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THE DUALS OF GENERIC HYPERSURFACES

J. W. BRUCE*

Introduction.

The concept of transversality had its origin in general position arguments in
algebraic geometry. Sard’s theorem on regular values, Thom’s transversality
theorem and Mather’s refinement have made the concept well understood in
the smooth category. The general result is that any transversality condition
should be satisfied by an often open always dense subset of the given smooth
mappings. The density is proved (see [9]) by showing that we can embed any
map in a family almost all of whose members are transverse to the manifold in
question.

A natural problem is that of returning to the algebraic case (real or complex)
and trying to apply the above results in this setting. One of the major
difficulties is that one does not have such a large class of maps as before
from which to construct the family mentioned above. Indeed the collection of
relevant mappings is usually finite dimensional, and consequently transver-
sality conditions involving higher jets may not be generically satisfied. Thus the
question arises: in any given situation what sort of transversality conditions
can we ensure? In the complex case the problem is further complicated by the
fact that there is no transversality theorem in the complex analytic category.

In this paper we consider this problem in the context of tangent singularities
of smooth hypersurfaces i.e. the type of singularity a height function in the
normal direction to a hypersurface at a point has at that point. In section 1 we
discuss the results available in the smooth category (mainly due to Looijenga)
and, in part, show to what extent the height functions are relevant to the
differential geometry. In particular we shall find that the dual of the
hypersurface and the Gauss map arise naturally in an analysis of these
functions. In section 2 we consider analogous problems for real or complex
algebraic hypersurfaces in a projective space P"*'. We shall, under certain
hypotheses; obtain local structure theorems concerning the duals of general
complex algebraic hypersurfaces. Throughout our notation will generally
follow that used in [9].
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1. The smooth case.

The basic fact about transversality is the following crucial observation due
to R. Thom.

LemMma 1.1. Let M, N, P be smooth manifolds, W= P a submanifold and F: N
x M — P a smooth map. If F is transverse to W then for almost all y € M the
map F,: N — P, x > F(x,y) is transverse to W.

Proor. Consider the natural projection n: F~ l-(W) — M. By Sards theorem
the set of critical values of = has measure zero. But it is easy to see that yis a
regular value of = if and only if F,;: N — P is transverse to W.

Thus for transversality theorems one can prove density of transversal maps
by embedding any given map f: N — P in a family F: N x M — P which is
transverse to Wc P (e.g. F a submersion).

Keeping this observation in mind we turn to the situation that interests us
here. Let S" =S denote the unit sphere in R"*! and let N be a smooth manifold.
Given an embedding f: N — R"*! consider the family of functions

NxS-Hi, RxS s §

where H (x,a)=(f(x) a,a), n(c,a)=a for (x,a,c) € NxS§ xR and where the
“dot” denotes the usual inner product on R"**. If X =U X, is a stratified subset
of the multijet space ,J*(N, R) we say that f is tangent transverse to X if the
obvious jet map ,jXH ;: N xS — J*(N,R) is transverse to each X;cX.

Tueorem 1.2 (Looijenga). Given ¥=U X as above the set of embeddings
fe C®(N,R"™ 1) with H, tangent transverse to X is residual.

ProoF. This result is proved in [9 p. 743] (essentually using the idea of Lemma
1). Note that (with the notation of [9]) since in our case s=0, e +si(m), so we
do not need the restriction W invariant under addition of constants.

Note that the critical set ZH of H is {(x,a): x is a critical point of H ;(a): N
— R} which is clearly the unit normal bundle to N. Suppose we now restrict to
the case N compact of dimension n. What relevance has the family of functions
H (dropping the subscript f) to the study of the differential geometry of N"
<R"*1? Well, N separates R"*! and the projection n,: XH — N is a trivial
double cover, since one can always select the normal vector pointing out of N.
Let the collection of such outward normal vectors be denoted by X*. We
define the dual of N to be the set of critical values H(Z*). Here we are using the
word dual in the sense of the locus of (oriented) tangent planes of N; given
H(Z™) one can easily recover the set of all tangent planes to N. On the other
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hand our duals do not have the usual duality property of those in algebraic
geometry where for example the dual of a dual of a curve is the original curve.
Also the Gauss map is closely associated with H being the composite

G:N -, 5% L, RxS S,

As defined the family of functions H depends on the position of N with
respect to the origin. However it is easy to check that any translate of N gives
an equivalent family of functions in the following sense. Two smooth families of
functions f;: Nx M — R, i=1,2 are equivalent if there are difftomorphisms
hy, h,, h; making the following diagram commute

NxM P, RxM = M

L L
NxM Py RxM = M

where F;(x,y)= (fi(x,y),y) and = is the obvious projection. It follows that there
is a difftfomorphism of R x S taking the dual of N to the dual of the translate of
N. The Gauss map of course is unaltered.

We may now ask various questions. For example what type of height
functions H, should one expect, what does the dual of N look like generically?
We divide our discussion into two parts. Initially we shall consider the case r
=1 in Theorem 1 above; we shall then consider applications of the
multitransversality results, needed to obtain information on the dual of N. We
shall only consider stratified subsets ¥=U X ;=J*(N,R) obtained in the
obvious way from 2% x #™ invariant stratifications of J*(n, 1). Note that one
advantage of considering the hypersurface case is that we can think of the pull
back of singular strata X as lying on N itself via the projection 7,: £ — N.

Now to business: first the case r=1. It follows from theorem 1 that we will
not be able to avoid strata X ; of codimension <2n. For n<5 we have the ideal
situation: provided k=8 the jet space J*(n,1) has a stratification by simple
orbits (of sufficient jets) and strata of codim =6+ n. Thus for n<5 we expect
the height functions to have simple singularities only. Moreover if f is simple
with Milnor number u the corresponding subset of J*(N,R) will have
codimension n+ u—1 so we expect such singularities when u—1=n. If (as in
the case just discussed) the local jet map germ

J¥H : (N xS, (x,a)) — (J*(n,1),j*H(x, a))

j¥H(y,b)=k jet of (z — H(z,b)— H(y,b)) at z=y is transverse to the Z#% orbit
of j*H(x,a) we say that the singular jet j*H(x, a) appears transversally on N
(provided j¥H(x,a) is a k sufficient jet). In this case the dual of a small
neighbourhood of x € N is a familiar object. For
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H: (NxS,(x,a) - (RxS, (H(x,a),a))

is a versal unfolding of the germ H: (N,x) —» (R,H(x,a)) and the dual is
consequently locally the discriminant set of the versal unfolding H i.e.

