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ORDER BOUNDED OPERATORS AND
TENSOR PRODUCTS OF BANACH LATTICES

S. HEINRICH*, N. J. NIELSEN** and G. H. OLSEN***

Introduction.

In this paper we study relations between order bounded operators and the
concepts of p-convexity and p-concavity and study the structure of the m- and
/-tensor products of Banach lattices, originally introduced by Schaefer [13].
Since it follows from Gordon and Lewis [1] and Schiitt [14] that if X and Y
are Banach lattices then neither X ®, Y nor X ®,Y have local unconditional
structure in general the two tensor products of Schaefer are different from the
usual tensor products between Banach spaces.

In section 1 of the paper we prove some basic results on the connection
between convexity and concavity in Banach lattices and order bounded
operators, results which will be used frequently in section 2. We prove e.g. that
if X is a p-convex Banach lattice, which is weakly sequentially complete, then
every operator which has p-summing adjoint, is normable by X. This result is
used to solve a problem on unconditional bases of L,(0,1), 1 <p <2 which has
left over in [11].

In section 2 of the paper we investigate the basic properties of the tensor
products mentioned above. Among other things we describe the tensor
products in case the involved lattices are Kothe function spaces and this result
shows to some extent that these tensor products are the most natural for
Banach lattices.

We also show that if E is a Banach space and X is an order continuous
Banach lattice then the dual of the m-tensor product E®,, X is naturally
isomorphic to E*®, X* provided E* has the Radon-Nikodym property.
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Included in the section are also some results concerning permanence properties
with respect to type, cotype, convexity and concavity. Finally we show that if X
and Y are order continuous Banach lattices then the identity is an
isomorphism between the m-tensor product X ®,, Y and the /-tensor product
X®,Y if and only if either both X and Y are L, -spaces [Sp<oo or both
spaces are cq(I')-spaces. This result also yields that if X and Y are order
continuous rearrangement invariant function spaces on [0, 1], so that X ®, Y
is rearrangement invariant on [0, 1] x [0, 1], then there is a p, 1 Sp<oo such
that up to renorming both X and Y are equal to L,(0,1).

Section 3 of the paper is devoted to studying when the m-tensor product of a
Banach space E and a Banach lattice X has the uniform approximation
property (u.a.p.). X is said to have the order u.a.p., if X has the u.a.p. and the
approximating operators can be chosen to satisfy a certain order theoretical
inequality (Definition 3.5) which somehow gives control of the modulus of the
operators. We show that if E has the u.a.p. and X has the order u.a.p. then
E®,, X has the uv.a.p.

This is then used to prove an important result on the u.a.p. in Banach lattices,
namely that for superflexive lattices the order u.a.p. is equivalent to the u.a.p.
Let us here point out that it is still unknown whether the positive u.a.p. is
equivalent to the v.a.p. for Banach lattices (even if we assume superflexivity).

We end the section by proving a result on the Grothendieck uniform
approximation property (introduced in [2]) of E®,, X similar to the result
above but without the “order” assumption.

0. Notation and preliminaries.

In this paper we shall use the terminology and notation commonly used in
Banach space theory and the theory of Banach lattices, as it appears in [8] and
[9]. All vector spaces are assumed to be over the reals unless otherwise stated.

If E and F are Banach spaces then we denote the space of all bounded
operators from E to F by B(E,F) and we let Bg denote the unit ball of E.

If (Q, #,u) is a measure space, X a Banach space and 1=Zp=<o00, then
L,(u, X) is the space of all equivalence classes of measurable functions
f: 2 — X, for which [||f||Pdu<oco (esssup || f| <oo if p=o00).

Let X be a Banach lattice and x,, x,,...,x, € X and let s, denote the space
of all continuous, 1-homogeneous real functions of R" equipped with the
topology of uniform convergence on compacta (under which 4, is a Banach
lattice). It follows from the results in [9, section 1.d] that there is a unique
bounded linear operator t: #, — X, which preserves the lattice operations
and so that the image of the ith coordinate function by 1 is equal to x; for i<n.
If f € o ,, then we denote t(f) by f(x,, x,,. . ., X,), like in [9]. The calculus of 1-
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homogeneous expression in Banach lattices was first developed by Krivine [5].
We recall that if 1 < p < oo, then X is called p-convex (p-concave), if there is a
constant K =1 so that

n 1/p n i/p
(Z |le”> < K(Z ||le|"> for all x;,x5,...,x, € X
j=1 i=1

n 1/p n 1/p
(5, 1) < (5 )

The smallest constant K which can be used in (*) is called the p-convexity
constant (p-concavity constant) of X.

We also recall that if E is a Banach space, then an operator T e B(E, X) is
called order bounded, if T(Bpg) is an order bounded subset of X. The space of
all order bounded operators from E to X shall be denoted by #(E, X). If
Te #(E, X) then the order bounded norm ||T||,, is defined by

(*)

for all x;,x,,...,x, € X> .

IT|,, = inf{lzll | ITxI<zlx| for all x € E} .

#(E, X) is a Banach space under the norm |-||,, [11, Chapter IV].
If F is another Banach space and Te B(E, F), then T is called normable by
X ([11]), if for all S € B(F,X) STe #A(E, X). We define the norm sx(T) by

sx(T) = sup{|IST|,,| SeB(F,X);|SI<1}.

Under the norm sy the space & x(E, F) of all operators from E to F, which are
normable by X, is a Banach operator ideal ([11, Chapter IV]).

1. p-convexity, p-concavity and order bounded operators.

In this section we shall prove a few basic results on the connection between
convexity and concavity in Banach lattices and order bounded operators,
results which will be used frequently in the sequel.

Throughout the section, E and F will denote Banach spaces and X a Banach
lattice. If ey, e,,.. ., e, € E, then the function f: R" — R defined by

n
2 L
j=1

belongs to J#, and therefore the expression [|3.7_, x,e;||; represents an element
in X. (We shall omit the index E on the norm in E, if there is no possibility for
misunderstandings.)

We start with a lemma, which can be proved as in [9, Remark after
Theorem 1.d.1] and the proof is therefore left to the reader.

[t ty. . . t) =

for all t,t,,...,t,€ R
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1.1. LeMMaA. If x,,x5,...,X, € X and ey, e,,...,e, € E, then
n
Y x|l = sup{
i=1

Lemma 1.1 shows in particular that if Te #(E* X) is of the form T
=37-1x;®y; where (x)}-;<SE, (y)j-1SX then

n

Z x*(e;)x;

j=1

| x*eE*, ||x*||§1}.

ITlm =

B

n
Z YiX;
i=1 E

a fact which will be useful in the sequel.

Let 1=p<ooand let (€, .#, y) be a measure space. If f € L ,(u, X) is a simple
function, say f=31_, 1 4%y where (x)j-; =X and (A4))}-, is a set of mutually
disjoint measurable sets, then we put

1/p n i/p
(Jlfl”du> =z u(A,-)|xi|P) :
j=1

We can now prove the following proposition.

