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VALUES OF CYCLOTOMIC POLYNOMIALS
AT ROOTS OF UNITY

R. P. KURSHAN and A. M. ODLYZKO
Abstract.

If Cy(z) is the Nth cyclotomic polynomial and {,, a primitive mth root of
unity, then Cy((,) is an algebraic integer in the mth cyclotomic field. This
paper investigates the degree of Cy((,,) over the rationals. A complete answer is
obtained when N = p*m for a prime p, p,{’ m, and o > 1; the degree is variously 1,
@(my), @(m,)/2, or 2m/(m,, @(m,)) depending upon the values of p and ¢(pm,)
modulo m,, where m, is the largest odd, square-free factor of m. Partial results
are presented for the other cases.

The case N=pm solves a problem of determining the power distributions
of certain recursive linear digital filters.

1. Introduction.

This paper is devoted to a study of the arithmetic nature of the values of
cyclotomic polynomials at roots of unity. Our terminology follows that in [1].
Let {m = exp{2mi/m} .

Then every primitive mth root of unity may be expressed as {4 for some a,
(a,m)=1. Let

Cyi2)= [I @-(R)
a(mod N)

denote the Nth cyclotomic polynomial, where J]" means that we take the
product over any reduced residue system modulo N. Various properties of
cyclotomic polynomials have been studied for a long time (see the bibliography
in [9] or at the end of [2], for example). We will study the values Cy(u), u a
root of unity—say a primitive mth rooth. Since Cy(z) € Z[z], Cy(u) is an
algebraic integer in the field Q({,,). Up to units of the field, it is quite easy to
determine which algebraic integer it is.
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ProrosiTioN 1. If N and m are positive integers, N +m, and p is a primitive
mth root of unity, then there is a unit u € Z[{,,] dependent upon N, m, and u such
that

pu if N\m=p®, p a prime, a>0;
(1=Cp if NNm=p~® paprime, a>0, andp}N;
(1=Cp+)"'u  if NNm=p~%  paprime, a>0, andp|N;
u otherwise.

Cn(w) =

Relative to the second and third cases, (l—Cpa)""”“’zpu' for a unit v’ (see
Section 2). These characterizations of Cy(u) appear in part in Diederichsen [5]
(see also Magurn [10; Lemma 9.3] and Bass [4; Corollary 5.4]). The preceding
determines completely the ideal generated by Cy(p) in Z[(,,], but leaves open
the question of the nature of the algebraic integer Cy(u) itself. Most of this
paper is devoted to an investigation of that question. The principal results are
stated in this section, while the proofs appear in subsequent sections.

Notice that if 4 and v are primitive mth roots of unity, then Cy(x) and Cy(v)
are conjugates. An investigation of Cy(u) is thus accomplished through an
investigation for the particular case that u={,. Let u(N,m) be the unit u of
Proposition 1 in this case.

We were led to this investigation by a question arising in the design of
recursive linear digital filters [8]. As will be demonstrated in Section 5, this
question can be reduced to a determination for a given m of those primes p for
which u(pm,m)=1 or |u(pm,m)|=1. In fact, in the somewhat more general case
that N/m is a (positive) prime power, we have obtained a complete
characterization of the units u in terms of their degrees over the rationals and
their relative moduli; this is given in Theorem 1.

For any integer m> 1, let m, be the largest square-free factor of m (i.e., m is
the product of one each of the prime factors of m), and let m, be the largest odd
divisor of m, (i.e., m; =mg if mis odd, and m; =my/2 if m is even); set 1,=1,=1.

THEOREM 1. Let p be a prime, p*m, and let «> =0 be integers. If m; =1,
then u(p*m,pPm)=1. If m, > 1, then

i) p=1 (modm,) < u(p®m,p’m)=1;

il) p=—1 (modm,) < |u(p*m,pPm)|=1, u(p’m,p’m)*1; in this case
u(p®m, pPm) is a primitive kth root of unity, where k=2m,/(m,, @ (m,)).

iti) p£+1 (modm,) < |u(p*m,pPm)|+1; in this case the conjugates of
u(p®m,p?m) have @(m,)/2 distinct absolute values, none equal to 1, and if
my | @(pm,) then u(p®m,p’m) € R and has degree ¢(m,)/2 over Q, whereas if
m, *(p(pml), then u(p*m, p’m) ¢ R and has degree ¢(m,) over Q.
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The theorem remains true if in the three congruences we replace m; by my,.

In the general situation our results are much less complete. If N is divisible by
a prime p which is congruent to + 1 modulo a certain divisor of m, then we can
prove the result below. (Note that if the conditions of i) or ii) hold, then Cy({,,)
=pu(N,m) if N=p*m for «>1 and p a prime, and Cy({,,)=u(N, m) otherwise.)

ProposITION 2. Let m, N be distinct positive integers and let p be a prime
divisor of N. Set N'= N, if the highest powers of 2 dividing m and N are equal, N’
=N, otherwise, and set m=m/(m, N/N'). Then

i) p=1 (modm) = u(N,m)=1,
ii) p=—1 (modm) = u(N,m)=(—1)Pu, where u is a primitive k-th root of
unity, k=m/(m, (N'/p)), and p=1 if N'=p or pi and 0 otherwise.

