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APPROXIMATING CONTINUOUS MAPS
OF METRIC SPACES
INTO MANIFOLDS BY EMBEDDINGS

JOUNI LUUKKAINEN

Introduction.

1. Let n=0 and m=2n+1 be integers. Consider a separable metric space X
with dim X <n and a topological m-manifold M, and equip the set C(X, M) of
all continuous maps of X into M with the target majorant topology (to be
defined in 1.2). The purpose of this paper is to investigate the problem whether
embeddings are dense in C(X, M).

Let N, denote the n-dimensional subset of R™ of points at most n of whose
coordinates are rational. Then in the case M =I" one has the following
classical result:

THEOREM A. The set of all embeddings f: X — I™ with f_Xc:N:',I contains a
dense Gg-set in C(X,I™).

For the history of this theorem, see either [13, pp. 56, 60, and 64], [18, p.
107] or [7, pp. 128-130]. For the future we remark that it is known ([20]) that
the set of all embeddings of X into I"™ is generally not a G,-set in C(X,I™). To
begin with, we will generalize Theorem A for arbitrary m-submanifolds M of
R™ in Theorem 2.1. Previously it was known ([7, Problem 1.11.C(c)]) that
embeddings are dense in C(X,R™) with respect to the weaker topology of
uniform convergence. Our proof is a modification of the proof of Theorem A in
[13] or [18]. In Section 2 we will also give analogues of Theorem 2.1 for
infinite-dimensional target spaces.

Our main result is the following, which is a simplified version of Theorem
5.6:

THEOREM B. Embeddings are dense in C(X, M).

Note that Theorem B is not valid for the source majorant topology (defined
in 1.2) even if n=0 and M =R™ For example, let f: N —» R™ m=1, be any map
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whose image is dense; then every map g: N — R™ with | f(j)—g(j)| < 1/j for all
j €N has a dense image and is thus not an embedding. We will reduce
Theorem B by a simple compactification argument to the following result,
which is a corollary of it and forms a part of Theorem 5.1:

THEOREM C. Suppose that X is locally compact. Then closed embeddings are
dense in the subspace Prop (X, M) of C(X, M) of proper maps.

Morlet [17, IV, Corollaire 5, p. 7-01] proved Theorem C in the case that
X is a manifold. It is a corollary of results of Dancis [5, Topological General
Position Lemma 1, General Position Lemma 2, and Remark on p. 255] that
Theorem C holds if X is either a manifold or a polyhedron, provided that m=n
+3 if n< 1. Moreover, here all the cases (n,m)= (0, 1), (0,2) or (1,3), excluded
by the additional dimensional restriction, follow from well-known PL general
position results ([12, Lemma 4.8, p. 102]) because every g-manifold, g <3, is
homeomorphic to a PL manifold (the case n=0 is trivial). The thus known
special case of Theorem C where X is a polyhedron easily implies the general
case as it will appear in Remark 5.4. However, we will give a proof for Theorem
C which is independent of [5].

In Section 4 we will prove Theorem C in the case that M is a Lipschitz
manifold in the sense of [15]. In the proof of the main lemma (according to
which maps in Prop (X, M) with small point-inverses are dense) we first
remetrize X and approximate maps by locally Lipschitz maps and then use
general position techniques for locally Lipschitz maps developed by Viisila
and the author in [15]. Now, every g-manifold, q+4, without boundary is
homeomorphic to a Lipschitz manifold by a recent deep result of Sullivan [23].
This will imply Theorem C for m=4. In Section 3 we will consider the case n
< 1. We will utilize a relative version of Theorem A for n<1 due to Bothe [4]
to prove, along with other results, a relative version of Theorem C for n<1,
Theorem 3.6. This will imply Theorem C for m=4.

2. While completing this paper, the author was informed by H. Torunczyk
that Theorem C is known as it is a consequence of the following recent result.
Before stating it we define the notion of a Z"-set. A set 4 in a metric space Y is
called a Z"-set in Y if every continuous map of I" into Y can be uniformly
approximated by continuous maps whose images are disjoint from A. An
embedding of a space into Y is called a Z"-embedding if its image is a Z"-set in
Y.

THEOREM D (Heisey and Torunczyk). Suppose that above X is locally
compact, X is a closed subset of X and fy,: X, — M is a closed Z"-embedding.
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Then the set of all closed Z"-entbeddings f: X — M with f | X =/, is dense (in
fact, contains a dense Gj-set) in the space of all proper maps f: X — M with

f1Xo=fo

It is clear that Theorem D for X, = (¥ is stronger than Theorem C. Theorem
D also implies the above-mentioned relative form of Theorem C for n<1.
Theorem D is obtained as follows. Say that a metric space Y has the disjoint n-
cube property if every continuous map of I"x{1,2} into Y is uniformly
approximable by continuous maps sending I" x {1} and I" x {2} to disjoint sets.
By [25, Lemma], an ANR Y has this property if it has it locally. (The proof in
[25] fails. We could give a proof only under the additional assumption, not too
strong for the sequel, that Y is completely metrizable and separable. However,
Torunczyk later gave a new, correct proof (to appear probably in Topology
Proc.).) By PL general position, R™ and R have the disjoint n-cube property.
Hence so does every m-manifold M. Therefore Theorem D is a special case of
[10, Corollary 5], according to which Theorem D is valid if M is replaced by
any locally compact separable ANR having the disjoint n-cube property (the
remark on Gg-sets in Theorem D follows from the proof of [10, Proposition
4]). The proof of Heisey and Torunczyk is quite elementary.

Theorem D can easily be generalized, see Remark 3.10, to the following
relative version of Theorem B:

THEOREM E. Let X be a separable metric space with dim X =n =0, let M be a
topological m-manifold, m=2n+1, let X, be a locally compact closed subset of X
and let fo: X — M be a closed Z"-embedding. Then the set

{f| f: X — M is an embedding,  f|X, =fo, fX is
a Z"-set, dim fX =dim X}

is dense in the subspace {f e C(X, M) | f1Xo=fo} of C(X,M).

1. Preliminaries.

In this section we will fix notation and state some known facts which will be
needed later.

1.1. NoTaTION AND TERMINOLOGY. The letters n and m denote non-negative
integers. Let I™=[0,1]" and N={1,2,...}. If X is a separable metric space,
dim X denotes the dimension of X in the sense of [13]. For subspaces of the
euclidean m-space R™ we use the euclidean metric. Every other metric is
denoted by d if not otherwise stated. In a metric space, B(x,r) is the open ball
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and B(x,r) the closed ball with center x and radius r. The distance between two
sets 4, B in a metric space (X,d) is denoted by d(A4, B), the diameter of 4 by
d(A) and the closure of 4 sometimes also by cly A.

