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HECKE OPERATORS AND LAMBERT SERIES

L. ALAYNE PARSON* and KENNETH H. ROSEN

0. Introduction

By considering the action of Hecke operators on the logarithm of the
Dedekind eta function in conjunction with the transformation formula for this
function, Knopp [11] proved an extension of an identity for classical Dedekind
sums originally proved by Dedekind. In this article, it will be shown that
certain Lambert series studied by Apostol [1] are eigenfunctions for certain
Hecke operators. Using this information together with the transformation
formulae for these Lambert series, an identity for a type of generalized
Dedekind sums will be established. This new identity has as a special case an
identity previously proved by Carlitz [7].

1. Dedekind’s identity and Knopp’s extension.
The classical Dedekind eta function is defined for Im7>0 by

‘L') = emz/12 1"[ e2m‘nr) .
The function #(t) has no zeros in the upper half-plane so it has a single-valued
logarithm given by

logn(r) = -y 3y = 2’“""”, Imt > 0.

n=1m=1MmM

u w
(k h)c—SLz (2)

with k>0. The well-known transformation formula for logn (proved, for
instance, in [10]) is

Now let
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ut+w\) N .
logn(kﬂ_h) = logn(t)+3log[—i(kt+h)]+

i .
+E—I; (h+u)—mis(h, k)

where s(h, k) is the classical Dedekind sum defined as follows. Let

_x—[x]1-3 ifx¢Z
(("»‘{o if xeZ

Then the classical Dedekind sum is

wn= 5 (ENC)

Dedekind’s work [8] contains the identity
p—1
(1.1) s(ph,k)+ Y. s(h+mk,pk) = (p+1)s(h,k)
m=0
for p prime and k>0. An elementary proof of (1.1) may be found in
Rademacher and Whiteman [17]. Recently, Knopp proved

1.2 Y. Y s(ah+bk,dk) = a(n)s(h,k)

ad=n b(modd)
da>0

where k>0 and o (n) is the sum of the positive divisors of the integer n. It is easy
to see that when n is prime (1.2) reduces to (1.1).

To briefly explain the idea behind Knopp’s proof of (1.2), it is first necessary
to define the Hecke operators. For a function f the Hecke operators of weight k
are defined by

b
L@ =n1Y Y d"‘f<m; )

‘:id:(‘.:' b(mod d)
In his proof of (1.2), Knopp first showed that for ne Z*,
1
(1.3) To(n)logn(r) = ;0('!)103'1(1)+C(n)

where C(n) is a constant (depending only on n). Using the transformation
formula for log#n(t) to study the transformation properties of both sides of
(1.3), Knopp showed that (1.3) has a consequence the identity (1.2).

2. The Lambert series and the effect of Hecke operators.
Apostol [1] has studied the Lambert series
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o0 00
G(x)= 3 Y m %™
n=1m=1
for |x|<1 and ¢ an odd integer, g>1. Let
= 2ni
H,(t) = G, (™).

The function H (1) is an eigenfunction of the Hecke operators of weight 1 —g as
the following theorem demonstrates.

THEOREM 2.1. Let T(n)=T, _,(n) be a Hecke operator of weight 1 —q with q
and odd integer, q>1, and n € Z*. Then

(2.2) T(nH,(t) = n"95,(n)H (7)

where a,(n) is the sum of the g-th powers of the positive divisors of n.

Proor. To prove (2.2) one first deals with the case when n is prime. Then
using an induction argument the identity is proved for prime powers. Finally,
using the multiplicativity of the Hecke operators, (2.2) is established for
arbitrary n.

When n=p, p prime, one has

-1 b
T(p)H, (1) = p~H,(p0)+p~" Z H (” )

o 0
— p-q Z z m—qunimnpr+

n=1m=1

-1

+ -1 Z 2 m qe2mmnt/p z eZmnmb/p
n=1 m=1 b=0

Since

p-1 .
z p2mimnblp _ {0 if P*m"
: )
b=0 p if p|mn
the second sum is
p—l Z pm“qunimnt/p = Z m~9g2rimnt/p 4 Z m—9g2rimnt/p _

m,n m,n m,n
plmn plm pln

_ z m—qe21timm/p .
m,n
plm and p|n
However,
Z m—qunimm/p = p Z m- 2mm nt where pm/=m ,

m,n
plm
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Z m—qelm'mm:/p — z m—qunimn’t
m,n m,n’
pln

where pn'=n, and
y m~Sg2rimnlp — p=a ' py-gg2rimnpr
plm and pin
Hence one concludes that
T(pH, (1) = (1+p 9H,(t) = p~?0,(p)H,(7),

since a,(p)=1+p°.