1.2. PROPOSITION. Let X be p-convex, 1=p<oo and let fe L,(u,X). If
() EL,(u, X) is a sequence of simple functions with [ f=sPdu — 0 for
n — oo, then the sequence ({|s,|” du)'/® converges to a limit, which only depends
on f and p. This limit is denoted ([|f|°du)'’? and its satisfies the inequality

1/p 1/p
(flfl”du> b K(J Hfll”du>

where K is the p-convexity constant for X.

(i)

Proor. If s € L,(u, X) is a simple function, then it follows directly from the
definition and the p-convexity of X that

1/p 1/p
(JISI”du> §K<fllsu”du> .

Hence if (s,) is a sequence of simple functions with the stated properties, (1)
gives that (([|s,/” du)*/?) is a Cauchy sequence in X and hence convergent. If the
limit is denoted by ({|f17du)'/? then (1) gives that (i) holds. Since ((f|s,|” du)'/?)
is convergent for any sequence (s,) with the stated properties the limit does not
depend on (s,).

1)
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REMARK. Let (f)j-;SL,(u) and (x))j-, =X, and put

f@) = if,.(t)x,. teQ.
j=1

The expression ([ | f|°du)*/? is 1-homogeneous and therefore defines an element
in X, also when X is not p-convex. By approximating the fs by simple
functions it is readily verified that ([|f|?du)'/? agrees with the “integral” in
Proposition 1.2 in case X is p-convex. If X is p-concave, then it is easy to see

that
1/p 1/p)
(J Ilfll”du> < K (ﬁﬂvdﬂ)

where fis as above and K is the p-concavity constant of X.

1.3. THEOREM. Let X be weakly sequentially complete and p-convex with the
bounded approximation property. Then every T € B(E, F) with p-summing adjoint
is normably by X. Furthermore, there exists a constant K so that sx(T)
<Kn,(T*) for all Te B(E,F) with T* p-summing.

Proor. From [11, Theorem 4.16] and [9, Theorem L.c.4], it follows that it is -
enough to show that T* is (x,)-summing for every normalized sequence
(x,) S X consisting of mutually disjoint elements with a constant independent
of (x,). Hence let (x,) be such a sequence and we may without loss of generality
assume that x,=0 for all n € N. Since T* is p-summing there is a probability
measure u on Bf* so that

1/p
(1 IT*y*| = n,,(T*)U |y**(y*)l"du(y**)]

for all y* e F*.
If y¥,y¥,...,y¥ € F* and K denotes the p-convexity constant of X, then by
Proposition 1.2

k k |4
) 2 IT*yflx)| = *) (J Zl Y*ROHx;| du@y**)tr
i=1 i=
1/p
< Knp(T*< ¥ (y)x du(y**))
< Km,(T*) sup{ Z VX | v** e FrH, Ily**nél}.

(2) shows that T* is (x,)-summing with a constant less than or equal to
Kn,(T*).
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The theorem has the following interesting corollary, which should be
compared with [11, Theorem 5.9]:

1.4. COROLLARY. Assume that X is p-concave, 1 Sp<oo. If Te B (E, X), then
T* is normable by any p-convex, weakly sequentially complete Banach lattice Y
with the bounded approximation property.

Proor. If Te #(E, X), then T admits a factorization

E—T,Xx
Tl\ /"Z
C(S)

where S is compact, || T, || £1 and T, =0. Since X is p-concave, T, is p-summing
[9], but then T and hence T** is p-summing, and the result follows from
Theorem 1.3.

ADDED IN PROOF. It has been proved in [18] and independently in [19] that
Theorem 1.3 and Corollary 1.4 hold without the assumption that X has the
bounded approximation property.

As a corollary of Theorem 1.3 we can give a complete answer to problem 6.7
of [11].

If (x,) is an unconditional basis of X then we say that an operator is
normable by (x,), if it is normable, when X is equipped with the Banach lattice
structure defined by (x,).

1.5. CorOLLARY. Let (x,) be an unconditional basis for L,(0,1), 1<p<2, and
let Te B(E,F). Then T is normable by (x,) if and only if T* is p-summing.

ProoF. By a result of Johnson, Maurey, Schechtman, and Tzafriri [3] (see
also [9, Theorem 1.d.7]) L (0, 1), 1 <p <2 is p-convex, when L (0, 1) is equipped
with the lattice structure defined by (x,). Hence if T* is p-summing T is
normable by (x,) by Theorem 1.3. The “only if” part follows from [11,
Proposition 6.5].

The final result of this section is

1.6. ProposITION. Let py=sup {p I X is p-convex}. Every operator which is
normable by X has py-summing adjoint.



ORDER BOUNDED OPERATORS AND TENSOR PRODUCTS ... 105

Proor. By a result of Krivine [5], X contains () uniformly on disjoint
elements. If Te & x(E, F), then by [11], T is normable by [, , and hence T* is
Do-summing.

2. Tensor products of Banach lattices.

In this section we wish to study the m-and /-products of Banach lattices
introduced by Schaefer [13] in further detail. These tensor products are again
Banach lattices, if the two factors are, and we shall here investigate the basic
properties of them with respect to permanence, etc. and their mutual relation.

In the sequel we let X and Y be two Banach lattices and E a Banach space.
We start by recalling the definition of the two tensor products.

We can consider the algebraic tensor product E®X as a subspace of
#(E*, X) and likewise we may consider X®E as a subspace of

B*(X*E) = {Te B(X*,E)| T*e B(E* X)),

which is a Banach space under the norm ||T||,= | T*|,, for all Te 2*(X*, E).
It is readily verified that both |-|, and |||, are crossnorms on E®X
respectively X ® E. We introduce the following definition:

2.1. DeFInNITION. The m-tensor product E®,, X is the closure of EQ X in
#(E* X) and the /-tensor product X®,E is the closure of X®E in
B*(X*E).

REMARK. Clearly, the map T— T* defines an isometry of E®, X onto
X®,E and hence it may seem artificial to introduce two tensor products.
However, if X and Y are Kothe function spaces and one wants to define a
lattice tensor product between X and Y, then there are two natural candidates
“X with image in Y” and “Y with image in X”. As we shall see later these two
situations correspond precisely to the two tensor products defined above. Also
it seems to us that several results of this section become more clear (especially
in case X =Y) when both tensor products are defined.

It follows from Schaefer [13 IV Theorem 7.2] that both X®, Yand X®,Y
are Banach lattices under their respective norms and the canonical order
between operators.

He also proved that

#A(X,Y) and #*(X,Y) = {Te B(X,Y)I T* e B(Y* X*)}

with the norm |T|,=||T*|, for Te #*(X,Y) are Banach lattices, provided
that there is a contractive positive projection of Y** onto Y, [13 IV Theorem
4.3].
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Theorem 9.4 in chapter IV of [13] shows that (E®, X)* is naturally
isometric to (lattice isometric to in case E is a Banach lattice) #(E, X*); if
S e B(E,X*) and Te E®X then the duality is given by <S, T) =trace ($*T).
An analoguous statement holds for X ®,E.

