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SOME VITALI THEOREMS
FOR LEBESGUE MEASURE

OLE JORSBOE, LEIF MEJLBRO, and FLEMMING TOPSQE!

1. Introduction and summary.

We shall work in N-dimensional euclidean space RY. The distance between
points or subsets of RV is denoted by d(-, -). The interior of a set is denoted by
int (-). For x e R¥N and 6 € R, the closed ball with center x and radius ¢ is
denoted by B[x,5]. If B€ RN is a ball, cen (B) denotes the center and rad (B)
the radius of B.

We use /4 for Lebesgue measure and A* for the outer Lebesgue measure. A
family 4 of subsets of R is called a packing if  consists of pairwise disjoint
sets. Let & be a family of balls in RY. We say that 4 RN can be packed with
sets from % if there exists a packing #* < % such that

A*(ANU{B| Be®*}) =0.

In this paper we shall use the special notation A4 for the class of closed balls
disjoint with the subset A4 of RV:

A = {Bclosed ball | BN A=¢} .

In many cases below the class A could have been enlarged by requiring only
that A*(BN A)=0 instead of BN A=(.

For a given family 4 of closed balls it is our main goal to establish theorems
to the effect that “large” regions A of RN can be packed with balls from %. To
achieve this we shall not use accidentally occurring large balls in % but rather
the local geometrical positions of the small balls in #. More precisely, we shall
only try to pack subsets of the local set which is the set

Ape = {xeR¥| VoeR, IBe #: BSB[x,5]}.

All our results may be expressed in terms of certain functions which tell us
how large balls in 4 we can find close to a point x. First consider the function
which to any set ¥V =RN assigns the value
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o(V) = sup{i(B)| Be #, BSV}

(with sup @F=0). Note that even though this definition is expressed in a
measure theoretical way, it is really purely geometrical, since there is a simple
relationship between the Lebesgue measure of a ball and its radius.

We write ¢(x,d) in place of g(B[x,d]) and call the function (x,d) v ¢(x,9)
the g-function (associated with %). Clearly, the local set 4,,. consists of all
points x for which g(x,8)>0 for all 6 e R,.

By the relative g-function we understand the function

0*(x,0) = sup {A(B)/A(B[x,d]) | Be #, B<B[x,0]}; xeRM deR,,

ie.
0*(x,9) = o(x,0)/A(B[x,5]) .
Clearly, the g-function is monotone:
(1) t>s = o(x1) 2 elx,9) .

For the relative o-function we only have the weaker result:

2 t > s = o*(x,t) = 0*(x,5) (s/O)N .

Furthermore, o*(x,t) <1 always holds.
We introduce the class ¢ of non-negative measurable functions ¢ defined on
an interval of the form ]0,¢[ with 0<t=< + 0o for which

fo dt
f p)— = +00
0 t

for all sufficiently small t,. We shall in the following always assume that ¢ <1
so that the integral above is either divergent for all 0 <, <1 or convergent for
all 0<ty,<1. We require that 6 — ¢(d)d is non-decreasing.

Then, with the given class # of balls we associate the following sets

{xeRNl 0*(x, ") € B},

N
o
I

Ay = {x e RV | o*(x,)/lloge(x, ) € &},

Abom = {x € RN | limsupo*(x,)>0} .
60

If, in a given context, it is desirable to stress the dependence of the above
defined objects on the family %, we may use such notation as Ay, (%8), 4,(%8),
Ajog(#B) and Apom(#), and also we may use the notation o(x,é|%) and
0*(x,9|AB).
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LemMA 1. For any class # of balls the associated sets satisfy the inclusions

Ahom U Alog = AO = Aloc .

Proor. Only the inclusion A,,,S A, is non-trivial. To establish this
inclusion, assume that x € Ao, Then there exists a constant c e R, and a
sequence 1=0,>0,>0,> ... converging to 0, such that g*(x,8,)=c for all
n € N. Then by (2),

v
g

1 dt +o00 ("3, dt
f Q*(x’t)T J Q*(x55n+1)'(6n+l/t)N_t‘

0

c + 00 N
g ﬁ"go (1—[5n+1/5n] )

Now, the infinite product [1;%5[6,,,/5,]" is O-divergent, hence the infinite
sum in the above inequalities diverges. This shows that x € A,

In order to formulate one of the main results we need a variant of the g-

function. Let ¢ € R, be a constant and define the neighbouring o-function with
parameter ¢ by

0.(x,6) = sup {min ((B,),A(B,)) | B, € B, B, € B, B, UB,<B[x,6],
d(cen B;,cen B,) = ¢} .
The corresponding relative function is defined by
0F(x,0) = g.(x,0)/A(B[x,8]) .
We may then define the following sets
moh = (xeRV| o¥(x, ) e @}, ceR,,
Anoh = U {Afpi | ceRL}.
The following two results constitute the core of our paper. The first result,

due to M. Talagrand, is a negative one:

THEOREM 1. (M. Talagrand). There exists a class # of closed balls such that it
is impossible to pack the set Ay= A,(A) by sets from B. Indeed, one can achieve
that

A(ANU{B| Be®}) > 0.
Actually, this gives a counterexample to a conjecture raised in [2] (cf. the

discussion following Corollary 1 of [2]). Nevertheless, it is our opinion that it is
“almost” possible to pack the set A4,. This is supported by the following result.
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THEOREM 2. Let B be a class of closed balls in RN. Then it is possible to pack
each of the sets Ayom, Ajog and Apnpy by sets from 2.

This implies (by Lemma 4 below) that there exists a packing #* < 4, such
that

i((AhomUAlogUAnbh)\U{B! Be e@*}) =0.

Note that Theorem 2 as far as Ay, is concerned is a classical result, cf. the
discussion of Theorem 1 in [2] (noting the regrettable mistake with liminf
instead of limsup).

In the discussion above we have seen how we to a given class 4 of balls may
associate various sets acting as candidates for sets to be packed by balls from
4. 1t is convenient to isolate this aspect in an abstract definition.

Let B be a family of pairs (A4, %) where A<R™ and where 4 is a class of
closed balls in RY. Following [2], we call B a Vitali system if the following two
axioms hold:

(A, B)eB,D< A= (D,B)cB
(A,B) € B, F closed = (ANF, BNF)e B .

