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GEOMETRIC ASPECTS OF
THE TOMITA-TAKESAKI THEORY II

UFFE HAAGERUP and CHRISTIAN F. SKAU

Introduction.

In the present paper we will study some problems, which grew out of the
second author’s work reported in the paper [6]. As in [6] we consider a o-finite
von Neumann algebra M on standard form (M, H, J, P%) in the sense of [3]. To
each cyclic and separating vector & € P are associated two cones

Pi= (M, and Pi= (M,8) .

Since P;=J(P}), P} is the reflected image of P} with respect to the “selfadjoint”
part H" of the Hilbert Space H,

H* = {{eH| J{=(} = P"—P".

We shall study the orthogonal projected image Q, of P onto the real subspace
H":

Q. = s(1+J)P% = L(1+J)P}.

It turns out that Q, is a closed cone in H “ and that P* < Q. for any choice of ¢.
Moreover Q,:=P" if and only if ¢ is a trace vector for M. Our main result is:

If M is a factor not a type 111, and &,n € P* are cyclic and separating for M,
then Q,=Q, if and only if

1) n=4i, AeR, or
2) M is finite, and n=Ai"! for a i e R,.

Case 2) should be understood in the following way: When M is a finite factor,
we may identify H with L*(M,1) and P* with L2(M,1),, where t is the
normalized trace on M. Doing this &, n become positive, injective, selfadjoint
operators affiliated with M, and the equation n=A4¢"' makes sense.

Using [6, § 3] the above statement may also be expressed:

If M is a factor not of type I1I,, and ¢,y e P" are cyclic and separating for M
then Q,=Q, if and only if 1) Pi=P; or 2) P{=P;.
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A crucial step in the proof is to show, that Q,=Q, implies that the
centralizers M, and M, for the vectorfunctionals ¢ =, and Y =w, are equal.
For factors of type III;, the centralizer M, gives little information about the
functional ¢, and that is the reason why our proof fails in this case. However,
we are strongly convinced that the above statement is also valid for factors of
type II1,.

1. The cone Q..

Let (M, H, P") be a o-finite von Neumann algebra on standard form. For
each cyclic and separating vector ¢ € P, the natural cone can be recovered from
¢, by the formula

P = (4iM, ),
where A, is the modular operator associated with £ The cone Pf induces a

partial ordering < of the real Hilbert space H" = {{ l J{={}. When &,,¢, € H"
and &, =¢&,, we let [£,,&,] denote the set

[&1,¢,] = {'IGHH' &g,
Since J coincides with the unitary involution J, obtained from £, we have
JAtal = a*é, aeM.

Consider now the cone Q,=%(1+J)P} Clearly Q,=H" Since 4} and J
coincide on Pi={a¢ | a e M.}, the map $(1+J) of P} onto Q,, is bounded
and has bounded inverse. Since P is closed, it follows that Q, is complete, and
hence closed in H®. Using that JE=¢, one has (1+J)aé=(a+JaJ)t, ae M,.
Therefore

(*) Q: = {(a+Ja))¢ | ae M.} .

For any cone K in H* we put K°={ne H*| (n]&)20, V¢ € K}. From the
Hahn-Banach Theorem one gets easily K°°>=K. By (*) it follows that for
neH"

neQ; < ((a+JaJ)l|n) 20, VaeM,
< (@in+mlad) 20, VaeM,
< Wyt o, 2 0.
Hence we have the following characterization of Qg:

(** Q: = {neHlwg+w,:20}.
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ProrosiTION 1.1.
1) Q; is the closed cone generated by (A“+A¢ Hro, &1.
2) Q3 is the closure of (Ai+4;%'P".

3) Q°SP*‘.C_.Q¢

Proor. 1) The map a — A% i(al) is a bijection of {ae M, | 0=<ax<l} onto
[0,¢&] (cf. [2, § 3]). In particular [0, £] is contained in D(4; ) and since JA§J
=Ag% we have also [0, £] gD(AgL%).