We start by examining the space E®,, X in case X is a Kothe function space
on a probability space (Q, .#, u) ([9]). In that case X (E) denotes the space of all
measurable functions f: Q — E for which | f(*)||ge X. If fe X(E), then we
put || fllx@e= I/ (:)lgll x- This is readily seen to be a norm on X (E) turning it
into a Banach space. X (Y) is readily seen to be a Banach lattice, and if X and Y
are Kothe function spaces on probability spaces (2,,.#,,u,) respectively
(Q2,, A 5, u,) then it is easy to see that X (Y) can be identified with the space of
those p; x u,-measurable functions f, for which f(t, -) € Y and the function ¢
— ||f(t )lly belongs to X. When this space is equipped with the norm
I1£C, Nyllx the identification is a lattice isometry.

In [11] it is proved that if X is a Kothe function space, then % (E, X) can be
identified with the space of certain w*-scalary measurable functions with image
in E*. The following theorem shows that for elements in the m-tensor product
we get strongly measurable functions, therefore it also seems natural to
consider this tensor product in full generality.

2.2. THEOREM. Let (Q,.#,u) be a probability space and let X be a Kithe
function space on (Q, #,u) with order continuous norm. For every Te E®, X
there is a @€ X (E) so that for all x* € E*

(1) (Tx*)(t)=<x*, @r(t)> for almost all t € Q.
(ii) The map T — @7is an isometry of E®,, X onto X (E) (a lattice isometry if E
is a Banach lattice).

Proor. Let Te EQ X, say T=3j_, x;® f;, where (x)}-, gE and (f)j-, &X.
Define ¢ € X(E) by

1) er(®) = Y fi(t)x; for almost all te Q.
j=1

Clearly we get for all x* € E*
2) (Tx*)(t) = {x*,or(t)>) for almost all t e Q.

(1) and (2) give immediately that ¢ is uniquely determined by T, which shows
that T— @ris linear. From (2) we get immediately that | T|,,=ll@| x( and
therefore T— ¢1 can be extended to an isometry from E®,, X into X(E).
We have to show that (2) holds for all of E®Q,, X, but if Te E®Q,, X we can
define S € #(E*, X) by
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3) (Sx*)(t) = <{x*,@r(t)), x*eE* almostallte Q.
If (T)<E®X with T, — T, then

IT,=Sllm = lor—orllx@ = 1T-Tln,
so that T=S.

Let ¢ € X(E), since X is order continuous we can find a sequence of simple
functions (¢,) < X (E) with @ = @ull xE — 0 for n — oc. Define for all n

@ (T, x*)(t) = <{x* 9,()), x*eE* almost all te Q
(5) (Tx*)(t) = {<x* o)), x*eE* almostallteQ.

Clearly T, —» T in #(E* X) so that Te E®,, X. It is obvious that T— ¢y
preserves the lattice operations.

Since Y®, X is lattice isometric to X ®,, Y by the map T— T* the remarks
above and Theorem 2.2 show that if X and Y are Ko6the function spaces over
the probability spaces (2, .#,,u,), respectively (Q,, .#,,u,) then we may
identify Y®,X with the space pf those pu, x u,-measurable functions f:
Q, xQ, —» R for which f(-,s) € X for almost all s € Q, and the function
s — || f(-,s)|x belongs to Y. The norm of an element f in the space is given
by [1£C, Mxlly.

We now wish to characterize X ®,, Y in case the order in X is defined by an
unconditional basis (e,) with unconditional constant 1. We start with the
lemma:

2.3. LEMMA. For every Te X ®,, Y there is a unique sequence (x,)< Y so that
T=33,e,®x, where the series converges unconditionally in X®,,Y.
Proor. For all n e N we define
(N Z, = span{e,®x | ksn,xeY},
2 Z = span{e,®x | ke N, xe Y}.

Clearly Z=X®,, Y, and since (e,) is unconditional we have for all sequences
(x)€X and all n<m

n

2 €®x;

j=1

m

Y €®x;

i=1

Y

3)

X X

m

n
2 Ixjle;
j=1

m
2 X
ji=1

-

(3) shows that if P,: Z — Z, is defined by

m

n

4) P,,(Z ej®xj> = ) e®x; forall) ¢®x;eZ,
j

j i=1
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then P, is a projection of norm one and therefore it extends uniquely to a
projection of X®,, Y onto Z,, also denoted P,.

Clearly P,,,P,=P, for all n € N. Since P,% — % for all % e Z, it follows
thatalso P — # forall # e X®,, Y. If % € X®,, Y we can find a sequence
(x,)€ Y so that e,®x,=(P,— P,_)%, n>1 and e, ®x, = P,%. It follows from
the above that

o0

U =Y €Qx,.

n=1

The unconditional convergence of the series follows from (3). It is clear that
(x,) is uniquely determined by %.

We define

Y(X) = {(xn)g Y| sup

<os}
Y

where the norm of an element (x,) e Y(X) is defined by
sup, || 132~ Ixexl x|l y- Under this norm Y(X) is a Banach lattice. We denote
by Y(X) the closure in Y(X) of the sequences which are eventually zero. Y(X) is
readily seen to be a Banach latice. We can now prove

n
Z |xley
j=1

X

2.4. THEOREM. If the order in X is induced by an unconditional basis (e,) with
constant one, then there is a lattice isometry I of Y(X) onto X ®,,Y so that

(1) I1f = i e,®f(n) forall fe Y(X).
n=1

ProoF. Let f € Y(X) and define f, € Y(X) for all k by f,(n)=f(n), n<k and
fi(m)=0, n>k. It is easy to see that f, — fin Y(X). If k<m, then

4y M fom—=1fillm = ; lfw(n) = fi()le, LT 1w =Sl yx) -

X

(1) shows that the series >2°, ¢,® f (n) is convergent in X ®, Yso that I is well-
defined.
If fe Y(X) then

k

Y e®f(n

n=1

k
1Sl = lim L 1S e,

00

= lim = [y
m k=00 Xy

so that I is an isometry.
If Te X®,,Y, then we can find a sequence (x,)< Y so that T=332, e,®x,,
but again
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k
1T, = lim ||} 3 Ix,le,
k n=1
so that (x,) € Y(X)". However, since ¥ _, e,®x, converges to T it is clear that

(x,) € Y(X), and hence I is onto. It is readily seen that I is a lattice
isomorphism.

X||Y

In [9] the space Y(I,) was defined and this space has a lot of applications in
the field. As a special case of Theorem 2.4 we can state:

2.5. CoroLLARY. The space Y(l,), 1 <p<oo is lattice isometric to 1,®,, Y.

E*®,, X can be considered as a subspace of #(E, X) and our next theorem
gives a necessary and sufficient condition for equality.

2.6. THEOREM. E*®,, X = #(E, X) for all X with order continuous norm if and
only if E* has the Radon—Nikodym property (RNP).

Proor. The proof is similar to that of Theorem 4.19 of [11].

Assume that E* has RNP and that X is order continuous and let
A € #(E, X). Then there is a compact set K and operators S € B(E, C(K)) and
Te B(C(K), X) with ||S||<1 and T=0 so that A=TS.

Since X is order continuous T is weakly compact [11, Proposition 2.4], and
therefore T* is weakly compact as well. Hence by the characterization of
weakly subsets of C(K)* we can find a positive measure p e C(K)* with
T*X*<L,(u). (L,(n) is here considered as a subspace of C(K)* via the
Radon-Nikodym theorem.) Since E* has RNP thereis a g € L (u, E*) so that

(1) S*f = Jfgdu for all fe L,(w)

which gives for every x € E
(2) (Sx)(t) = <g(t),x) for almost all t e K .