({(t,b) e RxS : 3 (y,b) € T with H(y,b)=t}; (H(x,a),a)).

The following discussion shows that given any k sufficient jet j*g (which by
the splitting lemma we may suppose is 2 flat) with Milnor number u this jet
does appear transversally as a height function on a manifold of u—1in R*. If g
is a function of r variables x,,...,x, since j2%g=0 it is clear that r<pu. Let
{1, x4,. . s Xp @p115- -, P, 41} be a polynomial basis for the complex vector
space &/J, where & is the ring of formal power series in xy,. .., x, and J,<& is
the Jacobian ideal of g; clearly we may suppose that degp;=2. Set

h(xl" X Vet "yu~1) = g+zi(yl+(pl)2 .

We claim that z=h(x,y) (a hypersurface in R*) exhibits j*g transversally.
Locally the map H is given by

H: (R*IxRAL(0,0) - (RxR*LH(0,0),

(x,y,a) = (3 ax;+Y ay;—h(x,y),a) .

The local jet map
JHH = (REEXRETL(0,00) — (J4(u—1,1), j{H(0,0))

has a tangent map at (0,0) and its image is spanned by the vectors
{Xgse e s X Yrs 1o - > Vu—1, 080X, ;). To show that this is transverse to the
2" orbit of j*H(0,0) we have to show that they span s2/s2J, where m<&
is the maximal ideal. Now the ¢; and x;spans/J, where h'=g+3 yi, s

changing co-ordinates by y; — y;+¢; we ﬁnd that they also span »2/J,. But

oh oh
Jy = mJ,,+Sp{ax }+s {;y}

Sp (x +Sp {y }+Sp{§fj

SO

}+Sp{<p, +md),

13

Sp {x }+Sp{§h}+Sp{§f}+8p{w.}+h = m

as required. Note that in general the hypersurface {x,,; =h(x,,...,x,)} < RrH!
need not display the height function h transversally. For example x;=x{ £ x3
(respectively x,=x3+x3+x3) does not display A; (respectively D,)
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transversally while x;= (x; +x,)>+x} (respectively x,=x3x3 + X3+ x;X,X3)
does.

Of course one cannot expect, for n= 6, that generically H will versally unfold
its height functions i.e. that the height functions will appear transversally on N.
This is because for n=6 one finds codimension 2n submanifolds of J*(n, 1)
consisting of uncountably many orbits. Thus although one can always ensure
that jfH is transverse to the submanifold one cannot ensure that j*H is
transverse to the orbits (which have codim=2n+1). In this case instead of
stratifying by simple orbits (as we do for n<5) one would give the k sufficient
jets in J¥(n, 1) the canonical stratification described by Looijenga in [6]. It is
not too difficult to see that the simple orbits are strata in the Looijenga
stratification (see [1] and [2] for a discussion in a slightly different context) so
this stratification does indeed generalize that by simple orbits. Unfortunately
the actual nature of this stratification is something of a mystery. The simple
orbits are strata for fairly trivial reasons. See the paper [10] of Wall (and
following Walls methods [3]) for discussion of the partition of the simple
elliptic Eq (respectively E,) stratum, where some very strange exceptional
values of the modulus are found.

Let us now consider some applications to the differential geometry of
N <R"*!, One of the crudest invariants of a singular jet is its corank and the
R x P orbits

X; = {j*PgeJ*(n1): j'lg=0, corank ’*g = i}

give a manifold partition (indeed a Whitney stratification) of XcJ?(n,1).
Theorem 1 shows that for generic N =R"*! there is an open set of points whose
normal height function is of type A, (i.e. has a Morse singularity) and a “nice”
set (a Whitney stratified and hence triangulable set [5]) of codimension 1
whose normal height functions have corank >1. (Codim X; in J*(n, 1) is 4i(i
+ 1)+ n). The following lemma (due I believe to Milnor [7]) shows that this set
is the parabolic set of points of N where the Gaussian curvature vanishes. In
what follows we orient R"*! and give N and S the induced orientation using
outward normal unit vectors.

LemMA 1.3. The point y € N is a regular point of G: N — S with G(y)=a if

and only if the height function H,: N — R has an A, singularity at y. Moreover
with respect to correctly oriented co-ordinates at y and a,

, OH, . a6,
sign (det ( o, 6xj>) = (—1)"sign (det <;3?,>) .

Proor. It is clearly enough to consider the case a=(0,...,0,1) i.e. H, is the
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height function x, , ;. Clearly we can then write N locally as x, ., =h(x,,. . ., x,)
for some smooth h=H_, in terms of local co-ordinates on N. So

oh oh
G(xy,. . s Xph(xy,. .0, x,)) = P<—5)—C‘,. o T 1)
1 n
where p: R""'—0 — S is the map x — x-|x| ™!, ||-|| the usual Euclidean

norm. When restricted to any hyperplane not through the origin p is a local
diffeomorphism, so a is a regular value of G if and only if (— 6%h/dx,0x ;) is non
singular. The assertion about signs follows easily. Note that det (0G,(y)/0x;) is
the Gauss curvature of N at y.

Of course this lemma is the first indication of a deeper connection between
the singularities of the Gauss map and the height functions (see [9] for further
details). Despite its simplicity it can be used to prove a large number of well
known results (see for example [4]). We list some below:

(i) For n even the degree of G is i(Euler characteristic of N)=1y(N)
(Hopf).

(i) G: N — S is surjective.

(iii) The curvature x is >0 somewhere on N. If x+0, N is diffeomorphic to
the sphere S.

(iv) For n even if dV is the element of volume on N, [yxdV=3y(N) vol §"
(Gauss Bonnet).

(v) For neven if H={x € N: x(x)>0} then

J xdV
H

Thus x(N)<2 implies x <0 somewhere on N.

(vi) For n even if H,(N)=0 for q odd or H,(N) not free for q even or N not
simply connected (H, singular homology with Z coefficients) then x<0
somewhere on N.