A map f: X — Y between metric spaces is called an embedding if it defines a
homeomorphism X — fX. An m-manifold is a separable metric space such
that each point has a neighborhood homeomorphic to I"™. A submanifold of R™
is a subspace which is a manifold. If M is an m-submanifold of R™, there is no
ambiguity in our use of int M both for the interior of M as a manifold and for
the interior of M as a subspace because these coincide. An ANR means a
metric absolute neighborhood retract for the class of metric spaces; similarly
for an AR. Every polyhedron is supposed to be a locally compact separable
metric space.

1.2. FuncTioN spackes. Let X and Y be metric spaces. Let C(X, Y) denote the
set of all continuous maps of X into Y. Let C . (X)=C(X, (0,00)). A map f: X
— Yis called proper if it is continuous and the inverse image of every compact
set is compact; then fis closed. If X is compact, then every continuous map
f: X — Y is proper. We denote by Prop (X, Y), Emb (X, Y) and CEmb (X, Y)
the subsets of C(X, Y) consisting, respectively, either of all proper maps, of all
embeddings or of all closed embeddings. Obviously, a map f: X — Y is a
closed embedding if and only if it is a proper injection. Suppose that the letter
F denotes any of C, Prop, Emb or CEmb. If M is a manifold or if X, is a closed
subset of X and f, € F(X,, Y), we will use the notations

F(X,M) = {fe F(X,M)| fXcintM},
F(X,Y; fo) = {fe FX,Y) | f1Xo=fo} .

Two continuous maps f,g: X — Y are said to be #-near, where % is an
open cover of Y, if for every x € X there is U € % such that f(x),g(x) € U. In
the target majorant topology I of C(X, Y) a neighborhood basis of f € C(X, Y)
is given by the sets

N(f, %) = {ge C(X,Y) 1 fand g are #-near}

where % is an open cover of Y. We will use this topology for C(X, Y) and its
subsets if not otherwise stated. By [14, Fact 4, p. 47], another neighborhood
basis of fe C(X,Y) in J is given by the sets

V(£0) = {ge C(X, V)| d(f(x)g(x) < 6(f(x)) forall x e X}

where 6 € C, (Y). Occasionally we will use the source majorant topology 7  for
C(X, Y). In the space C,(X, Y)=(C(X,Y),7,) an open neighborhood basis of
fe C(X,Y) is given by the sets
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U(f,e) = {ge C(X, Y)| d(f(x),g(x) < e(x) for all x € X}

where ¢ € C, (X). By [28, (5.2)], 7 is equal to the graph topology, a basis of
which consists of the sets Wy={f| fc U} where U is an open set in X x Y.
Thus .7 is independent of the metric of the space Y. Since V(f, )= U(f, df),
we have 7 <7 . If X is compact, then obviously J and 7 are equal and
given by the supremum metric

d(f,g) = sup{d(f(x)g(x)) | xe X} for fge C(X,Y).

Also, if Y is compact, then J is given by this metric. If a metric will be used for
C(X,7), it is this metric.

If fe Prop (X, Y)and ¢ € C, (X), there is 6 € C, (Y) such that 6(f(x))<e(x)
for all x € ¥ by [14, Lemma, p. 47]. Hence J and J induce the same
topology for Prop (X, Y). If X and Y are locally compact, then Prop (X, Y) is
open (and closed) in C(X, Y), and thus in C (X, Y), too, because, as it is easy to
see, if % is a locally finite cover of Y by open sets with compact closure and if
fe Prop (X,Y), then N(f,%)<Prop (X, Y).

The following lemma gives a basic property of function spaces. A Baire space
is a topological space in which the intersection of every countable family of
open dense sets is dense.

1.3. LEMMA. Let X and Y be metric spaces. If Y is complete, then C(X,Y) and
C.(X,Y) are Baire spaces. If X and Y are locally compact, then Prop (X,Y) is a
Baire space.

Proor. If Y is complete, then C,(X,Y) is a Baire space by [11, Theorem
2.4.2]. A modification of the proof of the quoted result shows that C(X,Y) is
also a Baire space. Since every locally compact metric space is completely
metrizable and since every open subspace of a Baire space is a Baire space, the
last assertion follows.

1.4. LIP maNiFoLDs. Let X and Y be metric spaces and let f: X — Y. If there
is L20 with d(f(x), f(y))SL d(x,y) for all x,y € X, then f is said to be
Lipschitz. If every point of X has a neighborhood on which fis Lipschitz, then f
is said to be locally Lipschitz, abbreviated LIP. If fis a bijection and both fand
f 7Y are LIP, then f is called a LIP homeomorphism. A Lipschitz m-manifold,
also called a LIP m-manifold, is a separable metric space M such that every
point of M has a neighborhood LIP homeomorphic to I"™. We refer to [15] for
LIP maps and LIP manifolds.

We now consider briefly the problem whether a given manifold is always
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homeomorphic to a LIP manifold. Let M be an m-manifold and let %
=((U} h)));es be an atlas on M, i.e., the sets U; form an open cover of M and h;
is a homeomorphism of U; onto an open set U) of R" ={x € R" | x,,20}.
Suppose that

is a LIP homeomorphism for all i,j € J. Then % is called a LIP atlas on M,
and by [15, 3.3] there is a topologically compatible metric ' on M such that
hj: (U, d) — Ujis a LIP homeomorphism for every j. Hence (M,d’) is a LIP
manifold. It follows from this or from the embeddability into a euclidean space
that every PL manifold and every differentiable manifold is homeomorphic to
a LIP manifold. It is well-known that every m-manifold, m<3, is
homeomorphic to a PL manifold. For a proof for 2- and 3-manifolds without
boundary, see [16, Theorems 4.8, 8.3, 23.1, and 35.3]. On the other hand,
Siebenmann [22, p. 137] (=[14, p. 311]) has constructed for every m=7 a
closed LIP m-manifold which is not homeomorphic to any PL manifold.
Sullivan [23, Corollary 3, p. 549] proved recently that for m>5 every m-
manifold without boundary has a LIP atlas. These remarks imply the
following lemma to be used in the proof of Theorem 5.1. As it will then appear,
it is only Sullivan’s case m=S5 that will really be needed.

1.5. LEMMA. For m =4, every m-manifold without boundary is homeomorphic to
a LIP manifold.

2. Approximating continuous maps of metric spaces into codimension zero
submanifolds of euclidean spaces.

We let N, 0Sn<mz21, denote the subset of R™ consisting of all points at
most n of whose coordinates are rational; then dim N, =n by [13, Example
Iv.i].

2.1. THEOREM. Let X be a separable metric space with dim X <n and let M be
an m-submanifold of R™, m=2n+1. Then the set
{fe Emb(X,M) | clyfX < N, NintM}
contains a dense G-set in the Baire space C(X, M).
For M =1I", Theorem 2.1 is classical; see [ 13, Theorems V.3 and V.5] or [18,

Theorem 1V.8]. Our proof is a modification of the one in [18, pp. 101-108].
The theorem follows after a sequence of lemmas.
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2.2. LEMMA. Let X and Y be metric spaces and let F < Y be closed. Then the set
of all continuous maps f: X — Y with fXNF= is open in C(X,Y).