We can now find a sequence of E*-valued simple functions so that g, — g in
u-measure and ||g,(t)]| £2|/g(?)| for almost all t € K. We define S,: E — L ()
by

(3) (S,x)(t) = <g,(t),x> for all x € E and almost all t € K .

By the weak compactness of T we get that T**(C(K)**)<X and since
T*X*c L, (p) it follows that we may consider T** as an operator from L (u)
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to X. Hence we can define 4,: E — X by A,=T**S, for all n € N. Since g, is
simple it is readily verified that 4, € E¥*®X for every n e N.
IfxeE,|x|£1and y* € X*, y*=0, |y*|| £1 we get the following estimate:

@ KM Ax—A,x) = [Ky*, T**(Sx=5,x))| = [{T*y* 8x—5,x)|

s J(T*y*)(t)llg(t)—gn(t)il du(t) = *T**(1g()— 8.

and therefore
(3) A=Al < IT**(lg(-)—ga.()I)I forallneN.

The proof will be complete, if we show that the right hand side of (5) tends to
0. To this end let ¢> 0 be arbitrary. Since T* is weakly compact we can find a §
>0 so that for all measurable C< K we have

(6) u(C) =46 = 3|S| j [T*y*|dp < & for all y* e X*, |y*| = 1.
[}

For every n e N we put

) C,={teK| |g(—g.(0]>¢}

and determine n, so that u(C,)<¢ for all n=n, Hence for n=n,:

@  NT**(g()—g. I = Sup, j(T*Y*)(t)llg(t)—g.,(t)ll du(r)

< e+ esup j HT*y*) @)l du@)=e(I Tl +1),
ly*ist JKNC,

and we have proved what we wanted.

Assume next that E*®,, X =%#(E, X) for all X with order continuous norm.
Let (2, %, ) be a finite measure space and Te B(L,(u), E*) with |T|=1. If
I' L (u) — L (1) denotes the formal identity the operator S=IT*|; is an
order bounded operator and therefore by assumption S € E*®,, L,(n). By
Theorem 2.2 there is a g € L, (y, E*) so that

) (Sx)(¢) = (g(t),x) for all xe E and almost all t € Q.

Since |Sx|<1for all x € E, | x|| £1 we get that ||g(¢)] <1 for almost all t € @, s0
that g € L (u, E*). Hence for all fe L,(u) and all x e E

(10) (Tfix) = {LT*>) = Jf(t)(T*X)(t)du(t) = ff(t)<g(t),x>du(t)

=<ff (0g(6)du(2), x>
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so that

(11) Tf = jfgdu for all feL,(w,

which shows that E* has RNP.

The following corollary is a generalization of the fact that L,(u, E)*
= L,(u, E*) for all measures pand all 1<p<oo,p”!+q !=1if and only if E*
has RNP.

2.7. CoroLLARY. If X * is order continuous and E* has RNP then (E®,, X)*
=E*®,, X*. Especially if both E and X are reflexive, then E®,, X is reflexive
as well.

Proor. We have (E®,, X)*=4%(E,X*) and hence the statement follows
immediately from Theorem 2.6.

2.8. REMARrk. The condition X* order continuous is essential. Indeed, if X
=L (u), then if E* has the RNP

(EQumLi(W)* = B(E,L() = Loy(1, E) # E*®,, L (1) .

Now we turn our attention to investigate, what can be said about the type
or convexity of E®,, X and X®,, Y in case we know the type or convexity of
E, X, and Y. We have the following two results.

2.9. THEOREM
(i) If E is of type p, 1 <p<2 and X is p-convex and g-concave for some q < 00,
then E®,, X is of type p.
(i) If E is of cotype p, 2<p< oo and X is p-concave, then E®,, X is of cotype p.

Proor. Assume (i). We wish to show that there exists a constant K, so that
for all finite sets {Ty, T5,...,T,} SE®, X we have

1 q 1/q n 1/p
1) (f dt) = K(Z HTkllﬁ.)
0 k=1

where (r,) denotes the sequence of Rademacher functions on [0, 1]. Since E is
of type p, there is a constant K, , so that for all finite sets {xj? | 15jsm, 15k
Sn}cE and all {¢ | 1<j<m, 1Sk<m} <R we have

p>1/p

1 q 1/q n
) (f dr) §K,,,,,(z
0

k=1

n

Z r(O T,

k=1

m
T or Y
j=1

m

k. k
>t
k=1

j=1
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Since each side is 1-homogeneous we get from the remark just after Theorem

1.2 that
q 1/q n P\1/p
dt) < KM( Y )

1
0 ]
0 k=1

for all finite sets {y;‘ | 15j<m,1£k<n} < X. Of continuity reasons it is enough
to prove (1) when T, T,,...,T, € EQ X, and hence let

n m

2 ndt) X vix

k=1 j=1

2 Vi

j=1

m

T, = Y @ 1sksn,

j=1

where {x’;ljém, k<n}cE, {yﬂjgm, k<n}cX. If C, denotes the p-
convexity constant and C, the g-concavity constant of X we get using the
remark after Theorem 1.2 and (3):
q l/q
@

“ ( j
0
q 1/q
n
X

q 1/q
dt

E

p)llp

E X

p )l/p

X

n p\1/p
= KMC,,C,,(,;1 > .

The statement on cotype p can be proved in a similar manner.

Z r(0) Z X;@)’?
i=1

k=1

(U,

C

n m
2 o Y Vi
k=1 j=1

(.

I(MQC;

E

¥ ) 3 e

k=1 J
o
k=1

j=1
Kool £ ||| £ e
k=1 |||li=1

Y Xi®y

j=1

IIA

q

X

IIA

A

E

REMARK. One could hope that the theorem above was true, if we just
assumed that X was of type p. As was pointed out to the authors by B. Maurey
it is not so in general. Indeed, assume that [,®,, X is of type p, | Sp<2 with
constant K, let (e,) denote the unit vector basis of [, and let (x,);-, S X. Then
by Lemma 2.3

(i I lPye
k

=1

-,

which shows that X is p-convex.

Y a®x;

k=1

m

14 1/p n 1/p
dt) s K( Y lekll”)
m k=1

z re(t)e®@x

k=1
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2.10. THEOREM. If Y is order continuous and X and Y are p-convex 1 S p <00,
then X ®,, Y is p-convex. The analoguous statement holds for p-concavity.

Proor. We prove only the first statement, since the other one can be proved
similarly.

Since Y is order continuous we may assume without loss of generality that Y
is a Kothe function space on a measure space (2, .#,u) [9, 1.b.14].

Hence let (f)}-; £ Y(X). Since X is p-convex there is a constant K, so that

k 1/p
(1) > |f,-(t)l”>
j=1

k 1/p
< K1<Z ||fj(t)||") for almost all t e Q.
j=1

Since Y is p-convex with constant K, say, then by Theorem 2.2 and (1)

k 1/p) k 1/p
<Z |f,~|”> = l <Z |f,~(‘)|”> ‘
i=1 m Ji=1 x|y

k 1/p
< K1Kz< Y ||fj||?()()) .
Jj=1
REMARK. A slightly more complicated proof shows that it is possible to drop
the hypothesis “Y order continuous”.