We say that the packing theorem holds for B if, whenever (A4, %) e B, it is
possible to pack A with sets from 4.

Especially we shall discuss the concrete Vitali systems B, B, B, Biop
and B, which are defined as follows:

(A, B) € By,e <
(A, B) e B, <

In

Ajoc(%)
Ao(B) ,
Ahom (%)
Ao (%) ,
Apbn (%) .

in

(A4,8) € Byom <=

U N N N
n

in

(A,z@) € %log <>
(A,8) € By, = A

N

The main results then say that the packing theorem fails for B, (and of
course for By,) whereas it holds for each of the Vitali systems By, By, and
Q3nbh'

All the concrete Vitali systems we have considered are of local type in the
sense that (4, %) € B if and only if ({x},#) € B for all x € 4. This fact may be
formalised by defining a local property p as a property defined for every pair
(x,B), with x € RN and 4 a class of closed balls in RV, such that

p(x, %) is true = p(x,4;) is true for all 6 € R, where

B, = (Be B| B<B[x,8]}.
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Then the Vitali system B, induced by p is defined by
(A,B) e B, < p(x,%) is true for all xe 4.

The following trivial observation is sometimes useful:

LEMMA 2. Assume that the packing theorem holds for the Vitali system B. If A
is a subset of RN and % a family of closed balls such that

(A, BUA) e B,
then A can be packed with balls from A.

An interesting special case arises if #=¢J. This leads to the following
concept: Let B be a Vitali system and define the class 3 = 3y of B-meagre sets
by

Ze3 < (Z,2)eB.

By Lemma 2, every B-meagre set is a Lebesgue nullset provided the packing
theorem holds for B. The concrete criteria for Lebesgue nullsets which can be
obtained in this way from Theorem 2 are left for the reader to formulate.

To justify the terminology above it may be remarked that for the local Vitali
system B, the class of B, -meagre sets consists precisely of all nowhere dense
sets.

Let Z<RN. Then the gap function n, and the relative gap function n% are
defined by

nz(x,0) = 0(x,8|Z),
nE(x,8) = ¢*(x,0|Z).

We see that Z is a B,-meagre set if and only if #3(x, ) e ® for all x € Z.

As other applications of packing theorems we mention differentiation and
density theorems. We take as starting point a local property p. With p we
associate a notion of contraction (cf. [2]) defined as follows: If (B,),.p is a net
of closed balls in RN and if x € RN, we write B, — x[p] if, for every 6 e R,, B,
is eventually contained in B[x,d] and if, for every o, € D, the property
p(x, {B, | a=0,}) is true. From Proposition 2 of [2] we have

ProposITION 1. Let p be a local property such that the packing theorem holds
for the Vitali system B,

If f: RN — R is locally integrable, then there exists a Lebesgue nullset A such
that, for every x € RN\ 4 and for every net (B,) with B, — x[p], f(x) is a point
of accumulation of the net



264 OLE J@RSBOE, LEIF MEJLBRO, AND FLEMMING TOPSQOE

<[/1(Ba)]_lj fdi> :
B, a

If fis an indicator function, we get a density theorem rather than a
differentiation theorem. Of course, this density theorem may be viewed upon as
a generalization of the previously mentioned criteria for Lebesgue nullsets
since, if Z is a B ,-meagre set, then to any x € Z there exists B, — x[p] with
B,NZ =¥ for all a.

Just as in [2], a main technical tool in establishing packing theorems is the
following

LEmMMA 3. Let B be a Vitali system and assume that there exists a constant
¢ € R, such that for every (A, B) € B with A bounded, there is a packing B* = %
for which

MU {B| Be&*})) 2 ci*(4).
Then the packing theorem holds for B.

From this lemma we deduce

LEMMA 4. Assume that the packing theorem holds for each of the Vitali systems
B,, ne N. Then the packing theorem also holds for the Vitali system B
=®,}% B, defined by

(A,B) € B < there exist A,, ne N, with UA, = 4

such that (A,,%#) e B, for all ne N .

The proof is left to the reader (first establish the result for a finite collection
B,, n<n,, of Vitali systems, and then prove the general result; employ Lemma
3 in both parts of the proof).

It may be remarked that if B=9, is a Vitali system of local type, then
BVPHBVD...=1T.

We end our introduction by showing how the main result of [2] may be
deduced from Theorem 2.

THEOREM 3. (cf. Theorem 2 of [2]). Let & be a class of closed balls in RN and
let ¢ € @. Then it is possible to pack the set A,= A, (%) defined by
A, = {xeRV| 35, e R, V3<5,: 0*(x,8) 2 ¢(9)}
with balls from 2.
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Proor. Clearly, B, defined by
(A, B) e B, > A = A,(B)

is a Vitali system (a screened Vitali system in the terminology of [2]). Without
loss of generality, we may assume that ¢ (5)<2! ™V,
Choose, to the given family %, a number J, € R, such that

A*(A,.5) = $0%(4,)
where
Ap sy = {(x e RV | V356, 0*(x,8)20(3)} .

By Lemma 3, it suffices to show that 4, ; can be packed with balls from 4.
This we prove by showing that
3) A3 € Ann(BUA, ;) .

®,00 =

That this leads to the desired conclusion follows from Theorem 2 and Lemma
2. Put

B* = BUA,; .
Assume that x € A4, ;.. Let 6 <d,. Choose closed balls B' and B” such that
d(x,cen B') = d(x,cenB") = 35,
d(cenB',cenB") = 35,
rad (B) = rad (B") = %5 .

We shall use B’ and B” to define two balls B; and B, in #*. If B' € #*, we
put B,=B'". Then B, £ B[x,d] and

A(BY)/A(B[x,8]) = 8N 2 5-4™N-0(39) .
If B' ¢ #*, we choose x' € B NA, ;. Then we choose B; € # such that
B, ¢ B[x,%d] < B[x,0],
A(BY)/A(B[X',50]) = $o*(x,39) = 29(0) .
Then

A(By)/A(B[X',30]) 2 $0*(X',39) = 19 (39) .

The ball B, is constructed similarly from B”. By construction,

Then d(cen B,,cenB,) = 14 .

0f(x,818% = 147 N-0(49) .
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As this holds for every 0<0,, it follows that gf(x, |#*) e @, hence
x € Aqpn(#8%).