Note that if N=rm, (r,m)=1, then m=m,, while if N=N,, then m=m.

Unfortunately, Proposition 2 does not cover all cases in which |u(N, m)|=1.
For example, for N=47-73-79-151-229, Cn({ss)=1 while none of the prime
divisors of N are congruent to 41 modulo m=65. This evaluation can be
easily checked by using the formula

Cu(d = [ Vi—1p@.
dIN

(Here u(d) denotes the Mobius function.) Later we will say a few words about
how this pair N, m was found. Another example where the degree of Cy((,,) is
less than @ (m) is given by C,5((54)= — (2+]/), a unit of degree 2. Nonetheless,
it is true that if m is sufficiently large, the degree of Cy((,,) can be less than ¢ (m)
only because of the reduction below.

Let m*=2m (m as in Proposition 2) when the highest power of 2 dividing N
is greater than that dividing m and let m*=m otherwise. In Section 2 we
observe that for some h, (hym*)=1,

Cn(lw) = Cn,(Ghe) -

Thus we can always reduce to the case where N is odd and square-free. In this
situation, however, the next result states that no further reduction are possible
if m is sufficiently large.

THEOREM 2. For any odd, square-free positive integer N there is an integer
m(N) such that if m>m(N) then Cn((,) ¢ R, Cn((,,) is of degree ¢(m) over Q

and the moduli of its conjugates constitute ¢(m)/2 distinct values, none equal to 1.

Our proofs of parts of theorems 1 and 2 are quite complicated, involving
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Gaussian and Ramanujan sums, the non-vanishing of Dirichlet L-series at 1,
and the construction of Dirichlet characters with special properties. It would be
very desirable if we could find simpler proofs. Very general results about
multiplicative relations among numbers of the form 1 —{,, have been proved by
Ennola [6] (who corrected a mistake in [3]) and Ramachandra [12], but they
do not appear to be applicable to our situation.

It is possible to give easy proofs of rather weak results about the Cy(z). For
example, suppose that f(z) is the minimal polynomial of Cy({,,) over Q. Then
f(Cn(2)) has ¢, as a zero, and since its degree is (deg f)- ¢ (N), we conclude that
deg (Cn (L) Z @ ()@ (N).

The engineering design problem described in Section 5 relates to a question
of equalities among Fourier coefficients and among their moduli. The Fourier
coefficients are of the form

b = [1 (-p

h(mod m)
h+1

where u ranges over the primitive mth roots of unity. Propoisitions 3 and 4 are
proved in Section 5. They provide relationships which together with Theorem
1 enable one to count the number of equalities as required. Each proposition
concerns a primitive mth root of unity y, a positive integer h, (h,m)=1 and any
of the (infinite number of) primes p satisfying p=h (mod m).

ProrposiTION 3. The following are equivalent.

1) b(u)=bW"); -

1) b(u)=b(uf) whenever (f,m)=1, fh=g (modm);
2) Cpm(w)=p;

2') u(pm,m)=1.

ProrosiTiON 4. The following are equivalent:

1) b(l=1b");

1) |b(u’)=|b(ue)] whenever (fym)=1, fh=g (modm);
2) |ComWl=p;

2') |u(pm,m)|=1.

From these propositions and Theorem 1 one readily deduces that for a given
m there are exactly ¢(m,) distinct values for b(u) and (when m,>1) ¢(m,)/2
distinct values for |b(u)|. Indeed, using Theorem 1, Proposition 3 shows that
b(u)=b(u®) if and only if f=g (modm,). Thus, there are as many distinct
values for b(u"), (h,m)=1, as there are residue classes modulo m, of integers
relatively prime to m, namely ¢ (m,). Similarly, Proposition 4 shows that (when
m, > 1), there are one half as many values for |b(u")|, (h, m)=1, as there are such
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residue classes. In particular, all of the values of b(u) are equal if and only if

m=2* and all of the values of |b(u)| are equal and only if m=23% for
nonnegative integers a, f.

2. Preliminaries; Proofs of propositions 1 and 2 and parts of the theorems.

We start by recalling some elementary facts about roots of unity. First of all,
if u is a primitive mth root of unity and (a,m)=1 then there is an integer h
satisfying ah=1 (mod m) so

gt A Y+ p D) = (1) (u—1) = 1

whence 14+p+...+u°"! is a unit. If also v is a primitive mth root of unity
then v=p* for some a, (a,m)=1. Thus

l—yv = 1—p* = (=@ +p+...+p°7Y

and consequently 1 —v and 1—p are associates. From these simple facts it
follows that p and (1 —Cpa)“""" are associates, as p=C,:(1)=[T, (1 -{}s). On
the other hand, if m is composite, then 1 — i is a factor of C,,(1)=1 and thusisa
unit.

The next observation is used to reduce the propositions and theorems to the
square-free case N =N,. (Recall that N, is the largest square-free factor of N
and N, is the largest odd factor of N). As Cy(z)=Cy, (zV/No), it follows that

m

2.1a) Cnlln) = Cn (@) k= 1

for some b, (b, k)=1. Since {, and {} are conjugates, so are Cy, ({,) and Cy, (}).
Thus, for any mth root of unity u, Cy(u) and Cy ({,) are conjugates.