Proor. Let f € C(X, Y), ﬁﬂ F=g. Ch09§§ an open neighborhood U of F
with fXNU=¢g. Then #=(Y\ U,l\fX) is an open cover of Y. If
g € N(f,%), then gX =Y\ U, whence gX <Y\ U, and so gXNF=(.

2.3. LEMMA. Let M be a manifold and let 6: M — [0, 00) be continuous with
OM <5710, 00). Then there exists a closed embedding h: M — M such that hM
cintM and d(h(x),x)<5(x) for all x e M.

Proor. By [21, Theorem 1.7.4, p. 40, or Theorem 1.7.7, p. 42] there is a
closed collar c: 0M x[0,1] — M of OM in M, that is, ¢ is a closed embedding
with ¢(x,0)=x for all x € M and with ¢(6M x [0, 1)) open in M. It is easy to
modify ¢ in such a way that one has d(cl,) Smin dcl,, where I,={x} x[0, 1],
for all x € M. Define h: M — M by h(c(x,t))=c(x, (t+1)/2) if (x,t) e OM
x[0,1] and by h(x)=x if x e M\ imc. Then h satisfies the requirements.

2.4. LEMMA. If X is a metric space and M a manifold, then C"(X, M) is open
and dense in C(X, M).

Proor. The openness follows from Lemma 2.2 and the denseness from
Lemma 2.3.

2.5. DErFINITION. Let X and Y be metric spaces and let % be an open cover of
X. A %-map f: X — Y is a continuous map such that every point of Y has a
neighborhood whose inverse image is contained in some member of %.

2.6. LEMMA. Let X and Y be metric spaces and let U be an open cover of X.
Then the set of all U-maps of X into Y is open in C(X,Y).

ProoF. Let f: X — Y be a #-map. Then there is an open cover ¥~ of Y such
that the cover f ~!¥" of X refines %. By [6, VIII, Theorem 3.5] choose an open
(strong) star-refinement % of ¥". Let ge N(f,#)). Let We # and choose
Ve¥ with st (W, #)cV. Choose Ue % with f~'VcU. Let xeg™'W.
Choose W' € # with f(x),g(x) € W'. Then f(x) € st (W, #"), whence x e U.
Thus g7 'Wc U, and so g is a #-map.

2.7. LEMMA. Let X be a separable metric space. Then there exist open covers
B, j e N, of X, each consisting of two sets, such that every continuous map of X
into a metric space Y which is a B;-map for all j € N is an embedding.
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Proor. Take a countable basis (U;);.n for X and construct, for every pair i, j
with U;c U}, an open cover (U;, X\ U)) of X. It is easy to see that these
covers satisfy the lemma; cf. [18, p. 108].

2.8. DeFINITION. Let X and M be as in Theorem 2.1. If # = (B, B,) is an open
cover of X and if L is an (m—n— 1)-dimensional affine subspace of R™, we
denote by D(4, L) the set of all #-maps f: X — M for which cly, fXNL=(.

2.9. LeMMA. D(4, L) is open and dense in C(X, M).

Proor. The openness follows from Lemmas 2.6 and 2.2. For the denseness it
suffices by Lemma 2.4 to prove that C'"(X, M)c D(%,L). Thus let f: X — M
be continuous with cl,, fX <int M and let % be an open cover of M. We must
find a map g in N(f,%)N D(%#,L). We may assume that % is locally finite,
clp U is compact for each U € % and every U € % which meets fX is an open
ball of R™. Choose a locally finite open pointwise star-refinement ¥~ of % by
non-empty sets. Let the points p,,...,p,,—, € L be affinely independent. Then
there are disjoint countable sets P, and P, in R™\ L which are dense in R”
such that the set

P, UP,U Py s Ppn)

is in general position in R™. We choose for every Ve ¥ points p;(V) € P,NV, i
=1,2. Since dim X <n, by [7, Proposition 3.2.2 or Problem 1.7E] there is a
locally finite open cover #" = (W));.n of X which refines both # and f ~'¥" and
which is of order =n, i.e.,, each point of X belongs to W; for at most n+1
indexes j € N. We choose for every index j € N a number I(j) € {1,2} and a set
V;e ¥ such that W;,cBy; and fW,cV, and then we define q;=rpi;)(V))
Obviously the set {g; | j e N} is discrete and closed in M.
Let x € X. The set

{¢;] jeN and xe W}

is the set of the vertices of an at most n-dimensional (closed) simplex S, <R"™
and it is contained in st (f(x), ¥7). Choose U, € % containing st (f(x), ¥"); then
U, is a ball. It follows that S, cU, =M. Let (¢,);cn be a partition of unity on
X subordinated to #". We set

gx) = Y ¢;(x)q; for xeX.
jeN
Let xe X; then g(x)eS, which implies that g(x)e M and that

f(x),g(x) € U,. Clearly g: X — M is continuous. We have yet to show that
g € D(%4,L).
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We first claim that the family
¥ ={S| Ixe X:5=8,}

is locally finite in M. Let y € M and let F be a compact neighborhood of y in
M. Then

F, = U{clyU| Uew, UNF+ &}

is compact. Consider the simplices S, with S, N F + . Let q be a vertex of such
a simplex S,. Then g € U, and U, N F % &, whence g € F,. Therefore there are
only finitely many such vertices q and, consequently, only finitely many
simplices S € & meeting F. This proves our claim.

Next we show that if A< X and if the simplices S,, x € 4, have a common
point, then they have a common vertex. Choose y € (1 {S, | x € A}. We denote
the vertices of a simplex S,, x € X, by q, 0,dx,15- - -»qx.rx (r(x)=n). We have
for each x € A that

r(x)

y = Z tx.iqx.i
i=0

where t, ; € I' with Y/%) ¢, ;=1. Assuming A+ (J fix a € 4 and choose k with
t,. ¥0. If x € 4, then in the sum

r(x) r(a)

Z Ly ix, it z (—te)4a: =0
i=o0 i=0

there are at most 2n+2<m+ 1 terms and the sum of the coefficients is equal to
zero. Therefore g, ; =4, for some i, so q, , is the desired vertex.

Now we can prove that g is a #-map. Let y € M. Let A={x € X| ye€S,}
Then

N = M\U {S,| xe X\ 4}

is an open neighborhood of y in M. The simplices S,, x € A, have a common
vertex, q. There is ie {1,2} with g e P, We show that g"'Nc<B, Let
x € g"!N. Then g(x) € S,N N, whence x € A. Thus there is j € N with g=g;
and x € W, Then l(j)=i, so x € W;c B;. Hence g is a #-map.