Forae M,:

(a+Jad)é = (1+4}at = (A§+Agi)A§aé
Hence

{a+Jad)t | aeM,} = U M43+ A7H[0,¢] .

This proves 1).

2) Note first that (A4+A‘3) ! is bounded and everywhere defined. Let
ne (A +A47 $~1pP" We shall prove that ne Q°, ie. that (n]{)=0forall { € Q..
By 1) it is enough to consider { € (A‘+A¢ Y10, £]. However, in this case

(110) = (e+4: | (4i+479710) 2
because both sides in the last inner product belong to the selfdual cone P®.
Hence ((A“+A L) 1p%) )" Q% To prove the converse inclusion, put K=
(A“+A %~1P" and assume 7 € K°.

For any { € P":

((4i+45H 710 = (1 Ai+45H71) 2 0
Hence (A§+Ag%)”‘n € (P")° =P". Since 4;*(P}) < P* one has for every { € P”,
that

(L+4H710) = ((@i+47H 14580 2 0

Thus by [7, Lemma 15.2], (1 +A§)“n e P} or equivalently n € (1+ 4})Pi=Q,.
This proves that K°<Q,, and hence Q3 K°° =K.

3) For any a>0 the function f(x)=1/cosh (ax) is positive definite. In fact

1 1> ., LA
cosh () @) % j‘—w e cosh (5&) dt .

By spectral theory we can replace x by the selfadjoint operator log 4,. Putting
a=} we get
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(A§+A.g%)‘1 = J A¢cosh (2nt) "' dt .
As AYP*=P", t e R it follows that (A§+A{%)“P“gP“. Hence by 2) Qi< P~
Taking the dual cones we get P*cQ,.

For each projection p e M, F,=p(J pJ)P% is a closed face in P*. Moreover
each closed face in P is of the form F p (cf. [2, Theorem 4.2]). Put ¢ =, (on
M). Then for any projection p in M and t € R:

Foop = AbpA;"JAtpA; "JP* = Alp(JpJ)P*

= AiF,.

In particular the face F, is Af-invariant if and only if p belongs to the
centralizer M, of ¢.

PRroPOSITION 1.2. Let F be a closed face in P®. The following conditions are
equivalent:

1) F is Af-invariant.

2) There exists a vector n € Q3, such that F={¢ € P" I (&1n)=0}.

ProoF. 1) = 2): Let p € M be the ¢?-invariant projection in M, for which F
=F, Putn=(1-p)J(1 —p)JJ¢. Clearly 4fn=n,t € R. Thus y =2(A%+Ag%)‘ I,
which proves that n € (A‘l‘g—}-A : 4~ 1pt € Q5. Since ¢ is cyclic and separating for

M, the face in P* generated by ¢ is dense in P". Therefore the face in P*
generated by n=(1—p)J(1-p)J¢is dense in F,_,=(1—p)J(1 —p)JP%. Hence

{LeP| CIn=0} = {{eP"| CIn)=0,YVneF,_,} =F,=F

(cf. [2, § 4]).
2) = 1): Let n € 02, and put F={{ € P* | ({|n)=0}. We shall prove that F
is A¥-invariant. Consider the operator

T=1+2(4i+4;7%H7!

Clearly T(P")< P". Since 1 S T<2, T(P")is a closed subset of P*. We will show
that Q¢ < T(P"). By Proposition 1.1, (2) it is enough to show that every { € 0
of the form { = (4i+ 47471, ¢’ € PY, is in T(PY).

However,

T = (14+2(43+ 4797 ) Hds+47H7

= Q+a+47H7 = (Ahrash .

It

Since 1/cosh (3x) is a positive definite function on R, we conclude as in the
proof of Proposition 1.1 (3), that (A§+ a7 #)~1p%c P*. Therefore T~!{ € P, or
{ € T (P"). Hence we have proved that (3= T(P"). In particular n € T(P"). Put
now n'=T "'y € P*. Since
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L 1 o0 . dt
T=1+2(45+4;%7" = 1+2J_ At cosh G °

we get that for any { € F:

oo

Clm)+2 J €145y

t
e cosh (2nt) = (Elm = 0.