Furthermore, as C,,(z)=C,(—z) when 2} n, we can make the further
reduction

(2.1b) Cn, () = Cn (=00
if 2| N, where —{, is a conjugate of {,, if 2)(k, of {, if 4|k and of {;, if k=2
(mod 4).
The following lemma will be of general use.
LEMMA 2.2. For z € C, |z|=1, Cn(2) %0,
2ArgCy(z) = @(N)Argz (mod 2m)
when N>1 and 2 Arg C,(z)=Argz+n (mod 27).
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Proor. Write Cy(z)=3%_, a;z", k=@ (N). The result is trivial for N<2, so
assume N >2, whence 2| @ (N). Let H=k/2. Since a;,=a,_,,

H
zH(aH+.Z aH_,-(z"+z"'))

i=1

Cn(2)

]

H
z"(aH+2 Y. ap-;cos (i Argz))

i=1

and the result follows.

CoROLLARY 2.3. Suppose N and m are distinct positive integers, N>1.
Then Cy({,,) € R if and only if m|@(N).

This yields our claim of Theorem 2 that Cy((,,) ¢ R if m is sufficiently large.
Another useful observation is that if o, f e Q(,), then for any
automorphism o,

(24) el = 1Bl = lo(@)] = lo(B)l -

Indeed, if |x|=|B| then ad=pBB, so a(x)o(d)=0c(xd)=0c(BP)=0c(B)s(P). Since

o((,)=_5 for some a, (a,m)=1, ¢ commutes with complex conjugation, so

o(@)a(a)=0(B)o(B), proving (2.4). A consequence of this observation is the fact

that if @ € Q({,,) and |a| =1 then each conjugate of o« has modulus 1; thus, if « is

integral over Q, @ must be a root of unity by Kronecker’s theorem [11].
We now prove the first two propositions.

Proor ofF ProposiTioN 1. Writing

Crn(iw = I Cn=C8) = oM T (=131
a(mod N)

we see from the preliminary remarks that Cy((,) is determined up to a unit by
the number of factors in this product for which {4(,, ! has prime power order.
In other words, it suffices to determine for which a, (a,N)=1, 1<a<N,

a 1 b

2.5 ——— = —

2.5 N m-
for a prime p, >0 and (b, p)=1. It is then easy to see that (2.5) does not hold if
N/m is not a positive or negative power of the prime p, and that if N/mis such a
power, then (2.5) occurs just the right number of times to yield the assertion of
Proposition 1.
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ProoF oF PropPosITION 2. From (2.1) and the remarks which follow it, we see
that u(N,m) is a conjugate of u(N’,m). Let N*=N'/p. Then

N'd_ 1\
. Cuolz) = N/ _ @) — z
(2.7) N(2) d1|—l!J’ (z ) dll_[N* <Z—N‘/7jf

If p=1 (modm), then

G-t = gyt
and so each of the terms in the last product above is 1 when we set z={(,
except when (¥*/4=1 for some value of d, in which case

2NH-1

2=
Thus
p if N*=m,
(Cs) = ud)
Cr (&) dg. P {1 otherwise ,
| N*/d
which proves the first part of the proposition.
If p=—1 (mod ), then

(-1 = =N -1,
while (2.8) still holds for those d for which {¥*/4=1. Hence (2.7) yields
Cn@a) = [T (=CaN™ T (—pp@

dIN d|N*
mIN*/d
= (= 1(=p),
where
1 if N*=1,
4= d%t ud) = {0 otherwise ,
d
b=-ne ¥ Mo o,
dIN*
1 if N*=m,
€= d,;,* ud) = {0 otherwise .

m|N*/d

We now apply Proposition 2 to prove part of Theorem 1. Since C-,((,,,)



22 R. P. KURSHAN AND A. M. ODLYZKO

=C -t ((,n), Wwe may assume f=0. By the reductions (2.1), if N=p*m, p f m,
then

CN(Cm) = Cpml(C:‘n‘)’ (a, m) =1,

which is a conjugate of C,, ({,,). If we now apply Proposition 2, we obtain
the forward implications of i) and ii).

The remainder of Theorem 1 will follow from the forward implication and
second part of iii). In the next two sections it will be shown that if p£ +1
(mod m,), then the conjugates of u(pm,,m,) have @(m,)/2 distinct absolute
values which by (2.4) are then necessarily different from 1. Since by Lemma 2.2
u(pm;,m,) € R if and only if m, | ¢(pm,) (which happens, for example, for m,
=21, p=29), the remainder of the theorem follows from the fact that when u
=u(pm,,m,) € R, then u=i.

Note that in the special case that m=2*3%g" for a prime q it is an easy
computation to prove the converse of i). Indeed, by (2.2), when m; =gq, q| ¢ (pq)
so m, | (p—1). Similarly for m, =3. Otherwise, m; =3q so

3g|(p—1)(g—1) = ql(p—1) = 3p = 3 (modm,) .

Also, 3|(p+1) or 3| (p—1) so pg= +q (modm,) and |1 —{% |=|1—{E]|. This
implies that if p=C,,, ({,,) then

-Gl ==, =p= *1 (modm,).

If p= -1 (modm,) then q|(p+1) so g=2, a contradiction.