Note that by Theorem 1 it is not always possible to pack the union
U {4, | ¢ € ®} with balls from 2 as this union is identical with 4,. However,
by Lemma 3, if ¢#*< ¢ is countable, it is always possible to pack
U{4, | ¢ € #*} with balls from 2.

All our efforts have been attempts to prove a unified and “natural” packing
theorem. Especially, our criterion to such a result has been that it should
contain the classical result for B, as well as the previously established
Theorem 3. Actually, we have not reached this goal. We feel, that if there exists
a Vitali system with the desirable properties, it must be a subsystem of B,
which, as we recall, was defined via the function class @. That this class of
functions plays a certain canonical role has been demonstrated with the
present results; also, it should be recalled that the condition ¢ € @ in Theorem
3 is necessary (cf. Theorem 2 of [2]).

2. Talagrand’s example.

In this section we shall prove Theorem 1. We start with a closer examination
of the condition ¢*(x, -) € @ appearing in the definition of the Vitali system
%0-

Let 4 be a class of closed balls in RN, For each n € N, we define functions
a,: RN — [0, + 00] and &,: RN — [0, + 0] by

%,(x) = inf{d(x,cen (B)) | Be #,2 " ' <rad (B)<27"}
Gy(x) = inf{d(x,B)| Be®B, 27" '<rad (B)<27"}.
Roughly speaking, these functions give the distance to the closest ball in 4 of
radius approximately equal to 27" If there is no ball in 2 with 27"~ ! <rad (B)

<27" we have a,(x)=4,(x)= + oo for all x € RV, As usual, the dependence of
o, and &, on 4 is notationally suppressed.

LemMA 5. Let B be a class of closed balls in RN and let x € RN, Then the
following four conditions are equivalent:

(i) o*(x, )e @,

+ o0

(ii) Y 0*(x27" = +~0.,

n=0
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(iii) ¥Yn, e N: J(f "o, ()N

n=ng

+00,

(iv) Vny e N: EO (27"/&, ()N

n=ng

I
+
3

Proor. To simplify the notation, assume that N=1. We may also assume
that x € 4),.. We introduce the function

r(x,8) = sup {rad (B) | B e &, B B[x,4]} .
Then (as N=1),
0*(x,8) = r(x,0)/5 .

The equivalence of (i) and (ii) was noted in [2]. As &,<a«,, the implication
(iii) = (iv) is obvious. The implications (ii) = (iii) and (iv) = (ii) then remain
to be shown. We start with some general remarks.

For each n € N, determine an integer k, such that

27kl < p(x,277) £ 27

Then k,=zn and ko <k, <. ...

By a small argument it is seen that if k, <3+ n for infinitely many n then (ii),
(iii), and (iv) all hold. We may therefore assume that k,> 3+ n, eventually. In
order to simplify the notation we assume that

k, > 3+n forall ne N,.
Also we may and do assume that &,(x)>0 for all n € N,. Clearly,
o, (X) £ 277 neNg.
Determine numbers s(0)<s(1)< ... such that
kqv-1y+1 = Kgw-1y+2 = -+ = kgyy < Kkgp+1» VENg,

with s(—1)= —1. Put k(v)=k,,: Then it is easily seen that

+ 00 + oo
Z 0*(x,27") = 400 = 2 kM =S = 4 g
n=0 v=0
Since
too + 00 +00
Z (27" e, (x) 2 Z (2“"(“)/ak(v)(x)) > Z 2~ k) =st))
n=0 v=0 v=0

it is clear that (ii) implies (iii).



268 OLE JORSBOE, LEIF MEJLBRO, AND FLEMMING TOPSQE

To prove the remaining implication we remark that for v € N, there is no
ball in # with a radius >27***1 which is entirely contained in B[x,275"~1].
It follows that for any n with k(v)Sn<k(v+1) we have

o"z,,(x) = 2=sM-1_5.9-n > 9=st=1_9.9 kv
=

2-—s(v)—1_2_2—s(v)—3 — %.z—s(v) .

Then
too +oo k(v+1)—1 +oo
Y @Ta,e)) = X Q" (x) < 8 F 2 kMo
n=k(0) v=0 n=k(v) v=0

and the implication (iv) = (i) follows.

ReMaRrk. The term 27"/a,(x) is essentially equal to the reciprocal of the
number of steps of length 27" we have to take in order to get from x to a center
of a ball in # with a radius in the interval 127""1,27"].

We shall establish Theorem 1 by showing the existence of a B,-meagre set of
positive Lebesgue measure. The set we shall find will be a subset of [0,1]. For
any Z<[0,1] we write a,(x| Z) for the a,-function associated with Z.

Lemma 6. If to any € € R, and any positive constant K there exists a set
Z<[0,1] such that

(i) MZ) z 1-¢,
(i) +f (2o, (x]2) = K ae. on Z,
n=0

then there exists a By-meagre set of positive Lebesgue measure.

Proor. Let (¢,),.n and (K,),.n be suitably chosen sequences of positive
numbers with K,T+00. Let Z,<[0, 1] satisfy the stipulated conditions with
respect to ¢, and K,. We may even assume that the inequality (ii) for Z, holds
for all x € Z, since the sum in (ii) is increased when Z, is decreased.

Let Z=}% Z,. Then A(Z)>0 if the &,’s are suitably chosen, and as Z< Z,
for all v we have

+ 00

Y (27"a,(x|Z)) = +00 forall xeZ.

n=0

Thus, the set we obtain has positive measure and furthermore by Lemma 5, it is
B,-meagre.
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We now embark upon the essential construction. Let (n,),.n be a sequence
of positive integers, define

-2!’
g, =n, 2", peN,

and make sure that

+ 00 + 00
4 Yoe, =1, Y gloget = 400,
p=1 p=1

Given constants ¢ € R, and K € R, (cf. Lemma 6), choose p, such that

(5) fepgs.

P=Po
We shall construct Z =[O0, 1] fulfilling (i) and (ii) in Lemma 6 such that

+ 0o
[0,1\zZ = U B,,

P=Ppo
where the B,’s are disjoint, and each B, is a union of precisely n, dyadic
intervals of length 272". More will be required below, but first we consider any
such sequence (B,),> p,-

For each p2p, define a function f,: [0,1] — N, counting the number of

dyadic intervals of length 272’ you have to visit in order to come from a point x
in [0,1] to a B,-interval (cf. Figure 1).