> 12— 7(N))vol §".

The proofs are fairly straightforward. For example to prove (v) setting
E={x € N : x(x)>0} we obtain
j ’
H

[ =

by (iv) (an easy corollary of (i)). But every height function has an absolute
maximum, which if it is non degenerate has x>0 by the lemma. So G(E) is the
complement of a set of measure zero in §" so [gxdV2vol §" from which the
result follows. To prove (vi) suppose x = 0; choosing a generic height function
it is easy to show that M can be built up from even dimensional cells only.

The results (v) and (vi) above provide sufficient criteria for the curvature to

= 4x(N)vol 8"
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change sign on an embedded hypersurface of even dimension. The following
argument shows that for an open dense subset of the non convex embeddings
of N — R"*1 the curvature changes sign (note N S means any embedding of
N is non convex!) Well suppose we choose N tangent transverse to the X
above (since X ; are Whitney (A) regular over each other and U X ; is closed this
is an open condition see [9]). Then either x>0 on N whence the embedding N
=S — R""1 is convex or x=0 at say ye N. If b=(0,...,0,1) is the normal
vector at y the local jet map

JEH: (R"™*1 xR"71(0,0)) = J2(n—1,1)
takes (y,b)=(0,0) to an orbit with some representative
exi4+ .. +ext g =+1L,r<n-1.
It follows that the orbits with representatives
(e X3+ ... +ext+x2 +...+x}_+ex?), &= +1,

contains jZH (0,0) in their closure. Since j2H is transverse to the j?H (0, 0) orbits
this means that points arbitrarily near y have normal height functions with
singularities of type

exi+ .. AexiHxt 4. +x2 texd,

which are 2 determined. In particular it follows from the lemma above that x
changes sign near y.

To discuss the dual of N we need to describe the results one can obtain from
Theorem 1 by applying it to multijet spaces. We shall be concerned with
stratifications of the jet spaces ,J*(N, R) constructed as follows. If X=U X, is
some natural stratification of J*(N,R) (as described above) give ,J*(N,R)
< (J*(N, R)y the product stratification. There is a natural projection

o : JYN,R) — R, IT"(j*,. . .,/,) = (targetj¥f,,. .., target j*f)

which is a submersion restricted to strata. Give R’ the natural “diagonal”
stratification 2 (R")=U D, i.e. so that with the natural action of the symmetric
group S(r) on R" by permutation of co-ordinates two points are in the same
stratum if and only if they have the same isotropy group. New refine the
product stratification of ,J*(N, R) by taking intersections with the (IT") "' D,. We
denote the resulting stratification by X”=U X¥. The use of this stratification
1s best explained in terms of regular intersections. The following discussion is a
watered down version of one given in [6].

Let X=U X, be some natural stratification of £ = J*(N, R). By Theorem 1 for
generic embeddings f: N — R"*! we can pull back this stratification to one of
ZHc<N xS, which we denote by X,. Now H: Nx§ — RxS§ is said to have
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regular intersections with respect to the stratification X ,< N x S if the r fold
product H": (N x S)” — (R x S)" is transverse to the diagonal stratification of
(R xS)" when restricted to the product stratification X, x ... x X, (N x §)
for some r=n+2. If for any (t,a) e R x S,

Z(t,a) = {(x,a) e ZH : H(x,a)=(t,a)},

then H has regular intersections if and only if X(t,q) is finite and the planes
(T, oH (T, X (5. o))} . e 50,y (Where X ) is the stratum containing (x, a))
are in general position in T, , (R x 5). We say that H: N xS — R x § is multi
transverse to X if

(i) the jet map j*H: N xS — J¥(N,R) is transverse to the X; of ¥,

(i) the mapping H: N xS — R x § has regular intersections with respect to
X,

ProrosiTion 1.4 (Looijenga [6]). The following are equivalent:
(1) H is multi transverse to X.
(i) j*H: N¥ x S — ,J*(N,R) is transverse to X

We note that for strata X =X cJ*(N,R) of the Looijenga stratification the
map H: (*H)"'(X) — R x S is an immersion, provided H is transverse to the
stratification. So the regular intersections condition above means that the
corresponding immersed submanifolds of R x S all meet in general position.

We now apply these results to the consideration of examples in low
dimensions. In particular we note that if y,,...,x, are types of simple
singularities in J*(n, 1) (k sufficiently large) the set {xy,. .., %} ={ ("1 . ..J*):
target j*f, =target j*f,, 1 <i<r, j*f; is of type y;, for some reordering j(i) of

1,...,r} is one stratum in the Looijenga stratification of J*(N,R). A short
computation shows that it has codimension rn+ Zu;— 1. In what follows A, (p)
is the set of functions # x & equivalent to x}+ ... +x2—x2, — ... —xj,;

(note A, (p)=A, (n—p)).

ExampLEs 1.5. The duals.

(a) n=1. For generic plane curves there is an open subset of non parabolic
points where the tangent does not cross the curve, and a finite number of
parabolic or flex points where the tangent does cross the curve. Considering
multi jets we find that there are a finite number of double tangents (both points
non parabolic). The corresponding duals are curves with cusps or ordinary
double points as singularities. (See dig. 1.)

b) n=2. Here there are two types of A, singularity A (1) (saddle), A,(2)
(max/min). The open set of points for which the tangent plane meets the
surface in an A, (1) singularity are the hyperbolic points, so named because a
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_ 2A,

CURVE DUAL dig. 1.

small deformation of the tangent plane meets N locally in a hyperbola; they
are also the points where x <0. Type A,(2) appear at elliptic points where x
>0. Note that both types occur if N #S2.

There are three types of parabolic points where x¥=0. Those of type A,,
where the tangent planes meet N in a cusp, form a curve on N. On the
parabolic curve (which in this case (n=2) is smooth) there will be a discrete set
of points where the tangent planes meet N in a “real” tacnode A;(1) (x*—y*
=0) or an “imaginary” tacnode (x?+y*>=0) A,(2). Considering multijets we
find that there are curves of double tangents whose tangency points are of type
(i) A (1), A (1); (1) A (1), A (2); (iii) A;(2), A;(2). There are a discrete set of
double tangents whose tangency points are of type (iv) A, (1), A,; (v) A;(2),A,.
Finally there are a finite number of triple tangents of types (vi)
A A A (D) (viD) Ay(1),A(1),A,(2); (vil) A,(1),A;(2),A;(2); (ix)
A (2),A(2),A;(2). (See dig. 2.)