3. Analytic expansions.

In this section we will start the proof of the remaining parts of theorems 1
and 2, which will then be proved completely in Section 4. We will show that if

(3.1 ICNCnl = ICN(EI

holds for some h, (h,m)=1, then some very stringent conditions must be
satisfied. The basic fact we will use was already noted in Section 2, namely if
(3.1) holds for some h, then

(3.2) ICn (I = ICN ()

for any b € Z, (b,m)=1. But then if y is any character modulo m, we obtain
from (3.2) the fact that

(3.3) Y ad)loglCh@) = Y x(b)log|Cn(Ci) .
b(mod m) b(mod m)

(Conversely, if (3.3) holds for all characters y modulo m, then (3.2) holds for all
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b with (b,m)=1.) In order to obtain a contradiction from (3.3), we need to
evaluate the sums on the two sides of (3.3). By the reductions of Section 2, we
can assume N=N,.

ProposITION 3.4. Let N be square-free, me Z4, k € Z, (k,m)=1, and let y be
a character modulo m which is induced by a character y' which is primitive
modulo m', m'+1. Set m"=m/m'and assume that m" is square-free and that
(m',m")=1. Then

Y xB)log|Cn (N = 7 (k) d(x)
b(mod m)

where
d(y) = —3{1+x(=D}-LA, 1) ¥ (m")- G, Y)u(m")u(N)-
11 =7@p™)

pINm"
(3.5)
i’(p)(p—l)z} { i’(p)(p-l)} { i’(p)(p~1}
. 142288 2 L. 1220 2L -2 4
JL {_+ p—7%(p) JL p—%(p) A1~ p—x(p)
plm” pm" PN

where G(1,y') is the Gaussian sum of x' and L(s, ) the Dirichlet L-series of ¥ .

The most important fact about the expansion (3.5) is that only one term
depends on k, and most of the terms are clearly nonzero. In particular, if (3.1)
holds, then (3.3) and the above proposition imply that

{x(—1}d(x) = 0.
Now L(1,7) is a finite nonzero number by Dirichlet’s theorem, G(1,y’) is of
absolute value (m)'/? [1, Chapter 8], x'(m")%0 since (m',m")=1, and
u(m")u(N)=%0 since N and m” are squarefree. Further, 1 — ¥ (p)p ! #0 for any

p, while
=/ _1 2
1Jr)c(p)(it: _ o
p—1(p)

if and only if p=3 and yx'(3)= —1. Finally,
 _XPp=1)

p=1(p)
if and only if ¥’ (p)= 1. Therefore if (3.1) holds for some h with (h,m)=1, and y is

any character modulo m that satisfies the hypotheses of Proposition 3.4, then
one of the following must hold:
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a) y(-h=-1,

b) x(h=1,
(3.6)
¢) 3|N, 3|m", and y(3)= -1,

d) There is a prime p|N, p } m", or else a prime p|m”, p 4 N, such that
X(p=1.

In the next section we will show that under appropriate assumptions on N and
m there is a character y modulo m such that none of the conditions (3.6) hold
for h£ +1 (mod m), which will complete the proofs of theorems 1 and 2. At
this point let us note that the conditions (3.6) yield a procedure for
constructing examples of N and m such that the degree of Cy((,,) is small. This,
in fact, was how the examples quoted in the introduction were discovered.
The hypotheses that m” is square-free and that (m',m”)=1 were imposed in
order to obtain simple evaluations of Gaussian and Ramanujan sums. These
sums can also be evaluated explicitly without these requirements, but the
resulting formulas are quite complicated and unwieldy. Since these general
formulas are not needed for our results, we will not prove them there.

Proofr ofF ProprosiTiON 3.4. We have

Y xb)log|Cy(El = x(k) Y x(kb)log|Cx (L
b(mod ') b(mod m)

=gk Y x(b)log|Cn ()l -
b(mod m)

This proves that the sum in the proposition is of the form j(k)d(y) for some
d(x). To evaluate d(y) it will therefore suffice to evaluate the sum for k=1. Since

log(l—z) = =Y n'2
n=1

is (conditionally) convergent for |z|=1, z#1, we have, for (b,m)=1,

I

log|Cn(Ln)l = log| [T (1-C4¢aD)

a(mod N)

31
= - Y Re Y ~L{{C,"

a(mod N) n=1

il

21
-Re ) =(,"en(n),
n=1 n

where
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enm) = Y W

a(mod N)

is a Ramanujan sum [1, Chapter 8], [7, Chapter 16], which is real. Hence

log|Cn(Gl = —3 Z n~ley(M{Gr +Ca "

and therefore
S= 3" x(b)log|Cy(l)

b(mod m)
0

(3.7 = -3 2 n'enm{GnY+G(=np},

n=1

where

G,y = Y xbXy
b(mod m)
is a Gaussian sum [1, Chapter 8]. To proceed further, we need to evaluate
G(r, 0)

LemMA 3.8. Let y be a character modulo m which is induced by a primitive
character y' modulo m'. Let m"=m/m’, and assume that (m’,m’")=1. Then

G(ry) = £ (ML NG, X )ep-(r) .