We now wish to examine the relation between the m-norm and /-morm in
tensor products of Banach lattices.

2.11. THEOREM. Let X and Y be order continuous. The identity in X ® Y can be
extended to an isomorphism I of X®,, Y into X®,Y if and only if either
(i) thereis a p, 1 £p <00 and measures u and v, so that X is lattice isomorphic
to L,(u), and Y is lattice isomorphic to L,(v),
or
(ii) there exist sets I'y and I', with X lattice isomorphic to cy(I',), and Y lattice
isomorphic to cy(I,).

Proor. Assume that I is an isomorphism. There is then a constant K>1 so
that

(1) K 'T*|p < [ Tlw < KIT*|,, forall Te X®,,Y.
If T=5_,x,®y, € X®Y, then (1) gives

n n n
) KIS xi S Y v < K| X xn

k=1 y||x k=1 x|y k=1 Y| x

According to Corollary 2.12 of [11], which follows from a result of Zippin
[17], it is enough to show that if (z,) < X and (y,) € Y are normalized sequences

Math. Scand. 49 — 8
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each consisting of mutually disjoint elements, then (z;) and (y,) are equivalent
as basic sequences. If (t,) is a sequence of scalar and we define x,=t,z,, k € N,
then by (2)

n n n
(3 KUY tzf = KUY xo S Y yexe
K=1 k=1 v||x — ||llk=1 x|y
n n
=Y tl S K|Y tz| forallneN,
K=1 k=1

where the equalities in X and Y are obtained using the order continuity of X
and Y (see [11, Proposition 2.7). (3) gives that (z,), and (y,) are equivalent.

The “if”-part is actually Kwapien’s formulation [7] of the Schwartz duality
theorem. Indeed, if 1<p<oo and Te L,(1)®,, L,(v), then Tis p-summing by
Kwapien’s result and hence T* is normable by L, (1) and hence order bounded.
Since the role of T and T* can be interchanged we are done. For
co(l)®mco(l,) the statement is trivial, since an operator with image in a
¢o(I)-space is order bounded if and only if it is compact.

2.12. COROLLARY. Let (Q, .#, u) be a measure space, let X be order continuous
and 1 <p<oco. Consider the statements:

(i) The identity I: X®,, L,(p) = X ®,L,(w) is continuous,
(i) X is p-convex.

Then (i) = (ii). If X is weakly sequentially complete and has the bounded
approximation property, then (i) <> (ii).

Proor. Assume the (i) holds and let x,, x,,. . .,x, € X be arbitrary. Choose
(i1 EL,(n) normalized and mutually disjoint. By assumption the left
inequality in (4) of theorem 2.11 holds. Hence

n 1/p
(Z ka|p> = ‘
k=1

so that X is p-convex.

Assume next that X is weakly sequentially complete and has the bounded
approximation property. If X is p-convex and Te X®,, L,(u), then T is p-
summing, but from Theorem 1.3 it then follows that T* is X-order bounded.
This shows that (i) holds.

It follows from Theorem 2.2 and the remark just before the theorem that if X
and Y are Kothe function spaces on I =[0, 1] with the Lebesgue measure, then
X ®,, Y can be considered as a Kothe function space on I?. One may ask when
this space is rearrangement invariant. The answer is contained in

Z XYk

n i/p
< K(Z IkaII">
k=1

pi| X
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2.13. CoroLLARY. Let X and Y be two order continuous rearrangement
invariant function spaces on [0,1]. If X®,, Y=Y(X) is a rearrangement
invariant function space on I?, then there is a p, 1<p<o00 so that the formal
identity operators from X and Y to L,(0,1) are isomorphisms.

Proor. We realize X®,, Y and X ®, Y as function spaces on I as in the
remarks just before Theorem 2.2. We wish to show that the identity is an
isomorphism of X ®,, Y onto X ®,Y.

Let ¢: I* — I? be defined by ¢(t,s)= (s, 1) for (t,s) € I?. Clearly ¢ is measure
preserving and hence by assumption hogp € X ®,, Y with ||hoo|,, = | k|, for all
he X®,, Y. This means however that

Ikl = THRESN = TR Ol = 141,

forallhe X®,,Y.
By Theorem 2.11 both X and Y are lattice isomorphic to L -spaces (the case

¢o is excluded here). By [9, 2.b.3] it then follows that both X and Y are
isomorphic to L,(0,1) via the identity.

Let us end the section by briefly discussing a third tensor product of Banach
lattices.

We recall that if Te B(X,Y) then T is called regular if T maps order
bounded sets to order bounded sets. If Y is order complete the space R(X, Y) of
all regular operators from X to Y consists precisely of the space of operators
for which the modulus exist. With the norm | T|,=||T||| for Te R(X, Y) the
space is a Banach lattice under the canonical order. X ® Y can be considered as
a subspace of R(X, Y*)* by
(% mon)o - 3 sx0)

J J=

i=1

for S e R(X,Y*) and }}-, x;Qy; € X®Y.

2.14. DEFINITION. X ® . Y denotes the closure of X®7Y in the Banach
lattice R(X, Y*)* (note that Y* is always order complete).

2.15. LEMMA. If Y is order complete then the subspace of X®, Y consisting of
all T=31_, x;®y,, where the y;s are mutually disjoint is dense in X®, Y.

Proor. Let T=3j_, x;®y; € X®Y and let ¢>0. Since Y is order complete,
we can find hy, h,,. . ., h, mutually disjoint in Y and scalars a;, ism, j<n so

that
(1) T Il ’ <:
j=1

m

yi— Z aijhi

i=1




116 S. HEINRICH, N. J. NIELSEN, AND G. H. OLSEN

and hence

<e¢.

PRETCITEDY (Z a,-jxj>®h,.
i=1

j=1 i=1

s

The following result was also proved in [16].

2.16. THEOREM. If' Y is order continuous then the norm of X ® na.x Y induced by
R(X,Y** is a cross norm turning X ® ..Y into a Banach lattice under the
canonical order.

Proov. It is trivial that the norm on X ®,,, Y is a cross norm. We have to

show that X ® ., Y is a sublattice of R(X, Y*)*. If T= Z x;®y; € X®Y with
j=1

the y;’s mutually disjoint then by the order continuity of Y we get for x* € X*,

x*=0

y*(xj)yj
=1

J

(1) IT|(x*) = SUP{

Iy*!§X*} = 2 Ix*(x;)ly

j=1

hence |T|= =1 lxj|®|yj’-

If now % € X ®pay Y, then by Lemma 2.15 there is a sequence (%,)S X®Y
of the above form so that %, —» % and therefore |%, — |%| and
|%| € X @max Y.

It can be proved that (X ® ., Y)*=R(X, Y*) from which it follows that
X @ max Y is the maximal tensor product of Banach lattices.

It is easily seen that this tensor product is closely related to the
characterization of injective Banach lattices, and it would therefore be
interesting to get a description of it.