The B-functions are related to the &-functions associated with Z by means of
the obvious formula
(6) 227 D50 (X1 Z) 2 1/B,(x) -

For p=p,—1 we define

H, = {x e [0,1] i l/ﬂv(x)<K}

—_ N W A

0 1
mwm =B -intervals  (p=2)

Figure 1.
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(for p=p,—1 we get H,=[0,1]). We note that (H,),>,, -, is decreasing. The
following observation will be important in the sequel:

+00
(7 y ﬂpﬂ(x)‘l-l,,p\am(x) < K+1 forall xe[0,1].
P=PpPo
The proof is left to the reader (consider the first v, if any, such that x ¢ H, ).

Clearly, H, is disjoint with B, U...UB, We may describe H, as a union
over a certain set .#, of dyadic intervals of length 277,

The actual (inductive) construction of the B,-sets is so designed that the n,,
dyadic intervals making up B, , are evenly spread out over H , for each p2p,
- 1. In more detail, what we mean by this is the following:

If ¢,,>4(H) we just make sure that B,,,2H, [and B,,,
N(B,U...UB)=, A(B,+1)=¢,4+,]. In the case ¢,,, SA(H,) we put

Vpr1 = [5p+1'22p//1(Hp)]
([-]="“integer part”) and for I € £, we select v; dyadic subintervals of I of

length 272""" such that

Vor1 SV S v+l e S,

Z Vi = Npy1 s
Ies,

and such that, for each I € £, the number s, of dyadic intervals of length
272" lying between the first v,+1 of the v, selected intervals is given by

(8) S,+1=largest integer such that v, +1+ (v, —1)s,; <2¥

(note that I consists of 22° dyadic intervals of length 272 of. Figure 2.
We have now given a complete description of the construction.
By (5), A(Z)=1—¢ By Lemma 6 and (6), we realize that we only have to
prove that

)] AH,) 0.
n=1 n=2 n=v,,
- - prowwn Y oo
1
J

wiw =the v-intervals selected from I

Figure 2.
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This is clear if, for infinitely many p we have ¢, , >3AH ») [since then H,| F].
Assume now that

Ep+1 < %A(Hp) for pzp, .
By a tedious calculation it follows that
Sp+1 g %A(Hp)/elrl—l fOr Pzpl .
For p=p, we now evaluate the integral of the summand in (7). Let [ € .#,

and define J as indicated on Figure 2. We have

J‘Bp+l(x)—l'1Hp\Bp+l(x)dx 2 A“'(Hp)‘22VJ‘ ﬁp+l(x)—1dx
J\B

14 1 1 p+i1
> A(H,)-2? -v,,+l~<—+...+ )-2*2
1 sp+1
2 A(H) 2% (epy, 2 A(H) ' = 1)logs, 27"
>

€p+110g (A(H,)/38,4,)—27* log2?" .
Put

+ o0
y =Y 2 %log2*.
1

p=
Then y < + 00 and summing the inequality above we find by (7) that

+ o0

Z 8p+llog(%i(Hp)/8p+l) é K+1+V .

P=r

By (4) this implies (9).

Let us give a reformulation of Talagrand’s result.

THEOREM 4. There exists a subset Z<=R of positive measure such that, for
every x € Z, the sunshine function obtained by reflecting the function t — d(t, Z)
in x belongs to the class &.

The more precise meaning of this theorem follows from Figure 3.

This negative result should be compared with the result, which follows from
Theorem 3, namely that if there exists a fixed function in the class @ such that
each sunshine function dominates this fixed function for sufficiently small
values of the argument J, then the set in question is a null-set.
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the function t — d(t,Z)

03— §
Al
x / x+5

the sunshine function at o

7

Figure 3.

3. Selection of a class {T,} of closed, disjoint balls from %.

Let (A4, #) be a member of some Vitali system B. In the selection of a class
{T,} of closed, disjoint balls from # we shall use the following procedure,
disregarding the special geometrical conditions imposed on B. The procedure
is similar to that given in [1], p. 20.

Without loss of generality we may assume that rad (B)<i for B € 4, that
A<[0,1]V and that B<[0,1]V for Be #. (As RN can be written as a
countable union of closed cubes, it is enough to consider this special case.)
From technical reasons we shall in the following use the maximum norm
instead of the euclidean norm. Due to Lemma 3 this is no restriction. Thus, a
ball from £ is in fact a cube, and we may use both designations
interchangeably.

We define #,=4%. Choose a T, € %,, such that
ATy z $sup {A(T) | Te B},
and define
B, = B,NT, .

As (A4,%8,) is a member of the Vitali system B we conclude that
(ANT,,#,) € B, and thus the process may be repeated. By induction we
choose a T, € 4, _,, such that

(10) AT 2 $sup{A(T)| Te B,_,},
and we define

(11) a2, -2, ,NnT,.
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Then (ANU'_, T, 4, € B.

In this way we define a system {T, | n € J} of closed, disjoint balls from %,
where J={1,...,n} or J=N. Suppose that J is finite. Then #,=(J for a
sufficiently large n. If B is anyone of the systems B,,5, Bpp, Biom, One readily
concludes that A*(A\ U?_, T;)=0. Thus, in the following we may assume that
J=N.

As {T, { n e N} is a disjoint sequence of closed sets contained in [0, 1]V, it
follows that

+ 00 + 00
S AT = z(u Tn) <1,
n=1 n=1

which shows that A(T,) — 0 for n — +~0. We shall assume that {T,} has been
enumerated, such that {4(T,)} is a nonincreasing sequence of positive numbers.

We prove some lemmata concerning the chosen class {T,} of closed, disjoint
balls from £.

LeMMma 7. To each T e A there exists a j € N, such that TN T;%+ & and A(T)
S2A0(T).

Proor. Suppose that Te 4 is a closed ball for which TNT,=f for alln e
N. According to (11) this means that T belongs to each system %,, n € N,. As
A(T,) — 0 for n — + oo there exists an integer n € N, such that A(T,)<1A(T).

Using (10) and that Te #,_, we get the contradiction
$A(T) > A(T,) 2 §sup{i(B)| Be#,_,} 2 34T,

and thus we conclude that J={n e N ‘ TN T,*} is not empty. Let j=min J.
Then Te #;_, and thus

MT) 2 ssup{A(B) | Be B} 2 3A(T).