Proor. Since every b, | =b<m, (b,m)=1, can be written uniquely as

" "
m (x,m") =1
b =mx+m'y, J ’ ’

m, (y,m) =1,

A NIA
IIAIA

we have

G,y = Y S x(m'x+m"y)exp {2mir(m'x +m"y)/m}

x(modm”) y(mod m’)

— Zr Z/ (muy)grx cry

x(modm”) y(mod n')

=/m) Y oyom Y or

v(mod m’) x(mod m")
= X (m")G(r, 1)cm (r) .
Since y' is primitive modulo m', G(r,x)=7 (r)G(1,x)) [1, Chapter 8], and this

completes the proof of the lemma.

We now return to the proof of Proposition 3.4. Combining Lemma 3.8, (3.7)
and the facts that c,(y)=c,(—7) and that c,(rt)=c(r) for (t,s)=1 yields
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§=-% ; n” ey (M (m")G(L, Y )em (m{X (n)+ 7 (—n)}

It

—2 (MG {1+ (=1} ¥ n~ T (W)enm)cn () .

n=1

If s is square-free, then [1, Chapter 8], [7, Chapter 16]
¢s(r) = pu(r, (),

and so, since N and m” are squarefree, we obtain
(3.9 S = =3 (MG, {1+ (= D}pm")u(NH ,

where
00

Z T (N, m)u((m”, m)e (N, m)e ((m”, n)) .

To evaluate H, we consider the Dirichlet series
(3100 H() = Y n g ma((N,mu((m’, m)e((N, n)e((m",n) .
n=1

Since the series (3.10) for H(s) is absolutely convergent for s>1, and the
coefficient of n™*° is a multiplicative function of n, H(s) has the Euler product

@G.11) H() = [] Pi(ps) [] Pap.s) [] Pa(pss) l;[ (1-7@r—=1""

i Py PN it
where
Pi(ps) = 1+7 ()0~ [P°' -7 ()]}
and
Py(p,s) = 1-7((—-DIp*~¥ (@] ".
Since

l*‘IN A=7@Ep ' =L [ 0-2@p),

}I:* o pINm’
and L(1,%) is analytic at s=1 for m'+1 (if m' =1, L(s, ') is the Riemann zeta

function, and its pole at s=1 is cancelled by one of the other factors in the
product for H(s)) we can let s — 1 in (3.10) to obtain
(3.12)
=LLy) [T =-7@p™") I1 PipD) H P,(p,1) ﬂ Py(p,1).
pINm” pin plm”
P|m p,{’m pAN
Proposition 3.4 then follows from (3.12) and (3.9).
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4. Construction of special Dirichlet characters.

In this section we will demonstrate the existence of some special Dirichlet
characters, which together with Proposition 3.4 will prove theorems 1 and 2.
We consider the slightly easier Theorem 2 first.

A. Proor oF THEOREM 2. N is odd and squarefree by hypothesis. We wish to
show that if m is large,

(4.1) ICNEWl = ICN(E),  (hom) =1

implies that h= +1 (mod m). Suppose therefore that (4.1) holds for some h,
h# +1 (mod m). Then, as we pointed out in Section 3, Proposition 3.4 implies
that if y is any character modulo m which is induced by a primitive character y’
modulo m’, and m’' £ 1, m" =m/m’, m" is squarefree, (m’,m’) =1, then at least one
of the conditions (3.6) holds. We will show that one can find a character x such
that none of the conditions (3.6) holds. We will choose x such that m'=m, m/2,
or m/3. Our proof will use the following auxiliary results:

LEMMA 4.2. Let ky,. .., k, be any r distinct integers, with k; =2 for all j. Then
there is a B=B(k,,. . .,k,) such that for any nonzero complex numbers cy,. . .,c,
and for any p*>B, (k,p)=1,k#% +1 (mod p*), = +1,and c € C—{ — 1}, there is
a primitive character y modulo p* such that y(k)#c; for 1<j<r, x(—1)=¢, and
x(k)#c. Unless p=2 and k=2*""'+1 (mod2?), the conclusions of the lemma
hold also if c=—1.

LemMaA 4.3. If p is a prime, «. € Z%, p*+2, (k,p)=1, k%1 (mod p?), then x (k)
takes on at least two distinct values as y varies over the primitive characters
modulo p*, unless i) p*=3 and k= —1 (mod 3), or ii) p=2, « 22, and k =271 41
(mod 2%).

Lemmas 4.2 and 4.3 will be proved later; we now use them to complete the
proof of Theorem 2. Suppose that

{ky,....k,} = {p: pIN}U{2,3}.
Let B=B(ky,...,k,) be given by Lemma 4.2. There is a B; = B, (B) such that
if n=B,, then there is a prime power p*> B* p*|n.
Let us suppose that m=100B,, and let p* be a prime power such that

p*lm, p**'}m, p*>B. Suppose that (4.1) holds for some h, (h,m)=1,
h#% +1 (modm). We distinguish 3 cases.

a) h£ +1 (modp*. If p is odd, we set m'=m/2 if m=2 (mod4) and m'=m
otherwise, and m* =m'p % Let { be any primitive character modulo m*. By
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Lemma 4.2 applied with k=Hh, there is a primitive character £ modulo p* such
that

Shy(h) + 1,
S(=y(-1) =1,
V(g)é(g) = 1 for g=2 and for primes ¢|N .

But then y' =&y is a primitive character modulo m’ which satisfies none of the
conditions (3.6), and thus gives the desired contradiction.