Note that unlike the other tensor products defined in this paper it is a
problem, whether the elements in X ®,,, Y is in one to one correspondence
with operators from X* to Y unless, of course, X * or Y has the approximation

property.

3. The uniform approximation property for m-tensor products.

In this section we investigate under which conditions m-tensor products have
the uniform approximation property. In the sequel we let E denote a Banach
space and X an Banach lattice. We start with the following definition:

3.1. DerFiniTION. Let ¢: N — N be a function and A= 1. E is said to have the
(4, p)-uniform approximation property ((4, ¢)-u.a.p.), if for every n and every n-
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dimensional subspace F S E there is a bounded operator T on E so that Tx=x
forall xe F, tk T<o(n), |T| <A

We shall say that E has the u.a.p., if E has the (4, ¢)-u.a.p. for some A=1 and
some function ¢. Likewise we shall say that E has the A-u.a.p., if it has the
(4, p)-u.a.p. for some function ¢.

3.2. DeFINITION. E is said to have the Grothendieck uniform approximation
property (G.u.a.p.), if for every ¢>0 and every sequence f=(f,) of positive
reals with 8, — O there exist A=4(8,¢) and ¢ =¢(f,¢) so that the following
holds: For every sequence (x,) < E with | x,|| <8, there is a bounded operator
T on E, satisfying ||Tx,—x,||<¢ for all n, |T|| <4 and rk T<¢.

It is readily seen that the u.a.p. is a kind of local version of the bounded
approximation property, while the G.ua.p. is a local version of the
Grothendieck approximation property.

The u.a.p. was originally introduced by Pelczynski and Rosenthal [12] who
proved that C(S)-spaces, S compact and L ,(u)-spaces, 1 <p < 0o have the 1 +eé-
u.a.p. for all é>0. Lindenstrauss and Tzafriri [10] proved that reflexive Orlicz
sequence and function spaces have the (1+4¢)-u.a.p. and their paper also
contains some important results on the u.a.p. for superreflexive spaces (E is
called superreflexive, if every ultrapower of E is reflexive. Recall that a Banach
lattice X is superreflexive, if and only if it is p-convex and g-concave for some
p, l<p<oo and some g, 1 Sg<oo [9]).

The G.u.a.p. was introduced in [2], which also contains an extensive study of
the u.a.p. and its relation to the bounded approximation property. Among
other things it is proved that the u.a.p. is a self-dual property.

Basically the only known examples of spaces with the u.a.p. are the ones
mentioned above and some spaces constructed from them in a nice manner. An
important open problem is whether the classical Lorentz spaces have the u.a.p.
There are examples of spaces with a symmetric basic which do not have the
u.a.p. [15].

A perturbation argument, [4, Lemma 2.4], easily yields the following
Lemma, which will be very useful for us in the sequel.

3.3. LEMMA. Let A2 1. If there is a function y: N xR, — N so that for every
>0 and every n-dimensional subspace F S E there is an operator T on E with
ITI=A rtk TSY(n,e) and | Tx —x|| Se| x| for all x € F, then E has the (1+ ¢)-
u.a.p. for all ¢>0.

REMARK. Lemma 2.4 of [4] shows that if E has the above property and
(1—¢)~'en<1, then there is a operator S on E of dimension at most vy (n,¢)
so that S is the identity on F and ||S|| < ((1—¢) 'en+1)A.
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We can now prove

3.4, THEOREM. Let A=1. Then the following statements are equivalent:

(i) There is a function @: N xR, — N so that for every ¢>0 and every n-
dimensional subspace F < X there is an operator T on X with | Tx —x|| S ¢l x|| for
all x e F, tk TS @ (n,¢) and

=< (A+e)

V |ij|
j=1

n
Vo Ixjl
=1

for all n-tuples (x,,x,,...,x,)SX.

(ii) For every finite dimensional Banach space E, E®,, X has the (A+¢)-u.a.p.
for all £¢>0.

(iii) The same as (i) with the addition that Tx=x for all x € F.

ProoF. (i) = (ii). Assume (i), let ¢>0 and let E be a k-dimensional Banach
space; we choose an Auerbach basis (e)f-, for E (ie., if (e}, is the
biorthogonal system then |le;|| =|e*| =1, i<k, see [8]).  FEE®,, X is an n-
dimensional subspace with Auerbach basis (u,)7-,, then we can find {x;; , i<k,
jSn}<X so that

k

(1) u; =y e®x; forjsn.

i=1

Put X, =span {x;; | i<k,j<n} and let ()., be an e-net in Bg.. Then clearly
(1—g)BgsSconv {f* | r<N} and therefore for every u € E®,, X

@ lullm < lIsup{lu(e®)| | e* € Bga}| < (1—¢)7*

N
4 lu(f 2

By assumption we can now find an operator T on X with ||Tx—x]|
sn 'k~ le|x| for all x € X,, tk T< @(max (N,kn),n" 'k~ '¢) and

N N
©) Vv ITx || = (A+¢) V. x|

for all N-tuples (x,)N.,<X.
We now look on the operator I® T where I denotes the identity on E. By
(2)and 3) we getforall ue E®,, X

N
VAT ()

r=1

@ 1d®Dull, = [IToul,, = (1—3)“1|

N
< (A+ed-97" Vv (O = A+e)d—e) Hul,
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which shows that I® T is a bounded linear operator on E®,, X with norm less
than or equal to (1—¢)~!(1+e¢). Clearly rk T< ke (max (N, kn), e/nk). Since |t,|
S|1X¥- e for all (1)f-, SR we get that |x;| < |35, x,e,ll for all j<n and i
<k and hence

5) Ixgl < lujl, for i<k and j<n.

(2) and (5) give for j<n

k
(6) ||(I®T)uj““j||m = Z lle:l ”Txij_xij“

k
S n7kTe ) lxgl = n7teluyl -
i=1

Since (u;)}=, was an Auerbach basis, (6) shows that |/ @ T)u—ul|,, <¢llul|,, for
all ue F.

Using Lemma 3.3 we have now proved that E®,, X has the (1 +¢)-u.a.p. for
all ¢>0.

(ii) = (iii): Assume (ii), let ¢>0 be arbitrary and let F£X be an n-
dimensional subspace. By assumption I ®,, X has the (41+¢)-u.a.p. with a
dimension function ¢, say, and we can therefore find an operator S on I, ®,, X,
so that S is the identity on I". ® F, ||S|| <A +¢ and rk S £ (n?).

If I' denotes the group of isometries of I% onto itself, then we can define:

() So = (@n)™' Y T'RINTOHRIY)
yel

where Iy denotes the identity on X. It is easily verified that ||Sy|| <A+¢, 1k S,
<2"'n!@(n?) and that S, is still the identity on I% ®F. Since S, is invariant
under all the isometries y®Iy,y € I' of I ®,, X onto itself thereisa T: X — X
so that So=1Ir @T.

Since ||S,]| £ A +c¢ it follows from Lemma 1.1 that if x,x,,...,x, € X, then
®) V ITx || £ (A+¢) \/1 x|
r=1 r=

Clearly rk T< (n—1)!2"¢(n?) and Tx=x for all x € F.
(iii) = (i) is trivial.