The corresponding dual singularities are cusp x line, double point x line,
triple points and dovetails (corresponding to A;(1) and A;(2)). (See dig. 3.)

dig. 2.
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dig. 3.

(c) n=3. Again there are two types of A;, A, (1) and A, (3). There are also two
types of A, A,(1): x*+y*+2z3, A,(2): —x?+y?>+z% and three types of
Ay As(D): X2 +y2+24 A5(2): —x2+y? +2% A5(3): —x?—y?+2* Of course the
quadratic terms are irrelevant as far as the local picture in N and the dual are
concerned. There are two new singularities A, and D, which appear in this
dimension, both have two types A, (1): x24+y2 +2z% A (2): —x2+y?+2°, D,(1):
x2+y*—z3, D,(2): x2+yz(y —z). The induced stratification of N has the same
sort of picture at an A, as at A, and A,; in particular the parabolic set is
locally smooth (see dig. 4.) The pictures for D,(1) and D,(2) are more
interesting: unfortunately we can offer no pictures for the dual!

ExampLEs 1.5. The Gauss maps. The discussion of regular intersections given
above is not as general as that in Looijengas thesis [6] where account is made
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for the projection map IT: R” x § — §. One can (and Looijenga does) redo the
above with regular intersections relative to I1, and Theorem 1.2 then allows a
description (at least for n<5) of the local singularities of Gauss maps. Wall
proves in [9] that they are generic singularities of Lagrange maps, and they
correspond in low dimensions with the elementary catastrophe maps of Thom.
(Of course they can be considered as the composite of the dual map with
projection to a suitable codimension 1 subspace.) Below we list the types and
draw pictures of the singular points 2G and singular values G(2G) of generic
Gauss maps G: M" — S§" for n<3. Note that for n <2 the types are exactly the

dig. 5.
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stable maps, but for n=3 we obtain two generic Lagrange germs which are not
stable as maps (see dig. 5). The set of singular values G(ZG) is locally that
subset of the bifurcation variety of the height function concerned with
degenerate (non A,) singular points.

As Terry Gaffney pointed out, when n=2 the diagram for the A; case shows
that in any neighbourhood of a point which gives rise to a cusp of the Gauss
map there are two points which share the same tangent plane, and conversely.
(For n=3, 2G and G(XZG) are shaded in dig. 5.) Before turning to the algebraic
case we note the following consequence of Looijengas work in [6], firstly
because it is such a beautiful result, and secondly because it is not stated
explicitly in [6] or [9]. It is the following stability theorem:

THEOREM 1.6 (Looijenga [6]), For an open dense subset of embeddings
D<Emb® (N*,R"*1), fe D means that we can find a neighbourhood W of f
such that for g € W there are homeomorphisms hy, h,, hy making the following
diagram commute

NxS-Ho, Rxs 1, §

m m) Lhs

NxS§ —— RxS-1, §

where H ;, H, and II are as above. Moreover the construction of hy, h,, hy is such
that h, maps XH; homeomorphically to XH, and h, maps H (XH )
homeomorphically to H,(XH,). Consequently the duals and Gauss maps of f (N)
and g(N) are topologically equivalent.

2. The algebraic case.

In this section we shall prove some results similar to those obtained in
section 1, but for real and complex projective algebraic hypersurfaces. Below
the symbol K will denote the field of real or complex numbers, P"*! real or
complex projective n+1 space, and KM the vector space of homogeneous
polynomials of degree d in n+2 variables (M= ("*9*!)). Let DKM be the
algebraic subset of forms defining singular hypersurfaces, and let F ¢ KM —D.
If

g ={(x,L)eP""'xP""': xe LN {F=0}},

and ITp: T — P"*lis the obvious projection the singular set of ITp, Xl
={(x, L):L is the tangent plane to { F =0} at x}, and the set of critical values of
Mg, Mp(ZIp) is the dual of {F=0}. (Since the obvious projections P*x P?
— P? are Zariski closed when K =C in this case the duals are algebraic). We
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want eventually to discuss the structure of the duals of “generic” hypersurfaces
{F =0}, but the maps Il are not really well suited to our purpose. So we
imitate the methods of section 1 where we used our better understanding of the
singularities of functions (as contrasted with mappings).

We first discuss ordinary jet transversality (without multijets). Of course
since we are working in projective space we have to be careful: height functions
are Euclidean objects. However transversality is a local phenomenon so we
can, and do, give a local definition of tangent transversality. To do this we have
to select an affine chart in P"*! and of course it is essential that our definition
of tangent transversality is independent of the chart and any other choices
required. As in section 1 we shall only consider natural singular submanifolds
of the jet space arising from 2% x #® invariant submanifolds X ;= X = J*(n, 1),
and definition of tangent transversality will ensure that for a non singular
hypersurface V={F=0} tangent transverse to X; the set {x € V: normal
height function at x is of type X ;} is a smooth submanifold of ¥ of the correct
codimension. Now to the definition.

Let x e V and choose an affine chart K"*'<P"*! containing x, set
V,=VNK"*!; without loss of generality we suppose that x=0€e K"*{; one
easily checks that the family of functions to be constructed is independent of
the position of x in K"*!, The irreducible affine variety ¥, will be the zero set of
some irreducible polynomial f and we can choose a local parameterization of
V, at 0, h: K" — V, (so foh(a)=0). If (K"*!)* is the dual of K"*! let
df (0) e (K"*1)* denote the differential of f and 0 and choose a linear map
L: K" — (K"*Y)* so that

ImL@®Sp {df(0)} = (K"*1)*.
We define a germ of an n parameter family of functions H,: K" — K by
H(f,h,L): (K"x K", 0) - (K,0)
(@) > (df (0)+ L(a))(h(®)) .

LemMa 2.1. (1) H is independent of the choices of equation f, parameterization
h and linear map L i.e. any two choices give equivalent families.