We next assume that p=2. Here we take m'=m/3 if m=3 (mod 9) and m'=m
otherwise. We now choose (with the help of Lemma 4.3) a primitive character
Y modulo m'2™% such that ¥ (h)+ — 1. But then Lemma 4.2 again allows us to
choose a primitive character £ modulo 2* such that y' = &y does not satisfy any
of the conditions (3.6).

b) h=1 (modp?. If we try to set m'=m/2 if m=2 (mod4) and m'=m
otherwise, then by Lemma 4.3 we will obtain the desired y' if we can find a
primitive character Y modm'p™* such that Yy (h)+1. If m =m/2, then h=+1
(mod m’) implies that h=m/2+1 (modm), and so (h,m)=2, which is a
contradiction. Hence h£ +1 (mod m’). Therefore, in view of Lemma 4.3, the
only way this approach can fail is if for each prime power ¢f|m’, ¢**' } m,
there is only a single choice of (h) as 6 runs through the primitive characters
modulo ¢, and if there are exacly two such prime powers g® for which é(h)=
—1 is the only possibility. But this means that those two prime powers are 2’
>4 and 3, and we must have m%2 (mod4), h=2""1+1 (mod2’), h=-1
(mod 3), while h=1 (mod ¢*) for all other prime powers ¢?|m’. In this case we
set m'=m/3 to obtain the desired results.

¢) h=—1 (mod p®. In this case —h=1 (mod p*), —h=% +1 (modm); so by
case b) above we can find a primitive character ¥’ modulo m’, m' =m, m/2, or
m/3, for which none of the conditions of (3.6) is satisfied when we replace h by
—h in them. But y'(—1)=1 means that y'(h)= ) (—h), and so y' violates all of
the conditions (3.6).

Since this covers all of the cases, we have completed the proof of Theorem 2
by showing that (4.1) cannot occur for h£ +1 (mod m).

Proor oF LEMMA 4.2. Let us first suppose that p is odd. If (k;, p) = 1 for some
J» then x(k;)=03c; for any character y modulo p*. We may therefore assume
(kj,p)=1 for all j.

Pick a primitive root g modulo p* Then any n with (n,p)=1 can be written
uniquely as
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4.4 n=g" (modp”), 1=bm=e(p?,
and characters y modulo p* are then given [1, Chapter 10] by
2mi
(4.5) ¥(n) = ex {——b n t}, 15t .
P\t (n) @(p*)

A character y® is primitive if and only if (¢, p)=1. As t varies, ¥ (n) takes on
exactly e(n) values, where e(n)= ¢ (p*)/(b(n), ¢(p%) is the multiplicative order of
n modulo p? and each of those values is taken on ¢(p*)/e(n) times. Thus the
condition that y’(n) + ¢’ for some ¢’ rules out at most ¢(p*)/e(n) possible values
of t. This number will be small if e(n) is large. However,

n*™ = 1 (mod p%
implies that |n|*™ > p*— 1. Hence if we choose B, such that

log By > 100r- max log|k ,

1=j=sr

then the total number of characters y modulo p*, p*> By, for which y(k;)=c; for
some j will be

< Lo
40(PP-

Since there are p—2 primitive characters modulo p and p*~?(p — 1) modulo p*
for a2, this means that most of the characters y have y(k;)) #c; for 1<j<r.

We next consider the conditions that y(—1)=¢ and x be primitive. We have
x(—1)=¢ precisely when t=(1-¢)/2 (mod2), while y is primitive when
t£0 (modp) if «=2, and when t+p—1 for a=1. Since p is odd, this yields
p*~2(p—1)?/2 primitive characters y with y(—1)=¢if «22, and (p—1)/2 or
(p—3)/2 such characters if a=1.

The total number of characters y modulo p* for which y(k)=c or x(k)=c;
for some j is

1 1
<p -] —=+—1.
=P )[40+e(k)]
Note that since p is odd and k# +1 (mod p%), e(k)23. If «=1 and p= B, for
some large B,, then this number is less than (p —3)/2, which is a lower bound
for the total number of primitive character with y(—1)=g¢, and so a character

with the properties specified in the lemma exists. Suppose now that « = 2. Then
it will again suffice to prove that

o — 1 1 _l_a-z —1)2
p ‘(p—l)[ﬁ+~e(7,)]<2p (p—17".
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This is clearly true for all odd primes p and all e(k)= 3, except for p=3 and e(k)
=3. If p=3 and e(k)=3, we use a refinement of the earlier argument. The
condition that y(k)=c is equivalent to requiring that t £ x (mod 3) for some x
(depending on ¢ only). Since x is primitive for t £0 (mod 3), y will be primitive
and satisfy y(k)=c if t=y (mod 3) for some y. Therefore y will be primitive and
satisfy both y(k)#c and y(—1)=e¢ for t lying in precisely one residue class
modulo 6. Since for p* large we have

0" < so(P)—1,
the desired character y exists in this case also.
The above arguments prove Lemma 4.2 for p odd. (We need to note that the
requirement that ¢+ 1 was not used in that case.) If p=2 (but « is large, as we

shall assume), there are no primitive roots modulo 2% but every odd n can be
written uniquely as [1, Chapter 10]

n=(=1)""H25em (mod2%), 1<bm)<2*72,
and the characters y modulo 2* are given by

i
x*9(n) = (—1)"("‘”/2c:xp{zafl2 b(n)t}, 0<asgl, 1512072,

Here 3" is primitive precisely when t=1 (mod 2). The rest of the proof is quite
similar to the case of p odd, but easier, and is omitted. We should note,
however, that in this case e(k)=2 occurs for k=2*"1+1 (mod 2%, and that if k
=2*"1+1 (mod 2%, all the primitive characters y modulo 2* have y(k)= —1,
which accounts for the requirement that ¢+ — 1.