3.5. DerFINITION. Let A=1. X is said to have the order (4+)-u.a.p, if it
satisfies one of the equivalent conditions of Theorem 3.4.

It is an open problem, whether the u.a.p. is equivalent to the order u.a.p. for
general Banach lattices; all known examples of Banach lattices with the v.a.p.
satisfy the conditions of Lemma 3.3 with the operator T positive and therefore
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also trivially condition (i) of Theorem 3.4. For order complete examples this is
normally done by finding a positive controllable operator, which is the identity
on a given span of mutually disjoint vectors, and then apply Proposition 3 of
[10]; for C(S)-spaces by a partition of unity. It turns out that the two concepts
are equivalent for superreflexive Banach lattices, as it is seen from

3.6. THEOREM. If X is a superreflexive Banach lattice with the u.a.p., then X
has the order (1+)-u.a.p.

Proor. Let E be a k-dimensional space; we wish to show that E®Q X has the
(1 +¢)-u.a.p. for all e>0. We can then find a K (depending only on k and X), so
that Ju||,<K|u| forallu e E®,, X (=B(E*, X)). Since X has the (1 + ¢)-u.a.p.,
we can perform the construction of (i) = (ii) without the extra condition on T.
All formulas will hold except (3) and (4), but instead we get for u e E®,, X

II®T)ul, = | Toul, = KITlul| = (1+e)K]lul, -

Hence we have shown that E®,, X has the (K +¢)-u.a.p. for all ¢. Since E is
finite dimensional and X is superreflexive it is easily verified that E®, X is
superreflexive as well (one can for instance use Theorem 2.9) and hence it has
the (1+e¢)-u.a.p. for all £>0 by [10, Theorem 1].

Recall that if E and F are isomorphic Banach spaces then the Banach-
Mazur distance d(E, F) is defined by:

d(E,F) = inf {||T|| | T | T isomorphism of E onto F} .

It is well known that for every n logd is a metric on the set of all n-dimensional
Banach spaces turning it into a compact space.
We can now prove:

3.7. THEOREM. Let E be a Banach space with the A-u.a.p. If X has the order u-
v.a.p. then E®Q,, X has the (Au+e)-u.a.p. for all ¢>0. If X is superreflexive and
has the v.a.p. then E®,, X has the (4+¢)-u.a.p. for all £>0.

Proor. Assume that E has the (4, ¢)-u.a.p. and let £¢>0.

1°. X is order complete: For every k € N, we can choose an ¢-net in the
compact space consisting of all Banach spaces of dimension k equipped with the
Banach—Mazur distance. Hence for every n € N, we can find a @(n) so that
{Y, | 1 <m< @(n)} is the union of the ¢-nets for k < ¢(n). Having fixed such &-
nets for every natural number the space
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is at most ¢(n)@ (n)-dimensional and depends only on n and ¢ (we shall omit
subscripts n and e on Y). Let FS E®,, X be a subspace of dimension at most n
and spanned by {u;,u,,...,u,}. By Lemma 2.15 and Lemma 3.3 we can
without loss of generality assume that there is a k € N (which we cannot
control), a set {eij| 1<isk, 15j<n}<E and a set {x,-| I<iskleX
consisting of mutually disjoint elements so that

M=

(1) u; =

j €;®x;, 1sj=n.

i=1

For every i<k, we put E;=span {e;; ‘ 1 <j<n} and by assumption we can
then find bounded operators T, i<k, on E so that

) ITil = 4, i =k, Te;=ce ik, j=n

ij ij
and rk T; = ¢(n) for i < k. Further for i <k, we let X, denote the band generated
by x; and let P; denote the band projection of X onto X, (see [9, page 10].)

Since T;(E) is at most ¢(n)-dimensional, we can for every i<k find a m(i)
<@(n) and an isomorphism S; of T,(E) onto Y, with ||S;|<1+e, |S7!S1.

We define the operator W, of E®,, X into Y®,, X by

k
3) Wi = Y PouoT*S¥, ueE®,X
<

13

where T} is considered as a map from T;(E)* to E*.
We have to show that W, is bounded and estimate its norm. If u € E®,, X is
of the form u=3%7,., f,®z,, where (f,)SE, (z,)& X, then

@ W= 3 Y STU)®P, -

Since (P;z,)< X; for all m<s and all i<k and the X/s are disjoint bands
then it follows from Lemma 1.1 that

k s
G ||X X PzaSiTi(fw ;
i=1 m=1
k s k s
= Z Z PizmSi’Ti(fm) § ;“(1+8) Z Z Piszm
i=1 |lm=1 Y i=1|jm=1 E
k s s
= ’1(1+6) Z Z Piszm é A’(l+8) Z szm
i=1 m=1 E m=1 E

where the last inequality is true, because the P;s are mutually disjoint band
projections. (5) gives immediately
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k s
© Wl =| Y T PasTh |
< a0+9||| X zfll | = A+l
m=1 YL X

By Theorem 3.4 there is a function ¢, defined on the natural numbers so that
Y®,, X has the (u+¢, ¢,)-u.a.p. (since Yis fixed for each n, ¢, (n) depends only
on n, & u, and X). Hence there is an operator T on Y®,, X so that dim T
S |T|spu+eand To=v for v e W (F).

For every i<k, we let Q; denote the natural norm one projection of Y onto
Y, and define W,: Y®, X - E®, X by

k
(7 W, = Z Si—lQi®Pi'
i=1
By doing calculations similar as the ones which gave the norm of W, we get
that W, is a bounded operator of norm less than or equal to one. If §
=W,TW,, then |S|| SA(1+¢)(u+¢), kS < ¢, (n). Further for j<n:

k
Su; = W,TWyu; = W,W,u; = ) S7'Sie;®x; = u;.
i=1

We have now proved that E®,, X has the Au+e-u.a.p. for all £>0.

The second statement of the theorem follows immediately from the above
and Theorem 3.6.

2°. The General Case: If G is a finite dimensional space then by [13, Theorem
74] (G®,X)**=G®,, X**. By assumption G®,, X has the (u+¢)-u.a.p. for
all e>0 and therefore by the above and [10], G®,, X ** has the (u+¢)-u.a.p.
Thus X** has the order (u+)-u.a.p., and by the first part E®Q, X ** has the
(Au+¢)-u.a.p.

Let now £¢>0 and assume that the (Au+¢)-u.a.p. dimension function for
E®,X**is ¢. If FEE®, X is a finite dimensional subspace then (since
E®,, X is canonically isometric to a subspace of E®Q),, X ** by Lemma 1.1) we
can find an operator T on E®,, X ** which is the identity on F and so that || T||
Siu+e tk TS @(n). By a standard perturbation argument, we may assume
that FSE® X and Im T EQ X **. We choose now a basis (vj)j."=1 of ImT, so
that (v)j-, forms a basis for F. We can then find (fL,<E, 1<j<N,

(2, X**, 1SN, z;;€ X when i<k; and j<n, so that

i=i=

kj
v; = Z ﬁj@zija ISjsEN.
i=1
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Put G=span{f;; | 1<i<k;}. It is readily checked that 6®, X <E®, X and
G®,X*<E®, X** in the canonical manner and that InTSG®,, X **.
Applying the principle of local reflexivity on G®,, X we get an operator V:
ImT— G®, X with |[V|<1+¢ and Vv;=v; for j<n. The map §: E®, X
— E®,, X defined S: E®,,X —» E®,, X defined by Su=VTuforue EQR, X
clearly has the desired properties.