(2) If ZH={(x,a) : o is a critical point of H,} then ZH is smooth and the
projection ZH — K", (a,a) — o is a local diffeomorphism.

Proor. (1). (a) Since V, is an irreducible affine variety any other irreducible
equation defining V, is of the form Af=0 for some 4 € K — {0}. If we change co-
ordinates by ¥ («,a)=(a, Aa), ®(c,a)=Ac we find that

PoH(f,h,L)(2,a) = A(df(0)+L(@)(h(®)) = H(Af,h,L)od(a,a) .
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(b) Any two parameterizations h,, h, of V, at O differ by a difffomorphism
h: (K", 0)® that is h,=h,oh. A change of co-ordinates ¥ (a,a)= (h(x),a) gives
H(f,hy,Lyo¥ =H(f, h,,L).

(c) Suppose we have two linear maps L,, L, as above. We can write L (a)
=0(a)df (0)+ @ (a) for some linear maps 0: K" — K, ¢: K" — Im L,. Note that
¢ is an isomorphism. Changing co-ordinates by

Y(a) = (o, Ly (¢@)/(1+0(a), @(c,a) = (c/(1+6(a))
we have

S(H(f, h,L,)(o,a),a)

I

®((df (0)+ L, (a)) (h(w)), a)
(1+6(a)* ((df ) (1 +6(a) + @(a)) (h(«)
(df (0)+@(a) (1+0(a) Hh(a),

while
H(f,h Ly)o¥(x,a) = H(f,h,L;)(o Ly (@(a)/(1+0(a))
= (df (0)+ (@) (1+0(a)” " Yh()

as required.
(2) The critical set

Z = {(wa): (TW*f(0)+L(a)} =0
where (T,h)*: (K"*1)* — (K")* is the dual of T,h. Writing
&(a,a) = (T,n)*(df (0)+ L(a)

we find that 0£/0a(0,0)= (Toh)*L: K" — (K")* is invertible so by the implicit
function theorem we can parameterize X as (o, f(a)) for some f whence the
result.

Given (a,a) € X we say that the function « — H(a,a) is the normal height
function at o. Note that if we choose a co-ordinate system x,,...,x,,; for
K"*! there is an isomorphism x*: K"*! — (K"*!)* given by y — Zx;(y)x,
Given a co-ordinate system x we can always choose the linear map L: K"
— (K"*1)* to be L =x*oTyh. We now drop the brackets (f, h, L) and consider
the map

JiH, : (K"x K" (0,0) - (J*(K",K), /{H(0,0))
(o, a) = j*H, (@) .

DEFINITION 2.2. A projective hypersurface V=P"*! is said to be tangent
transverse to the #® x £ imvariant stratification ¥=U X ;= Z = J*(n, 1) if for

Math. Scand. 49 — 4
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each x € V we can choose an affine chart and a neighbourhood A, x A, of
(0,0) € K" x K" so that the map j*H . A; x A, — J*(K",K) is transverse to the
corresponding submanifold X ;= J4(K", K).

It follows from Lemma 2.1 above that if *H . : 4, x 4, —» J*(K",K) is
transverse to X ; then for y sufficiently close to x, j{H, will also be transverse to
X ;. The following proposition also follows from Lemma 2.1.

PropPOSITION 2.3. If X is an &% x #™ invariant submanifold of £ = J*(n,1)
and Vo P"*! is tangent transverse with respect to X the set

V(X) = {x € V: the normal height function at x is of type X}

is smooth and codim V(X) in V=codim of X in X.

We want to show that those hypersurfaces {F =0} which are not tangent
transverse to some invariant X X are scarce. To obtain a strong result we
shall assume that in the real case X is semialgebraic, in the complex case X is
constructible (no real restriction in practice). We can then prove.

THEOREM 2.4, Each F € KM — D has a neighbourhood U < KM — D and in case
K =R (respectively K=C) a subanalytic subset (respectively real subanalytic
subset) BcU of real codimension =1, such that for all Ge U—B the
hypersurface {G =0} is tangent transverse to X =J*(n, 1) provided k<d.

We shall prove a corresponding multi transversality result later on. Using
the fact that {F =0} = P"*! is compact the proof of Theorem 2 follows from the
following assertion.

AsserTioN. For each Fe KM—D, and x(0)e {F=0} we can find
neighbourhoods A (respectively U) of x(0) € P"*! (respectively F € KM — D) and
a bad set Bc U as above, so that for Ge U—B and y € A N {G=0} the map
germ jiH, (for {G=0}) is transverse to X.

Of course to prove this assertion we shall use Lemma 1.1 of Thom. In this
case however the family of deformations are obtained by varying the
hypersurfaces {G=0}.

PRrOOF OF AsserTION. Without loss of generality let us suppose that x(0)
=(1:0:0:...:0) and its tangent plane is x, =0; we use the obvious affine chart
at (1:0:..:0) e P"*1,

Consider the map g: K" x K" — K, g(u,x)=F(1,x)+ XY u,p,(1,x), where
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@1, . -, are basis monomials for the vector space of homogeneous forms in
n+ 2 variables of degree d. For a fixed u € K™ the set g(u,x)=0 is the affine
part of a hypersurface in P"*'. We wish to parameterize these hypersurfaces (at
least near 0 € K"*!) so we seek h: KM x K" —» K so that g(u, h(u,a),x))=0.
But 0g/0x,(0,0)+0, so by the implicit function theorem such an analytic h
exists. Thus for small u the hypersurface g(u,x)=0 is, near 0, given by
(h(u, o), ). We now have to choose the linear map L; but we have a co-ordinate
system so set

L(a,,...,a)=L(a) = Za,xﬁl.

Clearly this is an admissible choice for g, =0 near x(0) provided u is sufficiently
small. Thus we have a family of function H: KM x K" x K" — K,

n

H(u,o,a) = (dgu(0)+i ajxj+1>(h(u,a),a) %8 (0 hwn)+Y ap,
1

1

which gives rise to a map
n = j*H, o(@): KMxK"x K" — JYK" K) = K"x K xJ¥(n,1) .

The fundamental result we need is that u is a submersion at (0,0,0) provided k
<d.