Proor oF LEmMMa 4.3. Suppose that p is odd. Let e(k) be the multiplicative
order of k modulo p* If e(k)=2, then k= —1 (mod p?*), and the assertion of the
lemma is clearly true. If e(k)= 3, then y (k) takes on e(k) different values, each
one p*~!(p—1)/e(k) times, as y runs through all the characters modulo p*
Since there are p—2 primitive characters if a=1 and p*~?(p—1)? if =2, this
again proves the lemma. The proof for p=2 is similar.

B. ProoF oF THEOREM 1. It remains to show that for m odd and square-free
and N =pm, where p is a prime with (p,m)=1, p£ +1 (mod m), if (4.1) holds,
then h=+1 (mod m).

If x is any character modulo m, which is induced by a primitive character y’
modulo »7', then (since m is squarefre) m” =m/m’ is squarefree and (m',m”)=1.
Furthermore, since m” | N, there are no primes g with q|m", q /}’ N,whileif g| N,
q,{’ m”, then either g=p or else q|m’, and in the latter case y'(q)=0. Hence in
the present situation condition (3.6.d) is equivalent to y(p)=1. Thus if (4.1)
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holds for h% +1 (modm), and m’ 1, then at least one of the following con-
ditions must hold:

a) Y(-1)=-1,

b) y'(h)=1,

o) 3lm’ and ¥(3)=-1,
d) ¥(p=1

The desired contradiction which proves Theorem 1 now follows from the
following result.

PROPOSITION 4.6. Let m be an odd, squarefree positive integer, and let h, and h,
be two (not necessarily distinct) integers such that (h,m)=1 and h;* +1
(mod m) for 1 <j<2. Then there exists a primitive character y modulo m', m’' | m,
m' %1, such that y(—1)=1, y(h))*1, x(h,)*1, and if 3| (m/m’), then x(3)+ — 1.

ProofF ofF ProprosiTION 4.6. We consider several cases.

i) There is a prime g|m such that h;% +1 (modgq) for j=1 and 2. Since
hy £ +1 (modg), (h;,q)=1, we must have g=5. We let m'=q and choose y to
be a primitive character modulo g given by

x() = exp {gbm)}, ma)=1,

where
n = g"" (modgq)

for some fixed primitive root g modulo g (cf. (4.4)-(4.5)). Since q#3, x is
primitive. Moreover, (k)= 1 means that b(k)=0 (mod (g — 1)/2), which occurs
only for k= +1 (mod g). If 3 } m, this completes the proof of this case. Suppose
therefore that 3|m and that y(3)= —1 for the character defined above. Then
4b(3)/(q— 1) must be an odd integer, and therefore the multiplicative order of 3
modulo g must divide 4. Since there is no odd prime dividing 32 —1=8, we
conclude that 3 has order 4 modulo ¢, and hence g=35. In this case we let m’
=15 and find that the character y modulo 15 defined by x(2)= —i, x(4)= —1,
x(7)=i, x(—1)=1 satisfies all the conditions of the Proposition.

il) There is a prime q | m such that h; £ +1 (mod g), but h, =1 (mod g). (This
case also covers the situation where h,= —1 (mod gq), since the proof to be
presented below, when applied to the case of h, replaced by —h, =1 (modg),
produces a character y with x(h,)=x(—h,)=*1.) Since h, %1 (mod m), there is a
prime ¢’ | m such that h,£1 (mod ¢’). If 3|m, h,%£1 (mod 3), we take ¢q'=3. We
now distinguish two subcases.
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a) Either 3|m and h,#1 (mod 3) or else 3 ,|’ m. In this case we take m' =gqq’.
Since 3,{’m", we only have to ensure that y(—1)=1, y(h,)*1, x(hy)*=1. Let y
be a primitive character modulo ¢’ such that y(h,)=+1, Y (—1)= —1. Since ¢
=5, and h,; % +1 (modg), d(h,) takes on at least 2 values as  runs through
those primitive characters 6 modulo g for which é(—1)= —1. Choose that ¢
for which é(h,)¥(h,)+1. Then y =0y is a primitive character modulo m’'=qq’
which satisfies all the required properties.