We have also

3.8. THEOREM. If X has the A-u.a.p., then I, ®,, X (=X (l,)) has the (AKg +¢)-
u.a.p. for all >0, where K denotes the Grothendieck constant.

Proor. Let ne N. By [11, Corollary 4.12] (the weakly sequential
completeness of X can be avoided for finite dimensional Hilbert spaces) or
equivalently by a result of Krivine [9, Theorem 1.f14], we have for every
uelb®, X and every bounded operator T on X:

IToull, = Kgl T llullm -

Reproducing now the proof of Theorem 3.4 (i) = (ii) assuming only the A-
u.a.p. of X we obtain that the operator I®T there is a bounded operator on
®,, X of norm less than or equal to AK This gives that I¥®, X has the
(AKg+¢)-u.a.p. for all ¢>0.

The proof of Theorem 3.7 can now be applied on I, ®,, X just by letting the
S;s from there be isometries of T,(E) onto [$imT.(E),

We now turn our attention to the Grothendieck uniform approximation
property. It turns out that in this case the analogue of Theorem 3.7 holds
without the order assumption of the u.a.p. This is proved in Theorem 3.10,
while the next lemma corresponds to Theorem 3.4.

3.9. LEMMA. If X has the G.u.a.p. and E is a k-dimensional space then E®,, X
has the G.u.a.p.

PRrOOF. Let {e,,e,,. .., e} be an Auerbach basis for E and assume that X has
the G.u.a.p. with uniformity functions A(f,¢) and ¢(f,¢). For every i<k we let
P; denote the canonical projection of E onto the one dimensional space
spanned by e; and put

(1) Qi = Pi®1 Zi = Qi(E®mX) s

where I is the identity operator on X.
Clearly for evey i<k, Q; is a norm one projection and Z,; is isometric to X.
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Let (B;) =R, be a null sequence, £>0 and let (u)<E®, X be a sequence
with [u;|| < B

Since ||Qu;l| £ B; for every i<k and every j € N we can by assumption find
bounded operators T; on Z; so that

() ITQu;—Qitjllm < k7'e, i<k, jeN
3) ITI < AB.k™te), tk(T) < Bk 'e), isk.

If we put T=Y%_, T.Q, then T is a bounded operator on E®,, X with
4 ITII < ki(B,k™te),  1k(T) < ko(B,k™'e)

furthermore for all j e N

k
(%) “Tuj_uj“m = Z “TiQi“j_Qi“j”m Ze.
i=1
(4) and (5) show that E®,, X has the G.u.a.p.
3.10. THEOREM. If E and X have the G.u.a.p. then E®,, X has the G.u.a.p. as
well.

ProoF. Assume that both E and X have the G.u.a.p. with uniformity
functions A(f,¢) and ¢(f,¢).

1° Assume X is order complete. Let (f;)=R, be a sequence tending to zero,
let e>0 and choose n € N so that

8} (1+9iB,e)+1)p; = ¢ forall j=n.

Let (u) S E®,, X be a sequence with |lu;|| =B, for all j € N. Since obviously it
is sufficient to check the G.u.a.p.-conditions on a given dense subset of E®,, X
we can by Lemma 2.15 assume that there is a finite set {x; | 1iskieX
consisting of mutual disjoint elements so that for every j<n, u; is of the form

K
) U= 3 e;®x

where {e;; ] iSk,jSn}cE is a normalized set.

By assumption we can now find operators T, i<k so that
(3) lujlmll Tie;j—e;ll <6 ik, j<n
) ITd = 4(B,e), kT, = @(Be), isk.

We shall now use the same terminology as in the proof of Theorem 3.7 and
construct the space Y and the operators W, and W, in the same way as there. It
is easily checked that
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(5) Wil = A(B,e)(1 +e) .
If 1<j<n, then by the definition of W, and W,:

|
M=

(6) WyW,u; = S$71Q0:8,Te;; ® P;x;
J iy

]

i=1

k

Y Te;®x; .

i=1

Since the x;s are mutually disjoint we get from Lemma 1.1, (3) and (6) for

1<j<n

k
(7) W, Wiu;—ull,, = Z (Tieij_eij)®xi
i=1

m

k 1| k
= .Zl HTeij_eij”xi = 8”“,'“,,, .Zl “eij“xi
= elujl, lujll, = & .

If j>n, then by (1) and (5)

(®) W, Wiuj—ull = [WLll(IWL 1+ Dllyyll < &

The space Y constructed as in Theorem 3.7 depends only on ¢ and ¢ (B, ¢)
and hence on f and e. Therefore by Lemma 3.9, Y®,, X has the G.u.a.p. with
uniformity function 4z ,(y,d) and ¢g ,(y,0) only depending on § and &. Since

©) IWiul = (1+e)A(B, )B;

we can find an operator T on Y®,, X so that

(10) ITWu;— Wiull, < ¢
(11) ITI £ Ag,((1+)A(B,€)B)€)
(12) tk (T) £ @4, ((1+)A(B,8)B;¢) -

Let us denote the right hand sides of (11) and (12) by 4,(f,¢) respectively
©,(B,¢). If we put S=W,TW,, then by (7), (8), and (10)

(13)  1Su;=ujll,, £ W, TWyu;— W, Wil + W, Wiu;—ugll,, < 2.
Further by (5), (11), and (12)

(14 ISI < ITIHIW I = (1+8)A(B,e)4, (B, e)

(15) kT < ¢.(Be) .

(13), (14), and (15) shows that E®, X has the G.u.a.p.
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The case of general Banach lattice can now be treated in a manner similar to
the argument of Theorem 3.7.

3.11. A LIST OF CONCRETE SPACES WITH THE u.a.p.

Let (Q,, ¢, 1;) and (Q,, @,, 4,) be measure spaces, 1 Sp=<o00, 1 Sg=o00 and
M and N reflexive Orlicz functions. Further we let S a compact Hausdorff
space. The following spaces all have the v.a.p.:

Lp(HI’Lq(#Z))’ LM(#l’Lp(ﬂz))’ Lp(l‘uLM(ﬂz))’ Lp(”'lac(s)) for p<oo,
LM(#I’C(S))’ LM(.“I’LN(”Z))’ C(S’ Lp(/‘ll))’ C(S’LM(ul)) .

Most of these statements follow from Theorem 2.2 and Theorem 3.7.
That L (u;, La(u,)) follows from the fact that the u.a.p. is self-dual and that
Lys(u,) has the RNP. Indeed,

Loo(#laLM(ﬂz)) = B(Ly(uy)* Lo(uy) = (LM(.Uz)*®mL1(ﬂ1))* .

By the Ascoli theorem and the definition of ®,, we have C(S,E)=E®,, C(S)
for every E, thus taking care of the last statements.
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