We finally assert that cly;gX NL=@. Let x € X. Since the number of the
POINts g, o.. - -Gy, rixp P1s- - »Pm—n i8S Sm+1, they are affinely independent.
Hence S,NL=. Let T=U,_xS,. Then TNL=, T is closed in M and gX
< T. The assertion follows. Thus g is the required map.

2.10. Proor oF THeorem 2.1. First, C(X, M) is a Baire space by Lemma 1.3
because M, being locally compact, is completely metrizable. Let #,,%,,. .. be
the open covers of X given by Lemma 2.7. Obviously, R™ \N% =U jen Lj, where
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the Ljs are the (m—n—1)-dimensional affine subspaces of R™ of the form x;
=T 00X, =T,+y Where 150 <. .. <i,,;=<m and every r, is rational. By
Lemmas 2.9 and 2.4, the sets D(#,, L)) for i, j € N and C"(X, M) are open and
dense in C(X, M). Hence the set

D = (N {DAB,L)| ijeN}) N C"X,M)

is a dense G;-set in C(X, M). Consider fe€ D. By Lemma 2.7, f is an embed-
ding. Since clearly cly, fX = N7, Nint M, the proof is complete.

2.11. COROLLARY. For each n € NU {0} there exists an n-dimensional closed
set P"<R?"*! such that every locally compact separable metric space X with
dim X <n is homeomorphic to a closed subset of P".

Proor. Write N=N3, ,,. By Theorem 2.1 there is an embedding h: N
— R2"*1 such that AN < N and |h(x)—x| <1 for all x € N. Then P"=hN is n-
dimensional. One can find a proper map ¢: X — R'; for example, if (¢;);c\ is
a partition of unity on X with compact supports, one sets @ =3 ;. Nj@;
Combining ¢ with the inclusion map R! — R2"*! one gets a proper map f: X
— R2"*1 Theorem 2.1 gives an embedding g,: X — N with |go(x)—f(x)| <1
for all x € X. Consider the embedding g=hg,: X — P". Since

lg(x)—f(x)} <2 forall xe X,

it follows that g is proper as a map into R?"**, Therefore gX is closed in R?"*!
and thus in P", too.

2.12. REMARKS. 1. As observed in [2, Lemma 3.1], every locally compact
separable metric space is homeomorphic to a closed subset of the space P®
which one obtains of the Hilbert cube Q by deleting a point; this follows at
once from Urysohn’s embedding theorem and the homogeneity of Q by a one-
point compactification argument. If n=0, Corollary 2.11 also follows
analogously from properties of the Cantor set.

2. Engelking [8] gave a new proof for Corollary 2.11. With his permission,
we present it here, in a slightly simplified form. For every point x
=(Xy,...sX3,41)in N=N}, ., onecan find an embedding h: N — N with h(x)
=p=(n,...,n); in fact, applying [7, Problem 1.3.G(a)] one finds for each
i<2n+1 a homeomorphism h;: R' — R! such that

hQN{x}) =Q and  |Ih(x) =m,

and then one lets h=(h; x ... xhy,,,)|N. By Theorem A there is an
embedding g: N — R2"*! U {00} such that dim gN =n and g(p) = co. Hence a
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one-point compactification argument (cf. [13, Corollary 2, p. 32]) and
Theorem A give Corollary 2.11 with P"=gN NR2"*+1,

By slightly modifying the proof of Theorem 2.1 one obtains results on
approximation of continuous maps of separable metric spaces into open
subsets of infinite-dimensional convex sets in topological vector spaces by
embeddings. We give two theorems. The first improves [13, Theorem V.4] for
finite-dimensional spaces X and the second is a generalization of the latter
result. We define the Hilbert cube Q as the set of points (x Jjen in the Hilbert
space I for which 0<x;<1/j for all j. For ne NU {0} we denote by N" the
subset of Q of points at most n of whose coordinates are rational. By [13,
Example 1V.2], dim N =n.

2.13. THEOREM. Let X be a separable metric space with dim X <n and let U
<Q be open. Then the set

{fe Emb (X,U)| cly fX <N}

contains a dense Ggset in C(X, U).

Proor. The proof is almost exactly the same as that of Theorem 2.1. Clearly,
N3, =Q\U;. nLj, where the Ls are the closed affine subspaces of I* of
codimension n+1 of the form x; =ry,...,x; , =r,,; where 1<i; <... <i 4
and every r, is rational. We now only choose for every j the disjoint sets P,, P,
=@\ L, dense in Q, such that the set P, UP, is in general position in Q, i.e.,
every finite subset of it is affinely independent, and such that every simplex

spanned by a subset of P, UP, of at most n+1 points is disjoint from L;.

2.14. THEOREM. Let E be a locally convex metric vector space, let C be an
infinite-dimensional locally compact convex set in E (C is then separable), let
UcC be open in C and let X be a separable metric space. Then Emb (X, U)
contains a dense Gg-set in C(X, U).

Proor. The proof is the same as that of Theorem 2.13, except for the
simplification that we are concerned neither with the planes L; nor with the
order of the cover # of X.

3. Relatively approximating continuous maps of zero- or one-dimensional metric
spaces into manifolds.

In this section we will apply the following theorem due to Bothe. We prove
analogous or more general results on extending (closed) embeddings of locally
compact closed subspaces of zero- or one-dimensional separable metric spaces
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into manifolds. We also approximate relatively continuous extensions of such
embeddings by embeddings. We will need only Theorem 3.6 (for X,= ) and
Lemma 3.8 later in this paper.

3.1. THEOREM (Bothe [4, Theorem 1 and Remark 1]). Let n=0 or 1. Let X be
an n-dimensional separable metric space, Xo<= X compact and fy: X, — I"™, m
=2n+1, an embedding. Then f, can be extended to an embedding of X into I™.

Moreover, Emb (X, I™; f,) is dense in C(X,I™; f,).

3.2. REMARKS 1. In [4, pp. 130-131] the first, extension part of Theorem 3.1
is reduced to the special case of the second, approximation part where X is
compact, which then is proved in [4], by the aid of the fact ([13, Theorem V 6])
that every separable metric space has a dimension-preserving metric
compactification and of Tietze’s theorem. However, the second part obviously
does not follow from the special case by the aid of this compactification
theorem, contrary to [4]. Instead, one has to use a stronger compactification
result ([7, Lemma 1.13.3] or Lemma 3.8); cf. the proof of Theorem 3.9. We will
need Theorem 3.1 only for a compact X.

2. The first part of Theorem 3.1 does not hold if X, is supposed to be merely
a closed subset of X; see [4, Example 1]. For this reason, in this section we
shall always suppose that the set corresponding X, in Theorem 3.1 is locally
compact.

3. For n22, Theorem 3.1 does not hold ([4, Example 2]); however, by [4,
Theorem 2 and Remark 1] it holds for embeddings f, with the property that
R"\ foX, is 1-ULC.