To prove (2.2) for prime powers one needs to use the following identity for
Hecke operators of weight 1—gq (see [2] or [9] for a discussion of this and
other properties of Hecke operators)

(23) T(p) = TOTE ™ H—p TP ™2

for all positive integers s=2. Now note that T(p°)H,(t) = (p°) "%, (p°)H (1) is
trivially true, so that the identity

(24) T(pYYH,(7) = p~"0,(PY)H,(7)

holds for k=0 and k=1. To complete the induction argument assume (2.4)
holds for k—1 and k—2. Then from (2.3),

T(p"H,(r) = T()T (" HH,(1)—p *T(p*~*)H, (1)
P 90, (P)(P* 1) ", (p* T VH, (1) — p (P TP) 0, (p* T HH (1)
p_kq[o-q(p)o-q(ph— 1) —.pqo-q(pk_z)]Hq(r) .

Employing the easily verified identity ¢,(p)(p™)=0,(p""")+po,(p™ ') with
m=k—1, one obtains (2.4).
To prove (2.2) for arbitrary n, one uses the identity

(2.5) T(mn) = Tm)T(n) for (mn) = 1.

Employing (2.5) as well as the multiplicativity of ,, (2.2) follows immediately
for all n from (2.4).

3. Generalized Dedekind sums and some of their properties.
The Bernoulli polynomials B,(x) are defined by

ze¥’fe* -1 = io: B,(x)z"/r! .

r=0
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The Bernoulli numbers are given by B,=B,(0). One defines the periodic
Bernoulli function of order r by B,(x)=B,(x—[x]). Now let g,r ¢ Z* with 0<r
<q-+1. The generalized Dedekind sum with hk € Z, k>0 is

h
)

(Note that the dependence of ¢, on q is not reflected by the notation.) These
generalized Dedekind sums arise in the transformation formulae for the
functions H,(7) (given in section 4). They have been studied by many authors
including Apostol [3] who proved a reciprocity law for them, Carlitz [5], [6],
[7] who has shown that they satisfy many properties analogous to those
satisfied by classical Dedekind sums, and K. Barner [4] and H. Lang [13], [14]
who have shown that these generalized Dedekind sums arise in the evaluation
of certain zeta-functions and L-functions for real quadratic fields at integral
points.

Some properties of the sums c,(h, k) will now be mentioned. First note that
¢, (h+k,k)=c,(h, k). Since B,(—x)=(—1)B,(x) one sees that c,(h,k)=0 if q is
even and 0=<r=<q+1. Also ¢,(—h, k)= (—1)c,(h,k). One also easily sees that
when (h,k)=1,

colh k) = cpuq(h k) = k7B, 44
The following simple property of c,(h,k) has been proved by Carlitz [7;
Theorem 3].
LeMMma 3.1. Let n, q, and r be positive integers with 0Sr<q+ 1. Then
¢, (nh,nk) = n""c,(h,k) .

Carlitz [7; Theorem 6] has also proved the following identity in a manner
analogous to the proof given by Rademacher and Whiteman for (1.1).

THEOREM 3.2. Let e Z*, re Z,0<r=<q+1, and let p be prime. Then
p—1

(3.3) Y. c(h+mk,pk) = (p+p' "), (h,k)—p' “c,(ph,k) .

m=0

In the next section, the following new identity for these generalized Dedekind
sums, containing (3.3) as a special case, will be established.

THEOREM 3.4. Let q,r € Z with q>1,0Sr<q+1, and ne€ Z*. Then
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(3.5) Y Y d7l'c(ah+bk,dk) = n e, (n)c,(hk) .

‘:id:()" b(mod d)
When n is prime it is easy to see that (3.5) reduces to (3.3).

4. Transformation formulae for H () and a new identity for generalized
Dedekind sums.

Apostol [1], Iseki [10], and Mikolas [15] have proved the following
transformation formula H, (1), given below in a form convenient for its
subsequent use.

THEOREM 4.1. Let

u w
V= (k h)eSLz(Z)

and let q be an odd integer. Then

ut+w
kt+h

(kr+h)“"Hq( ) = H, (1) +fy(7)

where

(n)?  [(kr+h\? 9L (g+1 (1Y
+m( i ) ;0( , )(’“Hﬂ (= 1yc,(hk) .