LEMMA 8. Let % be a given system of closed balls, and let A< A,y.(#). Let {T,}
be chosen according to the procedure above with respect to (A, %B). To any x € A
and r € R there exists an integer n € N, such that

T,N Blx,r] £+ & and o(x,r) < 4A(T,).
PROOF. As A< A;,(2) there exists a B € 8, such that BS B[x,r] and A(B)
240(x,r). By Lemma 7 one can find an element T, of the sequence {T,}, such
that @+=BNT,cT,NB[x,r] and 4A(T,)=24(B)=o(x,r).

At last we prove a lemma concerning the neighbouring Vitali systems.

Math. Scand. 48 - 18
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LEMMA 9. Let # be a given system of closed balls, and let A< AL (B). Let
{T,} be chosen according to the procedure above with respect to (A, #). If x € A
and r € R, then at least one of the following conditions is fulfilled:

1) There exists an integer n e N, such that T,NB[x,r1+& and i(T,)=
12N A(B[x,7]).

2) There exist two integers nj,n, € N, such that T, NB[x,rl+, A(T,)
2L0¥(x,r), i=1,2, and at least one of the sets T,,T,, is disjoint from
B[x,273%r].

Proor. Suppose for given x € 4 and r € R that if T,N B[ x,r]+ &, then
A(T,)<127N A(B[x,r]) and T,NB[x,273r]+ &. As x € ALn(%B) there exist
B,,B, € #, such that B; U B,<B[x,r], A(B) Z%o¥(x,r), i=1,2, and
d(cen (By),cen (B,))2r. By Lemma 7 there exist T, , T,, from {T,} such that

A(B) £ 24(T,) < 6 NA(B[x,1]),
or rad B;<r/6 and rad T, <r/12. Then
d(cen (B,),cen (B,))

< d(cen (B,),cen (T, ))+d(cen (T, ), x)
+d(x,cen (T, ))+d(cen (T,),cen (B,))

IIA

rad (B,)+rad (T, )+rad (T, )+2 > r+27*r+rad (T,)
+rad (T,,)+rad (B,)
< {67 +127M 4127 4+ 4T 127 R 127 467 <

contradicting d(cen (B,),cen (B,))=r. Thus, either A(T,)=12"Ni(B[x,r]), or
there exists at least one T,, such that T, NB[x,27%r]=(. Finally, i(T,)
23A(B) 2 to¥ (x,7).

LemMa 10. Let B be a given system of closed balls, and let A < A%y, (B), where
¢ €]0,2[. Let {T,} be chosen according to the procedure above with respect to
(A, B). Let m € N be a constant, such that 2 " <c/6. If x € A and r € R, then
at least one of the following conditions is fulfilled:

1) There exists an integer n € N, such that T, B[x,r]+ & and i(T,)= (c/12)Y
A(B[x,r]).

2) There exist two integers n;,n, € N, such that T, NB[x,rl* &, i(T,)
=1o*(x,r), i=1,2, and at least one of the sets T,,T,, is disjoint from
B[x,2™™r].

The proof, which is a simple generalization of the proof of Lemma 9, is left to
the reader.
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4. A packing theorem for B,,,.

In this section we prove the following proposition, which is a part of
Theorem 2.

PROPOSITION 2. Let B be a class of closed balls in RN. If A< Ajog, then one can
pack A with balls from 4.

Proor. Without loss of generality we may assume that A < [0, 1]V, It follows
from the inequalities

+00 1 dt
27N+ Yo% (x, 27" loge(x, 27N £ | o*(x,1)/llogo(x, 1) —
t

n=1 0

+ oo
<2V ) o*(x,27")/lloge(x,27")

n=0

that ¢*(x, -)/|loge(x, )| € @, if and only if

+ 00
(12) Y 0*(x,27"/|loge(x,27"| = 400 forall xeA.
n=0

Thus, by Lemma 3 it is sufficient to prove that (12) implies the existence of a
positive constant ¢ and a class of disjoint sets {B,} from %, such that

AU B,) 2 ci*(4).

We assume that the sequence {T,} has been chosen by the procedure
described in section 3, such that {4(T,)} is a non-increasing sequence of positive
numbers.

By Lemma 8 there exist integers n € N to each x € A and k € N, such that
(13) T,NB[x27"] + @ and o(x,27% < 4U(T).

Let n(x, k) be the smallest integer n, for which (13) holds. As {A(T,)} is non-
increasing, we conclude that {n(x,k)},.n is a non-decreasing sequence of
positive integers for each fixed x € A.

It follows immediately from (13) that

(14) 106,279 < MTye) keN, xed,

and we conclude from (12) and (14) that
+ 00

15) Y 2Nk (T )08 A(Tyxi)l = +00  forall xe 4.
k=1

Next, we use a property of the outer Lebesgue measure A*. To given
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constants ¢ € 10,1[ and K € R, there exists a positive integer m=m(e, K), such
that A*(4)= (1 —e)A*(A), where A’ is defined by

m+1
(16) A= {xeA| Y 2”"A(Tn(,,k,)/|logA(T,,(x,k,ngK}.
k=1

Thus, by Lemma 3 it is enough to prove the existence of a constant c € R,
such that

(17) AU (Tyen | XA, k=1,...,m+1}) 2 cA*(4),

and we may without loss of generality in the following assume that A'= 4 and
that A*(A4)>0. We shall prove that (17) is satisfied with a finite number of sets
T,x.1p» and as the series (15) is divergent, the procedure of defining A" can be
iterated. Thus, it is sufficient to prove that to a given constant c € R, [c=
(1+4M71, say] one can select a finite subclass {T,,T,,...,T,} of {T,},
independent of x € A, where this subclass in a sense made precise below is
geometrically “equivalent” to the system {T,, ,, | x € A, k=1,...,m+1},such

that

N

MT,

n;

) 2 cA*(A).