The following extension result is a simple consequence of the first part of
Theorem 3.1.

3.3. THEOREM. Let n=0 or 1. Let X be an n-dimensional separable metric
space, X, a locally compact closed subset of X and fy: Xo > R™, m=2n+1,a
closed embedding. Then there exists an embedding f: X — R™ extending f,.

Moreover, if X is locally compact, f can be chosen to be closed.

Proor. One can embed X as a subspace of an n-dimensional locally compact
separable metric space S such that X, is closed in S. To see this, embed X as a
subspace of an n-dimensional compact metric space T. Since X, is locally
compact, X, is open in cly X, Hence S=T\ (cly Xo\ X,) is the required
space. Therefore we may assume that X is locally compact.

Choose a compact metric space Y containing X topologically as a subspace
with a point p € Ysuch that Y\ X = {p}. By [13, Corollary 2, p. 32], dim Y=n.
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Further, Y, =X, U {p} is closed in Y. Let R"=R™U {00}. Then we can define an
embedding g,: Y, = R”™ by g,(x)=/,(x) for x € X, and g,(p)=o00. Now, f, X,
is a proper closed subset of R™, so, we may assume that fyX,NI™= . Since
R™NintI™ is homeomorphic to I", Theorem 3.1 gives an embedding g:Y
— R™ that extends g,. Then g defines a closed embedding f: X — R™ with
f1Xo=/o

3.4. ExampLE. For n=1, in the first part of Theorem 3.3 the supposition that
Jo 1s closed cannot be omitted (for n=0 it can, as we will prove in Theorem
3.12). To see this, let X=NU[1,2], X,=N and m=1. Then there is an
embedding f;: X, — R™ such that R™~! separates f,(1) and f,(2) and R™~?
cfoX,. Clearly no continuous extension of f, to X can be an embedding. This
example also shows that in Theorem 3.9 it is essential that f; is closed.

3.5. LEMMA. Let X be a metric space, Y an ANR, fe C(X,Y) and ¢ € C, (X).
Then there exists € C, (X) with the property that for every closed A < X, every
g e U(f|A, 6|A) has an extension g € U(f,¢).

Proor. The lemma is probably known. Anyway, it can be proved like [15,
Theorem 5.17]. Only observe that one can embed Y isometrically as a closed
subset of a normed linear space E by [24, p. 192] and that E is an AR by
Dugundji’s theorem [6, IX, Theorem 6.1].

3.6. THEOREM. Let n=0 or 1. Let X be a locally compact separable metric
space with dim X <n, M an m-manifold, m22n+1, X < X closed and fy: X,
— M a closed embedding. Then CEmb (X, M; f;) is dense in Prop (X, M; f).

PRrOOF. Special case: X compact. Let f: X — M be continuous with f| X
=f, and let ¢>0. We must construct an embedding g: X — M with g| X,=f,
and d(f,g)<e. Choose sets 4,,. .., A, =M homeomorphic to I" such that

k

fX < U intyA4;.
ji=1

Choose compact sets B,,. . ., B,= X which cover X such that fB;<int 4; for
each j. We may assume that e<d(fBj; M\ 4)) for each j. Since M is an ANR
by [9, Theorem 3.3], by Lemma 3.5 there are numbers 0<d; < ... S, =¢ such
that if 1<j<k, AcX is closed and h: A — M is continuous with d(h, f| A)
<4, then h has a continuous extension h: X — M with d(h, f)<d;, .

Let X;=X,UB,U...UB; We will recursively define embeddings f;: X
— M, 1<j<k, such that f;| X;_,=f;_, and d(f;, f1X;)<é; Then, since X,
=X, g=f, is the required embedding. So suppose that 1<j<k and that
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for- - > fj-1 are defined satisfying the requirements. There is a continuous
extension g;: X — M of f;_; with d(g; f)<9; (take g, =f). Then g;B;c A,
Consider the compact set C;=B;U f;!;4; We have

Therefore, by Theorem 3.1, there is an embedding h;: C; —» M such that h,C;
cAj, hj=f;_; on X;_;NC; and

d(hj7gjlcj) < 5j_d(gj,f) >

whence d(h;, f|C;)<d; Define a continuous map f;: X; - M by f;|X;_,
=f;j-1 and f;| C;=h;. Then d(f}, f| X )<, Finally, f; is clearly injective and
thus an embedding.

General case. Let f e Prop (X, M) with f|X,=f, and let ¢ € C,(X). We
must construct a closed embedding g: X — M with g| X,=f; and g € U(f,¢).
There are compact sets K;= M, jeN, covering M such that K;cintK j+1 for
each j. Set K,=J. Then the sets

A; = K;\intK;_;, jeN,

are compact and cover M. There is a compact neighborhood U of 4;in M for
every j such that U;NU;= if li—jl=2. Then (U));.y is locally finite in M.
The sets B;=f "'A; are compact and form a locally finite cover of X. By [28,
Lemma 5.1] we may assume that e(x) Sd(f (x), M\ U)) for all j and x € B;. Let

Ny, ={jeN| jodd} and N, = {jeN]| jeven}.

Consider the closed set 4=X,U (U;.n, B) in X. Lemma 3.5 gives 6 € C, (4),
<¢| A, such that every map h € U(f| 4, 9) has an extension h € U(f,¢).

We first construct h=g|A4. Let je N,. The set C;=B;Ufs'U;c4 is
compact, and X,NC;=f4'U; The special case gives an embedding fii C;
— M with f;=f, on X, N C; and d(f;(x), f(x))<d(x) for all x € C;. Then f,C;
< U;. The family (C));.y, is disjoint and locally finite in X because fC;< U for
j€N,. Thus setting h|X,=f, and h|C;=f; for every je N, one gets a
continuous map h: A — M in U(f| 4, ). Clearly h is injective. It is easy to see
that h is closed. Hence h is an embedding.

We finally extend h to an embedding g of X. There is an extension h € U(f,¢)
of h. Let j € N,. Consider the compact set C;=B;Uh~'U; We have hB;c U,
which implies ANC j=h"‘U » The special case yields an embedding f;: C;
— M with f;=h on ANC; and d(f;(x), f(x))<e(x) for all x € C;. Then f,C;
< U;. The family (C));n, is disjoint and locally finite in X, because hC;= U, for
Jj € Ny, and it covers X \ A. Thus setting g| A=h and g| C;=f; for every j € N,
one gets a continuous map g: X — M in U(f,¢) with g| Xo=f,. Clearly g is
injective and closed and thus an embedding.
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3.7. REMARK. It follows immediately from Lemmas 4.3 and 4.4 that
CEmb (X, M; f,) in Theorem 3.6 is a G;-set in Prop (X, M; f,) (moreover, the
latter space can be shown to be a Baire space). Further, it is easy to see that in
Theorem 3.6 every closed set A in M with dim A <nis a Z"-set in M. Theorem
3.6 is thus Theorem D for n<1.

