RADON-NIKODYM THEOREM IN SPACES OF MEASURES

IIŘÍ NAVRÁTII

This paper is concerned with the Radon-Nikodým derivative in spaces of measures. The existence of a derivative of a bounded non-negative measure valued measure that is compact in the sense of Marczewski [1] and is absolutely continuous with respect to a complete σ -finite measure is proved. The proof is carried out constructively except for the use of the lifting theorem. Pachl's result ([2, 3.4]) enables us to obtain a derivative with some additional properties. The disintegration theorem of J. K. Pachl ([2, 3.5.]) is essentially a special case of the main theorem.

Throughout we adhere to the terminology and notation of Pachl's paper [2]. The following lemma can be proved in a standard way (cf. [3, Lemma 2.1, Th. 4.1(ii)]).

Lemma 1. Suppose that \mathcal{K} is a semicompact lattice on X, and β is a monotone supermodular function on \mathcal{K} . Denote

$$\mathcal{M} = \{ M \subseteq X ; (\forall T \subseteq X) \beta_{\star} T = \beta_{\star} (T \cap M) + \beta_{\star} (T - M) \}.$$

Then the following holds:

- (1) β_* is a σ -additive measure on the algebra \mathcal{M} .
- (2) $\mathcal{M} = \{ M \subseteq X ; \beta X = \beta_* M + \beta_* (X M) \}.$
- (3) \mathcal{M} is a σ -algebra on X provided that, in addition, $\mathcal{K} \subseteq \mathcal{M}$ and \mathcal{K} is closed under countable intersections.

The following result is proved in Section 3 of [2].

Lemma 2. Suppose that \mathcal{K} is a lattice on X, while β is a monotone modular function on \mathcal{K} .

Then there is a monotone modular function γ on $\mathscr K$ such that $\gamma \ge \beta$, $\gamma X = \beta X$ and

$$\gamma K + \gamma_*(X - K) = \gamma X$$

for each $K \in \mathcal{K}$.

Received April 29, 1980.

LEMMA 3. Suppose that \mathscr{K} is a semicompact lattice on X that is closed under countable intersections, μ is monotone and modular on \mathscr{K} , μ_* is modular on an algebra \mathscr{M} on X. Then $\mu_* \upharpoonright \mathscr{M}$ can be extended to a complete measure λ on a σ -algebra containing $\mathscr{K} \cup \mathscr{M}$ such that \mathscr{K} approximates λ .

PROOF. By the lemma 2, there is a monotone modular function γ on \mathcal{K} such that $\gamma \ge \mu$ on \mathcal{K} , $\gamma X = \mu X$ and $\mathcal{K} \subseteq \mathcal{B}$, where

$$\mathscr{B} = \{ M \subseteq X \; ; \; \gamma X = \gamma_{\star} M + \gamma_{\star} (X - M) \} \; .$$

Put $\lambda = \gamma \downarrow \uparrow \mathcal{B}$. Then

$$\mu_{\star}M \leq \gamma_{\star}M \leq \gamma X - \gamma_{\star}(X - M) \leq \mu X - \mu_{\star}(X - M) = \mu_{\star}M$$

for each $M \in \mathcal{M}$, $\lambda = \gamma_* = \mu_*$ on \mathcal{M} , $\mathcal{M} \subseteq \mathcal{B}$. By the lemma 1, λ is a complete measure on the σ -algebra $\mathcal{B} \supseteq \mathcal{K} \cup \mathcal{M}$ such that \mathcal{K} approximates λ .

DEFINITION. Let Σ be a σ -algebra on X. Then $M^+(X, \Sigma)$ denotes the set of all bounded non-negative measures on Σ , $M^+(X)$ denotes the set of all bounded non-negative measures defined on a σ -algebra on X.

Let \mathscr{A} be a σ -algebra on Ω . We say that $m: \mathscr{A} \to M^+(X, \Sigma)$ is a bounded non-negative measure if

$$m\left(\bigcup_{i=1}^{\infty} A_i\right)(B) = \sum_{i=1}^{\infty} m(A_i)(B)$$

for each sequence of pairwise disjoint sets $A_i \in \mathcal{A}$ and for each $B \in \Sigma$.

Theorem. Suppose that Σ is a σ -algebra on X, \mathscr{A} is a σ -algebra on Ω , μ is a complete σ -finite non-negative measure on \mathscr{A} , $\mathscr{K} \subseteq \Sigma$ is a semicompact lattice on X that is closed under countable intersections. Let $m: \mathscr{A} \to M^+(X, \Sigma)$ be a bounded non-negative measure such that \mathscr{K} approximates $m(\Omega)$.