Clearly we may take k=d. Now g(u,h(u,a),0)=0 so differentiating with
respect to the u; we get

0 Oh og

(i) 6xgl (1, h(u, o), 00) — o (u, a)+a—u‘(u Lh(u,0),0) = 0.
We have now to show that the tangent map Ton: KM x K"x K" — K"x K
x J4(n, 1) is onto (here we are identifying a vector space with its tangent space
at a point). The tangent space to 0 x K" x 0= KM x K" x K" takes care of K" x 0
x 0 in the target of Tyn. Also if u, is the co-ordinate corresponding to the
monomial x§,

O0H of oh

-—(0,0) = ——(0)-

—0g
—(0,0) = —=(0,0) = -1 # 0.
ouy 0x, 6u1( ) Bul( )

Thus it is enough to show that L ={u € KM: ¥ u,p, has no x, terms, nor an x$
term} maps under Tyn onto J(n, 1). (Note that both spaces L, J%(n, 1) have the
same dimension.)

Well,

(i) %(H(u,B,O)-H(u,O,O)) = ;—( (,0) h(u, B)— (0 0)-h(0, B))

i
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o . % (1.0
= auiaxl (M,O) h(u,ﬂ)"l"g;(u,()) 3u,- (u’ﬁ)

00, og oh
— . 0) —
G, O hw B+ 5 (0 o

.p) .

i

So (ii) as a polynomial in f is, at u=0

of  oh

h -0
5075, 08 = ZE0ROHH = —0p) by .

Ju du
Whence the result, Tyn is onto.

It follows that n is a submersion on some neighbourhood U x A4, x 4, of
0e KMxK"xK" Choose U, A,, A, to be closed, real subanalytic
neighbourhoods (e.g. closed balls), and U’ an open neighbourhood of U x 4,
x A, on which 7 is a submersion. Now : U’ — J4(K", K) is transverse to X, so
n~Y(X)N U’ is a smooth submanifold of U'". If n: KM x K" x K" — KM is the
obvious projection let X denote the set of singular points of n|n~1(x)NU".
Since # and m are analytic and for K =R, X is semialgebraic (for K=C X is
constructible) X is semi analytic. Now n: Ux A, x A, — U is proper so B
=n(ZN(Ux A, x A,)) is real subanalytic. This set B has, by Sards theorem,
measure zero so consequently has codimension >1. It follows from Lemma 1
that for u € U — B the map ny: A, x A, — J*(K",K) is transverse to X, so for
all « € A, the point y=(h(u,a),a) € {g, =0} satisfies the tangent transversality
condition given in the definition above. For the neighbourhood A4 of x(0)
=(1:0:0:...:0) choose A4 so that (h,1) ! (4)cU x A4,.

COROLLARY 2.5. Let f be k determined, with Milnor number u (so k< pu+1). If
d=k then for almost every hypersurface {G=0}=V<P"*! of degree d the set
V(f)={x € V: normal height function at x has a singularity at x right left
equivalent to f} is smooth and has dimension n+1—p.

ExXAMPLES 2.6.

(i) n=1. Here, provided d = 3, generically the only tangent singularities are
ordinary (A,) and cuspidal (A,). (The cases d=1,2 are trivial).

(ii) n=2. Here, provided d =4, generically the only tangent singularities are
ordinary (A;) (two types in the real case), cuspidal (A,) and tacnodal (A,)
(again two types in the real case).

(Again the cases d=1,2 are easy. One can make the arguments work for d
=3 as well: A;, A, are 3 determined and the orbit of the 2 jet x* € J3(2, 1) has
codimension 2. The other orbits have codimension >2. So for G tangent
transverse to the singular orbits of J*(2, 1) we get ordinary tangencies (A,) on
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an open set, cuspidal tangencies (A,) on a curve and isolated points where the
height function has 2 jet x%. But as {G=0} is a non singular cubic any plane
section can only have singularities of types A,, A,, A;, D, so the isolated points
are of A; type.)

Although Theorem 2.4 above describes the type of tangent singularities
occuring on generic hypersurfaces of sufficiently large degree it is insufficient
for a discussion of their duals. For this we shall need the corresponding
multitransversality result. In proving this multi transversality theorem the first
step is that of showing that tangency points generically occur in general
position on tangent hyperplanes. In what follows we shall work over C=K,
but see the remarks below.

Recall that k points pq,...,p, € P" are in general position if the
corresponding lines in C"*! form linearly independent subspaces, so in
particular k<n+1. Let L(p,,. . ., p,) denote the (k—1) plane in P" spanned by
P1i>- - -»Px The point p, € L(py,...,p,) is in general position with respect to
Pis- - -» Py if it does not lie in any subspace determined by a proper subset of

{P1s- - s Di}-

DEFINITION 2.7. A hypersurface {F =0} = P"*! is said to have its tangencies in
general position if given a hyperplane L tangent at {p,,...,p,} ={F=0} the
points p,,...,p, are in general position on L.

LeEmMA 2.8. The set of F whose tangencies are not in general position form a
constructible set of codimension =1.

Proor. We need to prove a number of subsidiary results. In what follows we
suppose d = 3.

(1) X,={F: F=0 has k singularities in general position} is a constructible
set of codimension k whose closure is irreducible.

If ; denotes the ith vertex of reference in P"*! the subset of CM consisting of

hypersurfaces with singularities at e,,...,e, is a linear-space L. If
¢:Gl,,,xCM > cM
is the natural group action of Gl,,,=Gl(n+2,C), then
X, = ¢(Gl,,,xL)

which is constructible by Chevalleys theorem (see [8 p. 37]). If we think of
Gl,,,=C"*?" then there is a natural extension of the action of ¢ to C"*?",
and of course

@(Gl,.,xL) = ¢(Gl,,,xL)
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(where ~ denotes closure with respect to the Zariski topology). Now Gl,,,
and L are irreducible so

Gl,,,xL and ¢(Gl,,,xL)

are irreducible. Clearly Gl,,, x L=Gl,, , x L is Zariski open so by [9 p. 37],
¢(Gl,, , x L) contains a Zariski open subset of ¢(Gl,., x L). Hence

dim ¢(Gl,, , x L) = dim¢(Gl,,, x L)

and hence

¢(Gl,y,xL) = @(Gl,,,xL)
is irreducible. The codimension is obtained by computing the rank of Te at
(1, F) for each F € L, using the fact that the tangent space to the orbit of F is
Sp {x; 0F /0x;}.