The following lemma generalizes slightly [7, Lemma 1.13.3], which one
obtains from the lemma by supposing that Y is compact (then, X is compact,
too).

3.8. LEMMA. Let X be a separable metric space, Y a locally compact metric
space and f: X — Y a continuous map. Then there exists a locally compact
separable metric space X containing X topologically as a dense subspace with
dim X =dim X and such that f is extendable to a proper map f: X — Y.

Proor. We may replace Y by /X and thus assume that Y is separable. Then
there is a compact metric space Z containing Y topologically as a subspace
such that Z\ Y is a point. By [7, Lemma 1.13.3] there exists a compact metric
space X containing X topologically as a dense subspace with dim X =dim X
and such that f: X — Z has an extension to a continuous map f: ¥ — Z.
Then the space X =7"'Y and the map f: X — Y, f(x)=F(x) for x € X, satisfy
the lemma.

By the aid of Lemma 3.8 it is easy to generalize Theorem 3.6 to deal with
approximation of continuous maps instead of only approximation of proper
maps:

3.9. THEOREM. Let n=0 or 1. Let X be a separable metric space with dim X
<n, M an m-manifold, m=2n+1, X, a locally compact closed subset of X and
Jfo: Xo = M a closed embedding. Then the set

(g € Emb (X, M; f,) | dimgX =dim X}
is dense in C(X, M, f,).

ProOF. Let f: X — M be continuous with f| X,=/f, and let % be an open
cover of M. By Lemma 3.8 there exist a locally compact separable metric space
X containing X topologically as a dense subspace with dim X=dimX and a
proper map f: X — M extending f. Since f| X, =/, is proper, X is closed in X,
as it is easy to see. Hence Theorem 3.6 gives a closed embedding §: X > Min
N(f, %) with g1 Xo=f,- Then g=¢| X is an embedding in N(f,%) with g| X,
=f,. Obviously gX =gX, whence dim gX =dim X.
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3.10. REMARK. In a similar way one can deduce Theorem E from Theorem D
applying Lemma 3.8. Theorem 3.9 is the same as Theorem E for n<1; cf.
Remark 3.7.

Theorem 3.1 and the first part of Theorem 3.3 are corollaries of Theorem 3.9
by Tietze’s theorem. Theorem 3.6 has the following consequence, according to
which every embedding of a locally compact subset can be extended to a
neighborhood of this set:

3.11. THEOREM. Let n=0 or 1. Let X be a separable metric space with dim X
£n, M an m-manifold, mz2n+1, X, < X locally compact and f,: X, — M an
embedding. Then f, has an extension to an embedding f: U — M of some
neighborhood U of X,,.

Moreover, if X is locally compact and f, is closed, then f can be chosen to be
closed.

Proor. Since X is locally compact, it is closed in an open set V of X. We
may replace X by V and thus assume that X, is closed in X. Similarly we may
assume that f; is closed. By the same argument as in the proof of Theorem 3.3,
we may assume that X is locally compact. Since M is an ANR, f, has a
continuous extension g: W— M to an open neighborhood W of X,. By [2,
Lemma 3.2] there is a closed neighborhood Uc W of X, such that g|U is
proper. Theorem 3.6 then implies the existence of a closed embedding f: U
— M with f| X, =f,.

The next extension result generalizes the first part of Theorem 3.1, Theorem
3.3, and Theorem 3.11 for n=0.

3.12. THEOREM. Let X be a zero-dimensional separable metric space, M a non-
empty m-manifold, m=1, X, a locally compact closed subset of X and fy: X,
— M an embedding. Then there exists an embedding f: X — M extending f,.

Moreover, if X is locally compact and f, is closed, then f can be taken to be
closed, provided that M is non-compact if X is non-compact.

PRroOF. As in the proof of Theorem 3.11, we may assume that X is locally
compact and that f; is closed. Theorem 3.11 then gives a closed neighborhood
U of X, and a closed embedding f;: U — M that extends f,. By [13, E), p. 15]
we may assume that U is open, too. Now f, U is closed and nowhere dense in
M. It follows that there is an embedding f,: X\ U —» M with

(3.13) LENU)NAU = & .
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Then f=f, U f,: X - M is an embedding extending f,,.

Suppose now that X and M are non-compact. We show that f, can then be
chosen to be closed, in which case f'is closed, too. Obviously, there is a disjoint,
in M locally finite family (4;);cy of subsets of M\ f;U homeomorphic to I".
There is a cover (Bj);.n of X\ U by compact open sets. Set

j—1
C,=B;, ad C;=B\| B, for j>1.
i=1
Then (C));cn is a cover of X\ U by disjoint compact open sets. For each j
choose an embedding g;: C; — A; Define f,: X\ U — M by f,|C;=g; for all
j. Then f, is a closed embedding satisfying (3.13).

4. Approximating proper maps of locally compact metric spaces into LIP
manifolds.

This section is devoted to proving the following theorem.

4.1. THEOREM. Let X be a locally compact separable metric space with dim X
<n and let M be a LIP m-manifold, m=2n+1. Then closed embeddings are
dense in Prop (X, M).

More precisely, CEmb (X, M) and CEmb™ (X, M) are dense Ggsets in
Prop (X, M).

In Theorem 5.1 we will drop the LIP supposition on M from Theorem 4.1.

4.2. LEMMA. If X is a metric space and M a manifold, then Prop™ (X, M) is
open and dense in Prop (X, M).

Proor. The openness is easy to see, and the denseness follows from Lemma
2.3. Alternatively, one could use Lemma 2.4.

4.3. NOTATION AND LEMMA. Let X and Y be metric spaces and let U be an
open cover of X. Then the set Propy (X, Y) of all proper U-maps of X into Y is
open in Prop (X, Y).

Proor. This follows from Lemma 2.6.

4.4, LEMMA. Let X and Y be metric spaces and define the open covers U;
=(B(x,1/))cx of X for j € N. Then

CEmb (X,Y) = () Propg (X,Y).
jeN
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Proor. If f: X — Yis a closed embedding, then f'is clearly proper and a %-
map for every open cover  of X. Conversely, if a proper map f: X — Yisa
% -map for every j € N, then fis injective and thus a closed embedding.

In Lemma 49 we will show that in the situation of Theorem 4.1,
Propy (X, M) is dense in Pfop (X, M) for every open cover % of X. For this we
need some concepts and auxiliary results.

4.5. HAUSDORFF MEASURE AND METRIC DIMENSION, Let X and Y denote
separable metric spaces. For every real number p=0 we let #7(X) denote the
p-dimensional Hausdorff measure of X ; see [13, Definition VIL.1]. We denote
by dimy X the Hausdorff dimension of X. For the definition and the inequality
dimy X >dim X, see [13, p. 107]. If f: X — Y is LIP, then obviously dimpy f X
<dimy X.