b) 3|m and h, =1 (mod 3). In this case we will take m' =qq’ or m'=3qq’. Let £
denote the only primitive character modulo 3, and let y denote a primitive
character modulo ¢'. If g= 7, we take m'=3qq’ and we choose ¥ so that y(—1)
= —1 and ¥ (h,) + 1. Since there are at least two choices of é(h,) for a primitive
character 6 modulo g with §(—1)=1, we choose that § for which y=0y¢
satisfies y(h,)*1. The properties x(h,)*+1 and x(—1)=1 will then hold
automatically, while 3*(m/m’). If g=5, and h,£ —1 (modgq’), we select m’'
=3qq, and we choose a  with y(—1)=1 and Y (h,) * 1, and then select one of
the two possible choices of é with d(—1)= —1 so that y=45y¢ satisfies y(h,)
#+ 1. This y then again satisfies the claims of the Proposition. Finally, if g=5
and h,= —1 (mod g’), we choose m'=qq’ and set y =0y, where Y(—1)=—1,
and choose J to be one of the two primitive characters modulo 5 with 6(—1)=
—1so that y(h,)=*1. Then y(h,)*1, x(h,)= —1,and y(—1)=1. This y will fail
to work only if x(3)= — 1. However, 6(3)=¢ for e= +i so y(3)= —1 will occur
only if ¥ (3)=0(3)=e¢. We need to show that in fact one can choose  with
Y (—1)= —1 and ¥ (3)+e¢. This, however, is obvious, since if y(—1)=—1 and
Y (3)=¢, then Y (—1)= —1 and ¥ (3)= —e. Thus in this case also we can find a
suitable y by selecting y=34y.

iii) The final case to consider is when there is no prime g|m such that
hy % +1 (mod g). Since the roles of h, and h, are interchangeable, we can also
assume that there is no prime q|m such that h,% +1 (mod q); i.e., for every
glm, h;=+1 (modg) for j=1 and 2. We again need to consider subcases.

a) There are primes ¢, |n and g, |n such that

hy =1 (modgq,), h, = —1 (modgq,),
h;y = —1 (modg,), h, =1 (modg,).

We let J; for 1 £j <2 be a primitive character modulo g; such that §,(—1)= —1.
Then xy=40,0, is a primitive character modulo m'=q,q, which satisfies yx(h,)
=y(h,)=—1, x(—1)=1. Furthermore, if 3%¢, then as §, varies over the
primitive characters modulo g, which satisfy 6,(—1)= —1, J,(3) assumes at
least two values, so by an appropriate choice of 6, we can ensure that y(3)#
—1, no matter what the choice of J, is.
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b) There is no prime g|m such that
hih, = —1 (modgq) .

Then for every q| m we must have h; =h, = +1 (mod g). Since h; % + 1 (mod m),
this means that there are primes g, |m and ¢, |m such that

hy = h, =1 (modg,),
hy = h, = —1 (modg,) .

We set m'=q,q, and choose y=4,0, as in the preceding case.

5. C,.({,)=p and equality among Fourier coefficients.

This section examines the special equalities C,,({,)=p (equivalently,
u(pm,m)=1) and |C,,({,)|=p (equivalently, |u(pm,m)|=1) in terms of their
respetive relationships to equalities among certain Fourier coefficients and
among their moduli. The Fourier coefficients in question are those of the
periodic function x(n) defined recursively by

k

(5.1) x(n) = Y ax(n—i),
i=1

where the a;s are the coefficients of C,(z)=z—3f_,a;z*"". Interest in
equalities among these Fourier coefficients and among their moduli derives
from an applied problem [8] concerning determination of the phase and
power distributions in a class of recursive linear digital filters modelled by (5.1).
The fewer the number of values assumed by these coefficients and their moduli,
the more uniform are the phase and power distributions.

Let m be a fixed positive integer, let u be any fixed primitive mth root of unity
and set k=¢(m). Define

bz) = [] (a=z"H7'.

h(mod m)
h#1

(It is shown in [8] that {b(u")|(h,m)=1} is the set of nonzero Fourier
coefficients of x(n).) The derivative C,,(1)=p*"'b(p)~"', and it follows that for
(hym)=1,

Bt 0C, () — C (2"
(52) b = bipt) = tim == CalE)
z-p

NoTE. As b(u)=b(i") < ut ~MC,, (1) = u"* ~YC,, ("), this holds if and only if
p=9OC () is in the fixed field of the cyclic group of automorphisms of Q(u)/Q
generated by o, where o,(u)=p". Thus, for m; > 1, notall of the coefficients

=0.

Math. Scand. 49 — 3
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b(u") can be equal, as that would imply that u* ~¥C;, (1) were in the fixed field
of {ay | (h,m)=1}; as this is the full group of automorphisms of Q(u)/Q, the
implication is that for some q € Q, y is a zero of f(z)=C,,(z) —qz* . But f+0
since m, > 1, contradicting the fact that degu=k.

For (h,m)=1, let p be a prime satisfying p=h (mod m) (there exist infinitely
many such primes by the Dirichlet Theorem on primes in arithmetic
progressions [1]). Using the relation C,,,(2)C,,(z) = C,,(z?), it follows from (5.2)
that

b(y) = b(u") < Cpu(p) = pp®~" .
However, by Lemma 2.2, if C,,,(x)=pp*?~", when m>1,
o(pm)Argpu = 2¢(pm)Arg u (mod 2n)

so m|@(pm)=k(p—1) whence C,,,(1)=p. On the other hand, if C,,(u)=p (m
>1) then

@(pm)Argp = 0 (mod 2m)
som|@(pm)=k(p—1) and C,,,,(1)=pu*?~". We have thus proved Proposition
3.

To prove Proposition 4, note that analogous to the derivation of (5.2),

bl = () = timp|<n@)| tim |Cm )
Eiagy |Z~—/‘t z—’ulZ—#

< plC (] = |Cpm(IC(p)l -
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