]

i=1

We choose once for all K=23"/log2" in (16). This means that there exists a
positive integer m € N, such that

m+1

(18) Y 2VKi(Toei)108 A(Tye i)l 2 2*N/log2V  for all xe 4.
k=1

In our next step we describe the choice of the finite class {T,, T,,.. . ., T,,p},
and we derive some properties of this class. For n € Ny, let i, denote the set of
2"V (closed) meshes, each of sidelength 27", obtained by dividing each side of
[0,17" into 2" intervals of equal length. As {A(T,)} is non-increasing, T, is the
biggest ball in {T,}. We choose T, =T,. Let B; be the union of all meshes in
R, not intersecting T, , thus B;=U{Q | Q e |, N T, }. If B, + & we define n,
=min {n € N | T,N B, + J}. This means that T,_is the biggest ball from {T,}
that intersects the union of those meshes in 9,, which do not intersect T, . Let
B, be the union of all meshes in N, not intersecting T, UT,

BZ = U {QI QemlnTnlﬂTnz}'

If B, + ¥, we define ny=min{n e N I T,N B, = }. In this way we continue.

By the passage from B, to B,, at least one of the 2V meshes of R, has
disappeared, B, = B,, B, = B;. As the same is true for all the succeeding steps
we conclude that there exist i cubes {T,,,..., T,} from {T,}, i <2V, chosen by
the procedure described above, such that either
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QN(T,UT,U...UT,)+ @& or QNUT,=@ forallQe®R,.

Next, we consider N,, defining B; as the union of all meshes in N, not
intersecting T, UT,,U ... UT, (if any). Thus,

B.=U{Q| Qen,NnT, NnT,,n...NT,},

and the process is repeated on meshes from 9,, until every mesh from %R,
either intersects T, UT, U.. . UT, U... UT, or does not meet U T,. At this
stage we change the scale to ;. In this way we continue to level m+ 1, when
the process is terminated. Thus, we have selected a finite system
{T,., T,y - -, T, ) from our infinite system {T,} of pairwise disjoint balls from
#,and {T,, T,,. .., T, } has the property that for eachi € {1,2,...,p} one can
find ave {l,...,m+1} and a mesh Q € N,, such that T, is the biggest cube
from {T,}, for which T,NQ + .

Let x € A and k € {1,2,...,m+1} be given. Then the closed ball B[x,271]
intersects some of the sets {7T,} associated with the meshes in 9N,
v=0,1,2,...,k Let T, be the biggest cube associated with the meshes in R,,
v=0,1,...,k, for which T, N B[x,2:27¥]+ . By definition, T, is
the biggest ball from {T,}, for which T,NB[x,2 *]%, so T, is one of
the candidates for T,. Thus, A(T,)2 A(T, ), and the class {(Tux.to I x € A;
k=1,...,m+1} can in this sense be compared with the chosen finite subclass
{T., T,y .., T,} of {T,}. More explicitly, we have proved that

(19) VYxeAVk<m+13i<p:Bx2'"NT, + &,
)"(Tn,) g ;‘(Tn(x,k)) .

Since the subclass {T,, T,,. .., T, } is finite, we can find a constant M e N,
such that 2rad (T,)22"M for all i=1,...,p. To each T,, we can choose 2V
meshes from M, which make up a cube of sidelength 27"*! (not necessarily a
mesh in 9N, _,), such that T, is contained in this new cube (cf. [2]). Here v; is
defined by the condition

(20) 2771 £ 2rad(T,) < 27"

In the terminology of [2] this cube consisting of 2V meshes from N,, is called
the y-cube associated with T,. We denote this y-cube by y,. Hence, T, <y,, and
from (20) we derive that A(T,)=4"Ni(y). If F=UP_ y, we get

A(U T) = Zl ML)z 47 Y o) 2 4‘”&(}:)1 v,~> = 47D,

i=1

and UP_, T, covers at least the fraction 4N of I'. If we can prove that

T,

n; | »
1

Cr

1) J*ANT) < ,1<
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then

A*(A) < AD)+AX(ANT) £ (1+4M)i <U T)

or A( (T2 (1+4M~1i*(4)=c-1*(A4), and the theorem is proved
accordlng to our previous remarks.

Let us turn to the proof of (21). The set I' is composed of meshes from Ry, ;.
Hence the closure of [0,1]¥\ I is again composed of meshes from 9y, ,:

ol ([0, 1IN\ 1) = UQ,, Qe Ry -

There exists a ¢<¢’, such that after a rearrangement of the Q;

q
@) ANFS U Qp QW ANNQ+ g j=l...q.

[If ¢ =0, the set A\ I' is empty, and (21) is trivial.] Suppose that g € N is given.
We shall prove that the measure of U3=1 Q; is smaller than or equal to the
measure of U?_, T,. It should be remarked that the two sets ngl Q; and
Ur_, T, of course are disjoint.

To each T, there exists a unique integer v;, such that (20) is fulfilled. As
2rad (T,) is the sidelength of T,, an easy calculation gives that

(23) v; < JlogA(T,)/log2™ < v;+1, i=1,....p.
If v;<1 for some i, then by (20),
AT,) 2 27N 2 47Nax(4) 2 c-2%(4),

where c¢=(1+4")"!, and the estimate A(U’-, T,)Zc2*(A) is trivial. Hence,
we may assume that v,=2 for i=1,...,p.

For each v € {1,...,v;} there exist at most 2 meshes from N, intersecting
T,, and thus at most 2?Y meshes from R, containing points with a distance
<27 from T,. This means that we from all the levels v=1,. . ., v, have meshes
Qi 1 - s Qi m;<v;22N, for which we shall use T, as a scale. We divide T,
into v2?N “gauges” of equal size, and each of the meshes Q, ,, k=1,...,m, is
given the gauge v, '272VA(T,).

If Q;, €N, then Q,, is composed of at most 2VM+1=Y of the sets Q;,
defined in (22). We divide the gauge of size v, '272NA(T,) into 2NM+1-v
subgauges of equal size. If a Q; from (22) is contained in a Q; , from level v, then
Q; is given the subgauge of size

vi-l2—2Nl(T")2-—N(M+l——v) — Vi— 12-N(M+3—V)/1(Tn,)

from Q,, €M, associated with T,. We note that A(Q;)=2"VM*+D for
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Q; € Ny 4, so the use of T, as a scale may be summarized in the following
way:

Every T, is used to measure some meshes from the levels v=1,...,v. Each
level is from T, given the gauge vi 'A(T,). From each level v we pick up those
meshes, which contain points with a distance 27" from T,. Equivalently,
these meshes Q; , from M, are described by the condition

Qi.« N Blcen (T,),rad (T,)+27"] + & .