(2) Let X, be that subset of X, consisting of hypersurfaces which have an
additional singularity which lies in the k—1 plane spanned by the previous k,
and is in general position with respect to them. We claim that X, is
constructible of codimension =k+ 1. Constructibility follows as in (1). To
show that X, has larger codimension than X, we claim that it is enough to
show that X, — X, has codimension k. To see this we first note that for any
constructible set X we have dim (X — X) <dim X =dim X. Now suppose that
dim X, =dim X,; then dim X, =dim X, so as X, is irreducible X, = X,, and so
X,—X,=X,—X,. But then

N—k = dim (X, - X,) < dim (X, — X,) = dim (X,— X,) < dim X, = N—k,

a contradiction. So given that codim (X, — X,)=k it follows that codim X, > k.
To prove that codim (X; — X,)=k it is in fact enough to prove (using (1)).

(3) Given any 1<k=n+2 there are hypersurfaces F € CN with {F=0}
having k singularities in general position, and no other singularites. (Actually
for n=0 we need d=4.) The proof is by induction on n. For n=0 the forms
-4

l:[ (x1 —Jjx3))

d—2
F = x2-J] (x;—jx,) (respectively F=x2-x3-
ji=1 i=1

have repeated roots at 1 (respectively 2) points. For the special case d=3 we
need n=1, and consider
F = xyx,x3+x3+x3  (respectively F=x3(x2—x,x,), F=X,X,x;) .

Now we wish to produce hypersurfaces {F=0}<P"*' having only k
singularities in general position, 1<k<n+2. By induction we can find
Gi(xy,. .., X,41) With {G,=0}cP" having only k singularities in general
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position, 1 £k<n+1. The form G, + x4, , takes care of the cases 1 Sk<n+1.
For k=n+2 we claim that

n+1
_ d-2 2
Guyy = Gn+1+xn+2<z aixi>

for generic (ay,...,a,+,) has precisely n+2 singularities. Clearly we have
only to show that

n+1
{Gn+1+ > aixizzo} <

has only one singularity (at the origin) for generic (a,,. . .,a,+ ). Well, consider
the map

G: (C""1—0)xC"*!' 5 C,  (x,a) = Gy (X)+). ax?t = G,(x).

Clearly 0 € C is a regular value of G,: C"*!—{0} — C for almost all a by
Lemma 1, since 0 is a regular value of G. So {G,=0} =C"*! —0 has no singular
points, as required.

(4) Suppose {F=0} has a tangent plane T with k+1 tangent points
Pos- - -» Pr» With py,. .., p, in general position and p, € L(p;,...,p)) in general
position with respect to p,,...,p,. We start by considering the special case p;
=e, 1<igk,po=(1:...:1:0:...:0) (k ones) and T={x,,,=0}. Then we can

write
n+2

F = f(xg,..,x0+ 2 X fil(Xp,. o s Xp42)

k+1

and we have

of 9f;
F = 0, a—Xl'l"Z <5Ufj+xjé?’i> =0 .
1<i<n+2 at py,e,...,e (here d;; is the Kronecker symbol). In particular f
=0f/0x,=0for 1<i<k at py,e,,. .., e, s0 if CN=CM is the subset of forms of
degree d in x,,. . .,x, and X, is the subset of CV discussed in (2) (put n+2=k)
fe X, Also f,=0ate,...,e for k+15jsn+1 so

n+2 n+1 n+2
fi=Y xf;, ad F=f+ ) Y xxifiit XnraSusz -
K+1 jek+1 i=k+1

The collection of all such F is clearly a product X, x L for some linear space L.
space to M, x L at F=(f,). Clearly T is contained in

T M,+Sp{xy : degy=d—1, k+15isn+2},

so the image T(f ;¢(T)=T' is spanned by
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oF
T,((p(lexM,,))+Sp{x,~¢,k+1§i§n+2}+$p{xi$ s 1L, j§n+2},
j

where Gl, =Gl, ., is the obvious subgroup. Intersecting with CN we find that

CV N T < TH@(Glx M) +Sp {Xifos2(X1r. . » % 0;. .., 0), 1Si<Kk} .

But by (2) codim ¢(Gl, x M,) in CV is >k so codim of CNXNT" in CN is 21.
Consequently codim (¢(Gl,,,xM,x L)) is =1. The lemma now easily
follows.

REMARK 2.9 We note that the proof of (2) in the lemma above is the only part
which does not work in the real case. Hopefully the lemma is still true over the
real numbers and when proved the multi transversality result which follows
will also hold for real algebraic hypersurfaces.

Now to the statement and proof of the multi transversality theorem. The
statement is of course rather more local than that given in section 1.

Suppose V={F=0}<P"*! is a nonsingular hypersurface and
(x(1),. .., x(r)) € V' with the x(i) sharing a common tangent plane 7. We can
choose an affine chart K"*! = P"*! containing all of the x(i) and if V, ={f=0}
=V N K"*! the vectors df (x(i)) are non zero multiplies of each other. Now
choose local parameterizations h;: (K", 0) > (V,x(i)) and a linear map
L: K" — (K"*1)* with

Sp{df (x(i))}@ImL = (K"*H)*.
If H;: (K"x K", (0,0)) - K is the map
(@), @) = (df (x(1)+ L(@))(hi(2()

consider the map
SAH = jH(x(1),...,x() : (K" xK",0) - (ﬂ JX(K", K), j1H (0))
1

(@(1),. . .,a(r),a) > (AH,(x(1),a),...,/5H, (a(r), q)) .

Now suppose we have a stratification X=U X jc)?cJ"(n, 1). We define the
diagonal stratification 4"(¥) as follows. Give [T; X =T J*(K", K) the product
stratification. If

m: J“K"K)— K"
is the projection

(Hfrs- - o) — (target f*fy,. . ., target j'f)) ,
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then IT" is a submersion on strata, so if 4={(c,c,...,c) € K"}, then (II")~!(4)
has an induced stratification which we denote by A4"(¥). We say that {F=0}=V
is tangent multi transverse to X if for each r and all (x(1),. . ., x(r)) as above the
map j;H is transverse to 4"(X). Note that tangent multi transversality ensures
regular intersections (compare section 1). We also note that Lemma 2 shows
that for most hypersurfaces (x(1),...,x(r)) as above occur only if r<n+1.