Then the following holds:

(1) There are unique bounded non-negative measures $m_a, m_s : \mathcal{A} \to M^+(X, \Sigma)$ such that $m = m_a + m_s$,

$$\mu A = 0 \Rightarrow m_a(A)(B) = 0$$

for each $A \in \mathcal{A}$, $B \in \Sigma$, there is a set $E \in \mathcal{A}$ such that

$$\mu(\Omega - E) = 0, \ m_s(E)(B) = 0$$

for each $B \in \Sigma$, and \mathcal{K} approximates $m_a(A)$ for each $A \in \mathcal{A}$.

(2) There is a mapping $T: \Omega \to M^+(X)$ such that

$$\int_A T(\cdot)(B) d\mu = m_a(A)(B)$$

for each $A \in \mathcal{A}$, $B \in \Sigma$.

(3) Moreover T can be taken in such a way that $T(\omega)$ is a complete measure on a σ -algebra containing \mathcal{K} , and \mathcal{K} approximates $T(\omega)$ for each $\omega \in \Omega$.

PROOF. (1) By Lebesgue's decomposition theorem, there are bounded non-negative measures m_1, m_2 on $\mathscr A$ such that

$$m(\cdot)(X) = m_1 + m_2,$$

and m_1 is absolutely continuous and m_2 is singular with respect to μ . Thus there is a set $E \in \mathcal{A}$ such that $\mu(\Omega - E) = 0$, $m_2(E) = 0$. Put

$$m_a(A)(B) = m(A \cap E)(B), m_s(A)(B) = m(A - E)(B)$$
 for $A \in \mathcal{A}, B \in \Sigma$.

Then obviously $m = m_a + m_s$,

$$m_a(A)(B) = m(A \cap E)(B) \leq m(A \cap E)(X) = m_1(A \cap E) \leq m_1(A)$$

hence $m_a(\cdot)(B)$ is absolutely continuous with respect to μ for each $B \in \Sigma$. Further we have

$$m_c(E)(B) = m(E - E)(B) = m(\emptyset)(B) = 0$$

for each $B \in \Sigma$. Hence m_a is absolutely continuous and m_s is singular with respect to μ . \mathcal{X} approximates $m_a(A)$ for each $A \in \mathcal{A}$, for it holds

$$0 \le m_a(A)(B-K) \le m(A)(B-K)$$

for each $A \in \mathcal{A}$, $B \in \Sigma$, $K \in \mathcal{K}$.

The uniqueness follows immediately from Lebesgue's decomposition theorem.

(2) By the Radon-Nikodým theorem, there is a finite non-negative function $h \in \mathcal{L}(\Omega, \mathcal{A}, \mu)$ such that

$$\int_A h \, d\mu = m_a(A)(X)$$

for each $A \in \mathcal{A}$. It is easily seen that there are pairwise disjoint sets $\Omega_i \in \mathcal{A}$ such that

$$\mu\Omega_i < \infty, \bigcup_{i=1}^{\infty} \Omega_i = \Omega$$

and h is bounded on each Ω_i . Put

$$\mathcal{A}_i = \left\{ A \in \mathcal{A} \; ; \; A \subseteq \Omega_i \right\}$$

and let μ_i be the measure μ restricted to the σ -algebra \mathscr{A}_i . Then μ_i is a complete measure with $\mu_i \Omega_i < \infty$.

Choose liftings ϱ_i on each $(\Omega_i, \mathcal{A}_i, \mu_i)$ (see [4, IV-Th. 3]). Let Q be the set of all \mathcal{A} -measurable functions g such that $|g| \le c \cdot h$ for some positive number c. Define a "modified lifting" ϱ on Q by the formula

$$\varrho g(\omega) = \varrho_i(g \upharpoonright \Omega_i)(\omega)$$

for each $\omega \in \Omega_i$ $(i=1,2,\ldots)$, ϱ is well defined, for g is bounded on each Ω_i . By the Radon-Nikodým theorem, for each $B \in \Sigma$, there is an \mathscr{A} -measurable function h_B such that

$$\int_A h_B d\mu = m_a(A)(B)$$

for each $A \in \mathcal{A}$. Obviously $0 \le h_B \le h$ a.e. on Ω (for $0 \le \int_A h_B d\mu = m_a(A)(B)$ $\le m_a(A)(X) = \int_A h \cdot d\mu$), we may assume that $0 \le h_B \le h$ everywhere on Ω .

Put $\beta_{\omega}B = \varrho h_B(\omega)$ for each $\omega \in \Omega$, $B \in \Sigma$. Then β_{ω} is a monotone modular function on Σ . For the sake of brevity we shall simply denote $(\beta_{\omega} \upharpoonright \mathscr{K})_*$ by $(\beta_{\omega})_*$. By the Lemma 1, $(\beta_{\omega})_*$ is a σ -additive measure on the algebra

$$\mathcal{M}_{\omega} = \{ B \subseteq X ; \beta_{\omega} X = (\beta_{\omega})_{\star} B + (\beta_{\omega})_{\star} (X - B) \}.$$

Thus $(\beta_{\omega})_* \upharpoonright \mathcal{M}_{\omega}$ can be extended to a measure $T(\omega)$ on a σ -algebra containing \mathcal{M}_{ω} .