At a given level v <v, there are at most 22V such meshes, each of which is given
the subgauge v; *272NJ(T,). Next, each of these meshes from level v is again
divided into meshes from Ry, ,, and we pick up those meshes Q; that also
occur in (22). In particular 4 NintQ;# J, so we may use our g-function for
some x € ANintQ; The nunber of the Q; associated with a mesh Q; , from
level v is at most 2VM*1=Y) 50 each Q;=Q, , is given the subgauge

(24) v 127 NMEITINT,) = (v 127N NA(T))AQ))

from one mesh Q, , € N, associated with a particular T,. By (24) we conclude
that Q; through Q,, is given a subgauge that may cover the fraction
v 1272N2"N)(T,) of Q;. We note that it follows from (23) that

(25) v 12*2’\’2"’\'/1(T,,i) > (log 2N)2‘2N2"Ni(’1‘,,i)/|log A(T,) .

In the last step of the proof we show that each Q; j=1,...,q, in (22) is
totally “covered” by such gauges from all the T,. Let Q; be any of these meshes.
We shall prove that

(26) Y v 2NN, 2 1,
(i, v)
where the summation is performed over all pairs (i,v), i=1,...,p;v=1,...,v,
for which there exists a Q; , € N, associated with T,, such that ;< Q, ,. More
precisely, the summation is performed over all such Q, ;.
Let x € ANintQ;. By (19), to each k<m+1 there exists a T, =T ), such
that

B[x,2' M N T,y J and  ATpup) Z ATuu ) -

The first condition implies that Q; is given a gauge from some T,, n;=p(x, k),
stemming from level k—1, and as the same x € ANintQ; may be used for all
ke {l,...,m+1}, we get the estimates [by using (18) and (25)]

m+1

(log 2N)2 -3 Z 2Nk}‘(Tn(x, k))/ll()g A( Tn(x, k))‘

k=1

1

IIA

m+1

(log2M2 73N % 2NKA(Ty, )/ og AT, i)l

k=1

IIA
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< (log2M)273N(log2M) 123N 3y 127NN (T, ,
@i, v)

from which (26) follows. As this is true for all Q; in (22), we conclude that

AFANT) < (U Q]> < (,Q T)

and the proof is complete.

5. A packing theorem for B ;.

In this section we prove another part of Theorem 2.

PROPOSITION 3. Let 8 be a class of closed balls in RN. If A< A, then one can
pack A with balls from 2.

Proor. It is obvious that A}, < ALy, for t<s and that

Awn = U {An | seR.} = U {AMn| neN}.

According to Lemma 4 it is enough to prove the proposition for A contained in
ALn. In the following we shall prove the assertion for n=1 using Lemma 9.
The general case is with trivial modifications proved in the same way using
Lemma 10 instead. As the calculations for n#1 are fairly long and tedious
compared with the case n=1, we shall omit the general proof.

It is easy to see that gf(x, ) € @ if and only if

+ 00
27 Y o¥(x,2™" = +00 forall xe A,

n=0
[compare the derivation of the equivalence of ¢*(x, -)/|loge(x, )| €® and (12)].
We assume that the sets {T,} have been chosen according to the procedure
described in section 3 with respect to (4, #).

Using a property of the outer Lebesgue measure A* we see that to each

¢ € ]0, 1[ one can find a constant m=m{(e) € N, such that 1*(4")= (1 —g)A*(A),
where

m

X et(x27hz12 2N}

A'={xeA

Because of Lemma 3 it is sufficient to prove that A*(A4’) is smaller than some
constant times the measure of the union of a specially selected finite subclass of
{T,}. We may therefore assume that A'= A, so we are given a constant m € N,
such that
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m

(28) Y oof(x,27% =2 12:2V  for all xe 4.
k=1

By an open 2V-tant in RV defined by a cube Q we shall understand a
connected component of the set {x € RN ‘ x#cen (Q), k=1,...,N} where x
=(xy,...,xy) and cen (Q)=(cen (Q),,...,cen (Q)y). By a 2V-tant we shall
understand the closure of an open 2VN-tant.

We shall prove the existence of a finite subclass {T,} of {T,}, such that (cf.
Lemma 3)

(29) AUT,) 2 ci*(4),

where c=(1+768")7, say, and where 4<[0,1]V.
Let M, p € N, be the set of meshes introduced in section 4, here used on the
whole space RN. We put

(30) QeN,.a| ANINtQ+} = (R| I=1,... .M},

and in each R, we choose a point x; € ANintR,. Let P={x,|I=1,...,M}. By
Lemma 9, to each x,e P and each ke {l1,2,...,m+4} we have two
possibilities: Either

1) There exists an integer n € N, such that
T,NB[x,2°%] £+ & and A(T,) = 12"NA(B[x,27¥]) = 6" N27*N

or
2) There exist two integers n,,n, € N, such that

B) T,NBx2+ & and AT, 2 le*(x27 i=12,

and at least one of the sets T,

ny

T,, does not intersect B[x,27*7°].

For later use, the chosen sets T, for a given k are called I¥, and I,. In case 1) we
have I}, =If,=T,, whereas I%; N If,= in case 2). Thus, to each x, € P we are
given a finite set of pairs (I%,I%), k=1,...,m+4, of cubes from our sequence
{T,}. We choose our finite subclass of {T,} as the set {I} | k=1,...,m+4;
I=1,...,M; i=1,2}. As each I}, belongs to {T,}, this finite subclass can be
rewritten as {T,,T,,...,T,}, where n,<n,<...<n, Note that {T,} in
section 3 has been chosen according to size, so A(T,)2A(T,)= ... g&(T,,p). It
is convenient in the following to use both notations for different purposes.

If A(T,)=c=(1+768Y)"", there is nothing to prove, as (29) becomes trivial
because A<[0,1]". Otherwise, to each i=1,...,p there is a uniquely
determined integer k;, such that

(32) 12°N27kN < A(T,) < 6" N2 kN
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Hence, we can choose 2V meshes from 9, which make up a cube S} containing
T,. It follows from (32) that

(33) MT,) z 247NA(S))

J .

The cube S}, is contained in another cube S} _, consisting of 2 meshes from
N, _,. In this way we continue defining a finite sequence S| > . .. oS}, of cubes
associated with T,, where in case of more than one possible S} the cube is
chosen such that d(cen (T,,),cen (S) is minimized, i.c.

d(cen (T,),cen (S)) < 27771,

Note that the S} need not be contained in [0,1]". We define R} as the cube
consisting of 4" meshes from RN; with S} in the center.