THEOREM 2.10. Let K=C. Let {F =0} be a non singular hypersurface with
tangencies in general position. Then given a natural stratification ¥ < X < J*(n, 1)
there is an open neighbourhood U of F and a countable family of real subanalytic
subsets B,< U, with codim B,=1 such that for G € U~U B, the hypersurface
{G=0} is tangent multi transverse to X provided k< (d—1)/2.

Before proceeding with the proof we sketch the idea which is simple enough.
As usual we have a natural family of peturbations provided by the family of
hypersurfaces themselves. Now suppose that we have tangency points
x(1),...,x(r) with common tangent plane x,=0. Since the x(j) are in general
position we suppose that they are unit points e;,, (1 in the j+ I1th place and 0’s

of the n+ 1 simplex of monomials of degree d in x,,. . ., x, ., (those not involving
X,) to show that the relevant map was a submersion. In the general case then
provided k=d —1/2 we can, at e;, obtain all of the monomials in x,,...,x;_,,
Xjt+15- - -» X, Of degree <k, without using any monomial in the bottom face
twice. Consequently we obtain “linearly independent variations” of the height
function at x(1),...,x(r) and this is enough to prove the result. (See dig. 6).

x|
X

dig. 6.

The major difference between this case and the case r=1 is that V") is not
compact, only separable. So when we are working locally in ¥ we must
always use some fixed neighbourhood U of F. This means (recalling our proof
of Theorem 2) that given x € V we need to be able to find parameterizations h,
valid for F, € U. Since we are working with multijets we also want to ensure
that these local parameterizations do not overlap.
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Proor oF THEOREM 2.10. We start with:

CraM: We can choose Q= (n+1)*+1 planes L,,...,Lg so that given any
n+1 points po,...,p, € P"*! one of the planes L; misses all of the p;.

In fact choose the L; in general position (i.e. so that any p<n+2 of them
give p planes in K"*? in general position). Clearly any p; belongs to at most
n+1 of the planes whence the result.

Now given a hyperplane LcP"*! we have P"*!'—L=K"*!. Choose a
sufficiently large closed ball B;=P"*! —L so that one of the P"*' — B; always
misses n+ 1 points. Finally setting V= {F =0} choose L; and B; as above but
with the additional property that the intersection of ¥ with the intersection of
any n+1 complements P"*! — B; is empty.

Choose a neighbourhood U, of F so that any G € U, has the same property
as F with respect to the covering B,,. .., By just described. Choose a chart
Xgs- - X, 00 P**1—L; and set B;N V=V, which has equation f;=0; set _

N; = {(x,v)e Vix K™ v = l(g)%(x)w-,s—ﬁl(x))}

and consider the map E: N; » K""!, E(x,v)=x+0v. With our previous
notation E is locally the map

]

(o, A) — h(oc)+,l< o;
0xq

7 ox

(.22 ()

and clearly E is a local diffeomorphism. Using the fact that V; is compact
choose £>0 so that the restriction E: N ;N(V;xB) — K"*'is an embedding,
where B, is the ¢ ball at 0 e K"*!, Now choose U, < U, so that for any G € U,
the set W;=B;N{G=0} lies in the neighbourhood E(N;N (V;x B,)). (Strictly
speaking one should work with two large balls B;, Bj to avoid difficulties at the
boundary.) Choose an open set U < U, with U = U, compact so that for G € U
and y € {G=0} N B; with y= E(x,v) the vector v does not belong to T,W; that
is G is sufficiently close to F for the tangent space not to have moved far. It
follows that for any x € V; (which we suppose has tangent space x, =0) we can
choose a neighbourhood 4, of 0 € K" and a family of parameterizations

h: UxA, - K", h(u,0)= (K (u,a),®)

n

with h, parameterizing F,=0. Moreover as h(U x 0)={E(h(0),v)} given x(1),
x(2) € V; with local parameterizations h;: Ux 4] — K"*1, j=1,2,

h(Ux0) N hy(Ux0) = &,

so possibly shrinking the 4] we may suppose (., , h;(U x 4})=¢.
Now let (x(1),...,x(r)) € {F=0}"), r<n+1 share the same tangent plane
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and let L: K" — (K"*1)* be as usual. Choose one B; with x(i) € B, 1isr,
and local parameterizations h;: U x A{ — K"*' with

h(Ux AD) N h(Ux Al) = &, i%).
Consider the map 7: A} x ... x A} x U x K" - [T}-, J*K", K)

n(e(1),. .., a(r),u,a) = l:[ (k jet at a(i) of
1
a — (dfj(x(1)) + L(@)(h;(u, x()))
= 1-1-[ (]l;Hl(u’a(l)’a)) N

We claim that 7 is transverse to A"(X). If *H,(u, «(i),a) ¢ Z for any i, then
n(a(l),. .., a(r),u,a) ¢ 4"(X) .

If the *H;(u,a(i),a) € Z, but the h;(u,a(i)) do not share a common tangent
plane, then

n(a(),...,a(r),u,a) ¢ 4" (%) .

If however they do share a common tangent plane given by

(df;(@(®) + L(@)(hi(u,a(i)) = ¢

then the h;(u,a(i)) are in general position in this plane. It follows from the
remarks above that 5 is a submersion at (x(l),...,a(r),u,a) and hence

transverse to 4"(X). So there is a bad real subanalytic set B< U of codimension
=1 such that for u € U — B the map

ne [1 41 x K" — [T J*K", K)

is transverse to 4"(X). We now use the fact that {G =0} is separable to obtain
the countable number of bad sets B,.

REMARKs 2.11. In practice the inequality k<d—1/2 seems too restrictive.
One can obtain better results by considering the product [Tj-, Jk(K" K) with
the k; possibly different.

COROLLARY 2.12. For n<6 and d=2n+5 all of the tangent singularities of a
generic hypersurface in P"*! are simple singularities. Moreover its dual is locally
the union of transversely intersecting discriminant varieties of simple singularities.
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