iy : -\infty < x < \infty, \ 0 < y < \theta(x)\},$$

then there is a positive harmonic function h in S such that

- (i) h vanishes continuously at finite points of ∂S ,
- (ii) for $z = x + iy \in S$, x > 0,

$$h(z) \leq A \exp \left[B \int_0^x \frac{dt}{\theta(t)} \right],$$

where $A = \exp [8\pi (1 + 4m^2/3)]$, $B = \pi (1 + m^2/3)$,

and

(iii) there is an arc C in S tending to the boundary point at $+\infty$ such that

$$h(z) \to \infty$$
, as $z \to +\infty$ along C.

We begin the proof of Theorem 2 by putting

$$\psi(t) = \varphi(t) \left(1 + \int_{1}^{t} \frac{du}{\varphi(u)} \right), \quad t \ge 1,$$

which is a $C^{(1)}$ majorant for φ in $(1, \infty)$. It is easy to check that ψ/φ is increasing and unbounded in $(1, \infty)$, that

130 P. J. RIPPON

$$\int_{1}^{\infty} \frac{dt}{\psi(t)} = \infty ,$$

and that

$$\psi'(t) = o(\psi(t)), \quad t \to \infty$$
.

In particular there is a number $a \ge 1$ such that

$$\frac{\psi'(t)}{\psi(t)} \le \frac{\sqrt{3}}{2\pi}, \quad t \ge a.$$

The significance of this bound will become apparent in a moment.

Let $b = \lceil \psi(a) \rceil^{-1}$ and put

$$\alpha(y) = \psi^{-1} \left(\frac{1}{v} \right), \quad 0 < y \le b,$$

and

$$\mu(y) = \frac{1}{2\pi} \int_{a}^{\alpha(y)} \frac{dt}{\psi(t)}, \quad 0 < y \leq b,$$

so that μ is decreasing on (0, b], $\mu(b) = 0$ and $\mu(y) \to \infty$ as $y \to 0$. It follows that $y = \theta(x) = \mu^{-1}(x)$ is decreasing on $[0, \infty)$, $\theta(0) = b$ and, for x > 0,

$$|\theta'(x)| = -\frac{1}{\mu'(y)} = -\frac{2\pi\psi(\alpha(y))}{\alpha'(y)}$$
$$= -\frac{2\pi}{y\alpha'(y)} = 2\pi y\psi'(\alpha(y))$$
$$= \frac{2\pi\psi'(\alpha(y))}{\psi(\alpha(y))} \le \sqrt{3},$$

by (2.2).

Now extend θ to R so that $|\theta'| \le \sqrt{3}$ there, and consider the corresponding strip S defined by (2.1). The harmonic function h given by the lemma can be so normalised that

$$h(z) \le \exp \left[2\pi \int_0^x \frac{dt}{\theta(t)} \right], \quad z = x + iy \in S, \ x > 0.$$

Since

$$\int_0^x \frac{dt}{\theta(t)} = \int_b^{\theta(x)} \frac{\mu'(s)}{s} \, ds$$

$$= \frac{1}{2\pi} \int_{b}^{\theta(x)} \alpha'(s) ds$$
$$\leq \frac{\alpha(\theta(x))}{2\pi},$$

we have

$$(2.3) h(z) \le \exp\left[\alpha(\theta(x))\right], \quad z = x + iy \in S, \ x > 0.$$

After these preliminaries we show that Theorem 1 is false in

$$E = \{x + iy : |x| < 1, |y| < 1\}$$
.

Let x_n , $n=1,2,\ldots$, be an unbounded, increasing sequence of positive numbers and for $n=1,2,\ldots$, put

$$\theta_n(x) = \theta(x + x_n + 1), \quad |x| < 1,$$

$$E_n = \{x + iy : |x| < 1, 0 < y_n < \theta_n(x)\}$$

and

$$h_n(z) = h(z + x_n + 1), \quad z \in E_n$$
.

In view of parts (i) and (iii) of the lemma the functions

$$u_n(z) = \begin{cases} h_n(z), & z \in E_n, \\ 0, & z \in E \setminus E_n, \end{cases}$$

are each subharmonic in E, but are not uniformly bounded near, for instance, the origin.

Since $\varphi(t)/\psi(t) = o(1)$, as $t \to \infty$, it is possible to choose the numbers x_n such that, if

$$y_n = \theta(x_n)$$
 and $\delta_n = \varphi(\alpha(y_n))/\psi(\alpha(y_n))$,

then

Now, by (2.3),

$$\int_{E} \varphi \left(\log^{+} u_{n}(z) \right) dx dy \leq \int_{E} \varphi \left(\alpha \left(\theta_{n}(x) \right) \right) dx dy$$

$$= \int_{-1}^{1} \theta_{n}(x) \varphi \left(\alpha \left(\theta_{n}(x) \right) \right) dx$$

$$\leq \delta_n \int_{-1}^1 \theta_n(x) \psi(\alpha(\theta_n(x))) dx$$
$$= 2\delta_n,$$

since ψ/φ is monotonic and $\alpha(y) = \psi^{-1}(1/y)$.

Hence the upper semicontinuous function

(2.5)
$$F(z) = \begin{cases} \sup_{n} u_n(z), & z \in E \setminus \{y = 0\}, \\ \infty, & z \in E \cap \{y = 0\}, \end{cases}$$

satisfies

$$\int_{E} \varphi(\log^{+} F(z)) dx dy \leq \sum_{n=1}^{\infty} \int_{E} \varphi(\log^{+} u_{n}(z)) dx dy$$

$$< \infty,$$

by (2.4).

Thus if φ satisfies the hypotheses of Theorem 2, then we can construct F in E by (2.5) so that (1.2) is satisfied and yet the functions u_n , which belong to $\{F\}$, are not uniformly bounded above on any compact set containing the origin. The proof of Theorem 2 is complete.

ADDED IN PROOF. I am grateful to Professor Domar for pointing out that Theorem 2 holds also when k>2. A similar construction of the desired example is possible using a version of the lemma based on Harnack's inequality.

REFERENCES

- 1. Y. Domar, On the existence of a largest subharmonic minorant for a given function, Ark. Mat. 3 (1954-58), 429-440.
- P. J. Rippon, On a growth condition related to the MacLane class, J. London Math. Soc. (2), 18 (1978), 94-100.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE CORK IRELAND