Let $B \in \Sigma$, $A \in \mathcal{A}$. Take K_n , $L_n \in \mathcal{K}$ such that $K_n \subseteq B \subseteq X - L_n$ and

$$m_a(A)(K_n) \to m_a(A)(B), \quad m_a(A)(L_n) \to m_a(A)(X-B)$$
.

 $\beta_{\omega}K_{n} \leq (\beta_{\omega})_{\star}B \leq \beta_{\omega}X - (\beta_{\omega})_{\star}(X - B) \leq \beta_{\omega}X - \beta_{\omega}L_{n}$

Then it holds

$$\int_{A} \beta_{\omega} K_{n} d\mu(\omega) = \int_{A} h_{K_{n}} d\mu = m_{a}(A)(K_{n})$$

$$\to m_{a}(A)(B) ,$$

$$\int_{A} (\beta_{\omega} X - \beta_{\omega} L_{n}) d\mu(\omega) = \int_{A} \beta_{\omega} (X - L_{n}) d\mu(\omega) = \int_{A} h_{X - L_{n}} d\mu$$

 $\int_{A} p_{\omega}(X - L_{n}) u\mu(\omega) = \int_{A} m_{X-L_{n}} u\mu(\omega) = \int_{A} m_{X-$

This implies that $(\beta_{\omega})_*B = \beta_{\omega}X - (\beta_{\omega})_*(X - B)$, that is $B \in \mathcal{M}_{\omega}$ for μ -almost all $\omega \in \Omega$, and

$$\int_{A} (\beta_{\omega})_{*} B \, d\mu(\omega) = m_{a}(A)(B)$$

for each $A \in \mathcal{A}$, $B \in \Sigma$.

Hence T has the desired properties.

(3) By the lemma 3, $(\beta_{\omega})_* \upharpoonright \mathcal{M}_{\omega}$ can be extended to a complete measure $T(\omega)$ on a σ -algebra containing $\mathcal{K} \cup \mathcal{M}_{\omega}$ such that $T(\omega)$ is approximated by \mathcal{K} .

From the main theorem one can immediately deduce the following disintegration theorem of [2, 3.5].

COROLLARY. Let (X, Σ, P) and $(\Omega, \mathcal{A}, \mu)$ be two probability spaces, and let R be a probability measure on $\sigma(\Sigma \otimes \mathcal{A})$ such that

$$R(X \times A) = \mu A, R(B \times \Omega) = PB$$

for each $A \in \mathcal{A}$, $B \in \Sigma$.

Suppose that μ is complete and P is approximated by a semicompact lattice $\mathscr{K} \subseteq \mathscr{A}$ that is closed under countable intersections.

Then there are probability spaces $(X, \Sigma_{\omega}, P_{\omega}), \omega \in \Omega$, such that $\mathscr{K} \subseteq \Sigma_{\omega}$ and

$$\int_A P_{\omega} B \, d\mu(\omega) = R(B \times A)$$

for each $A \in \mathcal{A}$, $B \in \Sigma$.

PROOF. Put $m(A)(B) = R(B \times A)$ for $A \in \mathcal{A}$, $B \in \Sigma$. Then m satisfies the conditions of the preceding theorem and $m = m_a$. Hence there is a mapping $T: \Omega \to M^+(X)$ such that

$$\int_A T(\cdot)(B) d\mu = m(A)(B) = R(B \times A)$$

for each $A \in \mathcal{A}$, $B \in \Sigma$, where $T(\omega)$ is defined on a σ -algebra $\Sigma'_{\omega} \supseteq \mathcal{K}$. Further we have

$$\int_A T(\cdot)(X) d\mu = R(X \times A) = \mu A$$

for each $A \in \mathcal{A}$. Thus there is a set $E \in \mathcal{A}$ such that $\mu E = 0$ and $T(\cdot)(X) = 1$ on $\Omega - E$. Take an arbitrary $\omega_0 \in \Omega - E$ and put

$$P_{\omega} = T(\omega_0),$$
 $\Sigma_{\omega} = \Sigma'_{\omega_0}$ for each $\omega \in E$, and $P_{\omega} = T(\omega),$ $\Sigma_{\omega} = \Sigma'_{\omega}$ for each $\omega \in \Omega - E$.

REFERENCES

- 1. E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. MR 15 #610.
- 2. J. K. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978), 157-168.
- F. Topsøe, On constructions of measures, Proceedings of the 1974 conference "Topology and Measure Theory" in Zinnowitz, Greifswald 1978.
- A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the theory of lifting (Ergebnisse der Mathematik und Ihrer Grenzgebiete 48), Springer-Verlag, Berlin - Heidelberg - New York 1969. MR 43 #2185.

CHARLES UNIVERSITY
FACULTY OF MATHEMATICS AND PHYSICS
SOKOLOVSKÁ 83
186 00 PRAHA
CZECHOSLOVAKIA