Let the meshes Ji,, k=1,.. .,4Y, of R} be enumerated in a natural way
according to position in the cube (one might as well have used multi-indices
instead, but this would overburden the notation). Then each Ji , defines a
uniquely determined string

A=Al ] j=L1...m+4}.
As each S' has been chosen such that T, is as close to the center of S as
possible, we easily see that all the sets of #% belong to the same 2V-tant defined
by R, though they may not at all be ordered by inclusion.

We define 7,=Ri_; and I'=[0,1]¥NUZ y. Then by (33), A(T,)
>8"N.-4=N.24-N}(y)=768"Ni(y), and thus

p 14 P
(34) x(u T) =Y AT,) 2 768°N Y A(y) = 768 Ni(I) .
i=1 i=1 i=1
If we can prove that
14
(35) Y AT,) 2 A*(ANT),
i=1

we also have proved (29) and hence the theorem. In fact, it follows from (34)
and (35) that

A*(A) £ FAND)+AT) < (1+768N)/1<ij T)
i=1

As the series in (27) is divergent, the process may be iterated infinitely many
times proving the theorem. Thus, we shall only prove (35). As UZ_; T, and
ANT are disjoint, we “cut” the sets T, into suitable gauges instead. These
gauges are given to selected meshes, the union of which contains AN T. The
distribution of gauges is performed in such a way that each of these meshes is
totally covered by the corresponding gauges.
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Let K=max {k,,...,k,, m+4}. Then the closure of [0, 1I¥N\ T is composed
of meshes from N:

c ([0, 119\ T) = CJ 0, Q;eNk.
ji=1

Suppose that the Q; have been enumerated such that we for the first g of these
have

q
(36) A\ngszle and ANintQ; £+ g for j=1,...,q.

For each Q; in (36) there exists an R, defined by (30), such that Q; < R,. For the
point x; € R, we have

max {d(x,y) | yeQ} < 27"°*,

s0 x; € P can be chosen close to the center of a cube made up by 2" meshes
from N,,,,.

Let us look at one particular point x, € P. According to the construction of
the T, we are given an ordered set of pairs (If,I%), k=1,...,m+4, associated
with x,. We shall prove that if there exists a pair, for which If, =If,(=T,), then
x, € y. But if It =If,=T,, then T, has been chosen according to rule 1), so
T, NB[x,,27¥]+ ¥ and [using (32)]

6~ N2V < A(T,

) < 6—N2—-k,N,

from which we conclude that k;<k<m+4, and thus 1 —k < —k; as k and k; are
integers. We shall prove that even B[x,2 ¥]<y;=Rj _3. By definition S is
chosen, such that d(cen (T,,),cen (S} ))<2 7%~ '. Furthermore, it follows from
(32) that rad (T,)<127'-27% and as T, N B[x,2 ]+ & it follows for any
y € B[x,,27¥] that

d(cen (S}), )

IIA

d(cen (S}),cen (T, ))+rad (T,)+2' ~*
2—12~k,-+12—1.2—k.+2—k: < 2~ (ki—1) ,

A

or y € R, =R} _3=1,

If we consider a particular Q; in (36) and the corresponding x, € P, then
I'NintQ;= ¥, so according to the discussion above none of the pairs (I¥, %)
has been chosen by rule 1). As at least one of the sets I¥, I¥, does not intersect
B[x,27%73] by the alternative rule 2), we conclude that (I%, 1)+ (I%"3,1%"3),
so at least one member of the pair (I}, I},) has been replaced by a necessarily
smaller cube within three steps.

We divide each T, into 3-4N gauges of equal size, namely 3~ ‘4‘NA(T,,I), and
we are left with the problem of how to distribute these gauges among the
chosen meshes Q;, j=1,...,q.
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First, each string #i, k=1,...,4", associated with T,, is given three gauges.
Then we use that the T, have been arranged according to size. We start with
the biggest cube T, . The three gauges given to each string ¢} are attached to
the first three members of the string, J{ ;, J} 4, J3 ;. Then we turn to T, In this
case we attach the three gauges given to #2 to the first three vacant members of
the string, i.e. beginning with the first mesh JZ, in the string, which has not got
a gauge from T, . In this way we continue. In general, the three gauges of the
string ¢! are given to the first three members of the string, which have not got
gauges from the sets T, ,..., T, . In this way all the gauges are distributed to
meshes of different sizes. (Occasionally, some of the gauges are given to meshes
that do not contain points from A\ T, but this will only improve the final
estimate.)

As we always give the gauges associated with a given string to three levels
(note that these need not be succeeding; if they are not attached to succeeding
levels the final estimate will also be improved) and as (1%, I%) + (I3, I%3) by
rule 2), it follows that each mesh Q from 9, containing some Q; from (36)
associated with a point x, € P is given a gauge of at least the size [cf. (31)]

(37 371 47N 47 (6,278 = 127047 Vg (x,,27),

which at least covers the fraction 127127 No¥(x,,27%) of Q. In fact, if I}, has
just replaced a bigger cube, then I%, still satisfies (31), but I%, may be too small
to be used at this very step as a gauge, because we may still have larger gauges at
our disposal. (The replacement of the sets I}, may take place more often than
just once per three steps, which implies that they are used as gauges for much
smaller meshes than originally intended. This will of course give a better
estimate.) Starting once more from T, we easily conclude that each mesh Q
from N,, for which Q;= Q and x, € P are given as above, has in fact been given
a gauge of at least the size (37).

At last, each gauge given to a mesh Q € R, is cut into ) subgauges of
equal size, and each mesh Q' € M contained in Q is given one subgauge. We
note that the subgauge of course covers a fraction 212712 " No#¥(x,,27%) of Q,,
if Q; and x, are given as above. Adding all these subgauges given to one
particular Q; associated with x; € P we find that Q; has been totally covered by
these subgauges, because

IN(K—k

1271278 § of(x27 2 1

k=1

according to (28). As this is true for all Q; in (36) and as the sum of all gauges is
equal to A(U?_, T,) we conclude that
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A(LPJ T,,.> > A(O Q,-) > J%(ANT)

i=1 Jj=1

and the proof is complete.
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