Note that Theorem 4.1 shows that H,(t) is a modular integral of weight g—1
with rational period function f(z), as discussed in [12] and [16] for instance.
To establish a new identity for generalized Dedekind sums, one evaluates

w

T(mH,(V7) for V= (Z ;

) e SL, (2)

in two different ways. Comparing the results the identity is found.
First, note that from Theorems 2.1 and 4.1 one has

4.2) T(nH (V1) = n"%,(n)H (V1)

n~%,(n)(kt+h)' "(H (1) +fy (1)) .

On the other hand, when one begins by using the definition of T'(n) and then
employs the transformation formula one obtains
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TMH, (V) = n™ Y d™' Y H, (M, V1)
ad=n

b(mod d
d>0 (modd)

where

such that M, ,V=V'M’" where
d'(au+bk) —aub'—bb'k+aa'w+bd'h

—_ <u’ w’> B n n
kK dd’k addh—b'dk

n n

with V' € SL, (Z). Furthermore, as the M, ; run through all matrices subject to
the conditions ad=n, d >0, b(mod d), the M’ do as well. Hence

TmH, (V1) = n™1 Y d*"'H (V' M')
n=e Y do LK Mt + 1) (H (M'7) + £ (M'7))

where the unindexed summations here and below are over the set of (a,b,d)
with ad=n, d>0, and b(mod d). Next note that since

4.3) KM+ = k’a—%l—-—b—+h’ - %(kt+h)
one has
T(mH, (V1) = n~%kt+h)' Y d" ' (H (M'1)+fy(M'7))

= (kt+h)' T TmH, () +n 4kt +h)' "7 ) 497 . (M'7)
= n"9g, (n)(kt+h)' TH (1) +n Ukt +h)' 7Ty AT, (M'T)

where Theorem 2.1 has been used. By comparing this expression for
T(n)H (V1) with that of (4.2) it follows that

(4.4) g, fu(t) = 3 d*7 fy(M'7).

To discover an identity for generalized Dedekind sums one next substitutes the
definition of fy(t) into (4.4). The left hand side is
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q-1
O’q(n)[%l(q)<1—( 1)*e- ”<ktl—+h) >+
n)? (kr+h\?1 9 [q+1 L
m( l. );0< >(k +h)” (—1)c,(h,k)].
The right hand side is

2 (K M't+R\ 9 (g +1
+2((q:)l)!< ot ) Y (qt )(k’M’r+h’)"(—1)’c,(h’,k’):|

l r=0

q—1
=@y ae —%z;<q)<—1>*‘q'”<53§-’1) Y+

2n/i)d 9t 1
Eqili)' Zo <‘1+ )(kr+h)" (=1 X AT e (W K)

where (4.3) has been used. To simplify this expression note that

=TT a = T = o).

ad=n b(modd) ad=n b(mod d)
d>0 d>0

a
a>0

adh—b'dk dd'k
Cr n > n

A
= (;) c,(a'h—b’k,'d’k).

Also using Lemma 3.1, one has

c, (W, k)

From this one finds that
Y drd e, (W, k) = 7" Y d" e, (@h—b'k,d'k)
=nt""Y d"" e, (ah+ (d —b)k,dk)
=n?""y d"'c,(@h+b'k,d'k)
= n?"" Y d" " 'c,(ah+bk,dk) .
Consequently, the right hand side of (4.4) is

30,00 (@) — 3o, (L (9 (— 1)*~ 1)({‘}_;1&)"“ .

Qm/iy 1! <11+ )
+ kt+h)1"(—1)yn?" d" ¢ (ah+ bk, dk) .
2(‘I+1)' rgo ( ) ( ) adzn b(n%dd) (a )
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By comparing coefficients of powers of kt+h in the two sides of (4.4) one
finds for 0<r=<gq+1 that

Y, d " 'c(ah+bk,dk) = n" "o (n)c,(h,k) .

ad=n b(mod d)
d>0

This is the identity of Theorem 3.4. To prove the theorem note that for g odd if
(h,k)=1 one can find u and w so that

u w
(h k) e SL, (2)

and from the above work the theorem is true, and if (h, k)> 1, the theorem is
also valid as is seen by the use of Lemma 3.1. When q is even the theorem is
vacuously true, since in this case all the generalized Dedekind sums vanish.
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