Suppose that X is totally bounded. Let

N(X,e) = min{ke N | X=4,U ... U4, d(4)<e}
for e>0. We define the metric dimension dim_ ., X of X by
dim, X = limsuplog N(X,¢)/log (1/¢);
=0+
cf. [19, p. 156] and [27, p. 68]. If X is not totally bounded, we define dim,,,, X

=00. Then dimyy X=dimgyX; cf. [27, p. 68]. Thus, dimp, X =dim X.
Clearly, dimpy A Sdimg, X for AcX.

The following lemma gives an estimate from above for the Hausdorff
dimension of a cartesian product. Here, we take d,

d((xbxz)’ (,Vl,J’z)) = max (dl (xlayl)’ d2 (x2’y2)) >

as the metric for the cartesian product X; x X, of two metric spaces (X,,d,)
and (X,,d,).

4.6. LEMMA. For all separable metric spaces X and Y,

dimy X x Y < min (dimy X +dim, Y,dim . X +dimy Y) .
Proor. This follows from [27, Satz 7' and p. 68] and is easy to check.

4.7. LeMMA. Every separable metric space X can be remetrized by a totally
bounded metric for which dim X =dim X.

Proor. We may assume that dim X =n < o00. Since X has an n-dimensional
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metric compactification ([13, Theorem V 6]), we may assume that X is

compact. Hence, by [19, pp. 161-162] X can be embedded as a subspace of
R2"*1 in such a way that

N(X,e) £ (1/e)"*%®  for every £>0

where 6(¢) — 0 as ¢ — 0. Then dim ., X <n, and so dim, X =n.

The proof in [19] is based on a rather difficult polyhedral approximation of
X. Therefore we give yet another proof for the lemma, assuming, as above, that
dim X =n<oo0. In [3] one constructs for every sequence (x);c y of integers =3
an n-dimensional compact set U"cR?*"*! such that every n-dimensional
separable metric space can be embedded into U". (In this construction the case
n=0 can be included though it was excluded in [3, p. 209].) Hence it suffices to
check that for the sequence »;=2/*! we have dim,,,, U"<n. Since in this case
U"=P},,, in terms of [26], this is easily done by the aid of the facts about the
function & — N(P%,,,¢) given in [26].

4.8. NotaTION AND LEMMA ([ 15, Corollary 5.18]). If X is a metric space and
M a LIP manifold, the set LIP (X, M) of all LIP maps of X into M is dense in
C, (X, M).

4.9. LEMMA. Let X and M be as in Theorem 4.1 and let U be an open cover of
X. Then Propg (X, M) is dense in Prop (X, M).

Proor. The proof is based on the ideas of [15, Theorem 6.18]. By Lemma 4.7
we may assume that dim,, X <n. Since Prop (X, M) is open in C,(X, M),
Lemmas 4.2 and 4.8 imply that the set Prop™ (X, M) N LIP (X, M) is dense in
Prop (X, M). Thus it suffices to prove the following: Let f: X — M be a proper
LIP map with f X cint M and let ¢ € C, (X). Then there exists a proper %-map
g: X > Min U(fe).

It is easy to find points a; € X, numbers 6; € (0, 1), open sets U;=M and
LIP homeomorphisms

y;: Uj—» R™  for jelJ

where either J=N or J={1,...,k} for some k € N such that the following
conditions hold:

(i) The balls A;=B(a;d)), j € J, form a cover & of X which is a pointwise
star-refinement of #.

(ii) B,:B(aj, 26)) is compact for every j e J.

(iii) (Bj);ey is locally finite in X.

(iv) fBjc U, for every j e J.
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Then 5;=d(fB;, M\ Uj)>0. Hence by (iii) and [28, Lemma 5.1] there is
n € C,(X) with maxnB;<n; for all j € J. We may assume that e<# and that
U(f,e)=Prop (X, M).

We next construct recursively maps f;: X — M, j e JU{0}, starting with f;,
=f, such that, for every j € J,

(1); f; is LIP,

(); fie Ulfe),

(3); fi=fj-1 on X\ 4,

@); ;AN (XNA)=0.
Suppose that i € J and that the maps f,. . ., f;_; have been defined satisfying
(1);~(@4); for j=1,...,i—1. Then f,_,B;cU, Define a LIP map a=y,f;_;:
B; — R™ Let

t = min{e(x)—d(fi-,(x),f(x)) | xeB;} (>0).
There is s>0 such that, if x e aB; and y e R™ with |x—y|<s, then
d(W; *(x),¥; () <t. Define a LIP map ¢: 4; x R™ — R™ by
‘P(X,J/) = (y_a(x))/(éi_d(x’ai)) .
Let Y=y,(f;_ ((X\NA4)NU;) and Z=¢(4;x Y). Then by Lemma 4.6,
dimyZ < dimyA;xY £ dimp, A;+dimy Y

< 2dim X £2n<m.

met
Thus #™(Z)=0. Hence there is y € R™\ Z with |y| <s. Define a LIP map h: B;
— R™ by

h(x) = a(x)+max (§,—d(x,a),0)y .
Then Y NhA;= &, because ¢(x, h(x))=y for every x € A, We now define f;: X

— M setting f;=f;_, on X\ B; and f;=y;"*h on B,. Since h=a on B;\ 4, it
follows that f;=f;_, on X\ A4,, so f; is LIP. We have

A N fio f(XNA) = Y7 (hANY) = & .

If x € A;, then

Wi(fi) =i fic L) = iyl < 5

so d(fi(x), fi-;1(x))<t, which implies d(f;(x), f(x))<e(x). Thus f; satisfies
- - -, D)

Let x € X. Then there are a neighborhood V, of x in X and j(x) € J such
that V. N A;= ¢ if i>j(x). By (3); this implies that f;| V. =f,,| V, for iZj(x).
Hence the limit g(x)=lim;_ , f;(x) exists in the case J=N. If J={1,.. ., k}, we



APPROXIMATING CONTINUOUS MAPS OF METRIC SPACES... 81

set g(x) =/, (x). The map g: X — M is continuous (in fact, LIP) because g =fj,
on V, for all x € X. By (2); we have g € U(f,¢). This implies that g is proper.
We conclude the proof by showing that g is a %-map. Consider a point p € M.
We must construct a neighborhood W of p such that g !WcU for some
U € %. Since g is closed, we may assume that p=g(x) for some x € X. Choose
U e U with st (x,o/)cU. Let y e g7 !(p). Let

j=max{ieJ| {xy} N A+J}.

Then g(x)=f;(x) and g(y)=f;(y). Since f;A;Nf(X\ A)=, it follows that
x,y € A;, whence y € st (x, &). Thus g 7! (p)= U. Therefore W=M\ g(X \ U) is
an open neighborhood of p with g~ !WcU.

4.10. Proor oF THEOREM 4.1. The theorem follows immediately from
Lemmas 1.3, 4.3, 44, 49, and 4.2.

4.11. LEMMA. Let X be a separable metric space, Y an ANR, % an open cover
of X, f: X — Y a continuous map and ¥~ an open cover of Y. Then there exist a
polyhedron P with dim P <dim X and continuous mapsg: X — Pand h: P —» Y
such that g is a U-map and hg is ¥ -near to f.

Moreover, if X and Y are locally compact and f is proper, then g and h can be
chosen to be proper.

Proor. The first part is certainly known. One can prove it by slightly
modifying the proof of [9, Theorem 6.1] (using [7, Dowker’s Theorem 3.2.1]).
In the second part we may assume that N(f, ¥")< Prop (X, Y). Then the proof
of [1, Lemma 1.1] shows that if P is replaced by a sufficiently small closed
subpolyhedron P’ >gX, then the maps g': X — P', g'(x)=g(x) for x € X, and
W =h|P' are proper. This proves the second part.

4.12. REMARK. Applying Lemma 4.11 one can easily reduce Lemma 4.9 (and,
hence, also Theorem 4.1) to the special case of a polyhedral X. Observe that in
this special case, in the proof of Lemma 4.9 one could replace Lemma 4.7 by
the fact that dim,,P=dimP for every compact subpolyhedron P of a
euclidean space.

5. Approximating continuous maps of metric spaces into manifolds.

5.1. THEOREM. Let X be a locally compact separable metric space with dim X
<nand let M be an m-manifold, m=22n+ 1. Then closed embeddings are dense in
Prop (X, M).

More precisely, CEmb (X, M) and CEmb™ (X, M) are dense Gysets in the
Baire space Prop (X, M).

Math. Scand. 49 — 6
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Proor. Since CEmb (X, M) is a G;-set in Prop (X, M) by Lemmas 4.3 and 4.4,
by Lemma 4.2 it suffices to show that CEmb™ (X,M) is dense in
Prop™ (X,M). Now Prop™(X,M) can be considered as a subset of
Prop (X, int M) (i.e., of elements f with f X closed in M). This reduces the proof
to the claim that CEmb (X, int M) is dense in Prop (X, int M). This claim then
follows from Lemma 1.5 and Theorem 4.1 if m%4. If m=4 and, hence, n<1,
the claim follows from Theorem 3.6; in fact, it follows from Theorem 3.6 for n
<1 and all m=2n+1. However, in the case n=0, m>1 there exists a simple
direct proof for the theorem, which uses Remark 4.12. We present it in order to
lessen the dependence of the proof of Theorem 5.1 on Theorem 3.1.

It suffices to show that if % is an open cover of X, then Propy (X, M) is
dense in Prop (X, M). So let fe Prop (X,M) and ¢ € C,(X). To simplify
notations we assume that X is non-compact. There is a refinement (V). of %
by disjoint non-empty compact open sets such that d(fV;)<e;/2 where g;
=min eV, for all j; cf. the proof of Theorem 3.12. For each j choose x; € V. Set
y1=f(x,) and then choose a point

yje B(f(x), min(ey/2, I))N\{yy...,y;-4} for j>1.

Set g(x)=y;if x € V;and j € N. Then g € Prop (X, M). Since g™ (y)=V,, gisa
%-map. Finally, if x € V}, then

d(g(x), f(x) S d(y; f(x)+d(f(x), f(x))
£/2+¢;/2 = ¢ < e(x).

A

5.2. LEMMA. If X is a locally compact separable metric space and M is a
manifold with a non-compact component, then Prop (X, M)+ .

Proor. This follows from the facts Prop (X,R!)+ ¢ and Prop (R!, M)+ (.
The first fact is well-known and is also shown in the proof of Corollary 2.11.
The second is proved in [17, IV, p. 7-02].

5.3. CoroLLARY. Let n € NU {0} and let M be a non-compact connected m-
manifold, m=2n+ 1. Then every at most n-dimensional locally compact separable
metric space can be closedly embedded into M.

Proor. This follows from Theorem 5.1 and Lemma 5.2.

5.4. REMARK. Recall from Introduction that the first part of Theorem 5.1 for
a polyhedral X also follows from [5] and PL topology. One could then prove
Theorem 5.1 like Theorem 4.1, an application of Lemma 4.11 reducing the
proof of Theorem 5.1 to this special case.
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5.5. LEMMA. In the situation of Lemma 3.8, if (U,,U,) is an open cover of X,

then X can be chosen in such a way that there exists an open cover (Vy, Vo) of X
with V\NX=U, i=1,2.

Proor. Let 4;=X\U,;, i=1,2. There is a continuous map ¢: X — [1,2]
with ¢ ~'(i)=A4,, i=1,2. Choose a topologically compatible totally bounded
metric g, on X. Then the formula

2(x,y) = go(X,))+lp(x)—p() for x,ye X

defines a topologically compatible totally bounded metric ¢ on X for which
0(A4y,A,)21. The proof of [7, Lemma 1.13.3] shows that the compact metric
space X in the proof of Lemma 3.8 can be chosen in such a way that the metric
g of X satisfies g(x,y)=p(x,y) for x,y € X. Let B;=clgA4,, i=1,2. Then
6(B,, By)= 1, whence B, N B,=. Thus (V,,V,)=(X\ B,, X\ B,) is an open
cover of X with V,NX=U, i=1,2.

5.6. THEOREM. Let X be a separable metric space with dim X <n and let M be
an m-manifold, m=2n+ 1. Then embeddings are dense in C(X, M).
More precisely, the set

E = {fe Emb(X,M)| dimfX =dim X}

is dense in C(X, M), and Emb™ (X, M) contains a dense G4-set in the Baire space
C(X,M).

Proor. The denseness of E follows immediately from Theorem 5.1 and
Lemma 3.8; cf. the proof of Theorem 3.9. To prove that Emb™™ (X, M) contains
a dense G;-set in C(X, M), by Lemmas 1.3, 2.4, 2.6, and 2.7 it suffices to show
that for every open cover & = (U,, U,) of X the set of all Z-maps f: X —» M is
dense in C(X, M). To this end, consider a map f e C(X, M) and an open cover
% of M. By Lemmas 3.8 and 5.5 there exists a locally compact separable metric
space X containing X topologically as a subspace with dim X <n and such that
fis extendable to a proper map

f:X->M and U, =V,NX, i=12,

for some open cover 8= (V,,V,) of X. Theorem 5.1 gives a closed embedding
g: X - M in'N(J,%). Clearly § is a #-map. Then the embedding g=¢| X in
N(f,%) is a #-map.

If M is embeddable into R™, Theorem 5.6 also follows from Theorem 2.1. Of
course, the denseness of E in Theorem 5.6 is a corollary of Theorem E.
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