However ({|4¢n)20, because A{n' € P*. Therefore ({|A%y)=0, t e R. Let
s € R. Then

is _ is , 0 is it/ __L
(4£Clm) = (4C1n)+2 j_oo (Agc‘Aén)costht)
s &

=0.

Hence { € F = A?C e Fforall seR,ie. Fis A?-invariant.
CoRroLLARY 1.3. If Q,=P*, then ¢ =, is a trace on M.

PrOOF. Any closed face F in P" is of the form

F=1{leP"| In=0}

for some n e P*. Indeed if F=F, one can use n=(1-p)J(1—-p)JJE& (cf.
proof of 1) == 2) in Proposition 1.2). Hence if Q¢=P“, we get by Proposition
1.2, that every face in P* is Al-invariant, or equivalently, every projection in M
is of-invariant. Hence ¢? is the identity on M.

COROLLARY 1.4. Let ¢ and n be two cyclic and separating vectors in P". If Q;
=Q, the centralizers of ¢ =w, and Y = v, coincide.

Proor. By Proposition 1.2, Q.=Q, implies that a closed face F in P is A%-
invariant iff it is A}-invariant. Hence the centralizers M, and M, for w; and o,
must have the same projections, i.e. M,=M,,.

2. The equation Q,=Q,.
Consider a o-finite factor M on standard form, and let &5 € P® be cyclic

and separating vectors for M. In [6, Lemma 3.3 and Lemma 3.4] it is proved
that
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1) Pi=Pi<n=iiforalieR,,
2) Pi=P} < M is finite, and n=A¢"" fora A e R,.

(The interpretation of the equation n=A¢ ™! was clarified in the introduction.)

Since the projected images of P} and P; on H * both are equal to Q., the “if-
part” of the following Theorem is immediate:

THEOREM 2.1. Let M be a factor not of type 111, and let &, € P* be cyclic and
separating vectors for M. Then Q.=Q, if and only if, either

1) n=Aif fora 1€ R,
or
2) M is finite, and n=A¢"" for a 1 e R,.

To prove the “only if-part” we need a series of lemmas. In the following M
denotes (unless specified) an arbitrary o-finite von Neumann algebra.

Lrvma 2.2, Let &,n € P® be cyclic and separating vectors for M. If @=w,and
W~y commute then

1) Afn=nand 4}¢=¢, teR

2) AgAi=4F4%,  steR.

Proof. 1) By definition ¢ and Y commute iff y is ¢P-invariant, or
equivalently, ¢ is of-invariant (cf. [5]). Hence, when ¢ and ¥ commute, # and

¥n induce the same vector-functional on M. As both vectors are in P* it
follows that ?n=n, t € R [2, Theorem 2.7 (f)]. Similarly 4¢=¢, t e R. 2)

When ¢ and y commute, 6° and ¢¥ are commuting automorphism groups.
Since by 1) £ is both A%- and 4y-invariant, we have for x € M, that

A3A45xE = o?oof (xJ¢ = o¥oa?(x)E = ALALXE .
This proves 2), because ¢ is cyclic for M.
LemMaA 2.3. Let &, € P* be cyclic and separating for M, such that ¢ =w, and
Y =w, commute. If Q.=Q, then
(43 +4797 (454 47H10,¢1 = [0,¢].

Proor. By proposition 1.1 (1), Qf is the closure of
U A3+ 490,87
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Therefore
(*) (A;‘¢+A£“L)”1Q¢ = <1U0 /1[0,5]> c P
Similarly

(45+4,7H710, < P*.
Thus, when Q.=Q,

(**) (A3 +4,97 @+ 47900,8] < (ah+47H7'0, < P
Since ¢ is both 4¥ and Al-invariant by Lemma 2.2, we have
(**%) M+ 47D (M A7HE = (Ab4a7h 128 = ¢,
Put now

A= (A4+47H 7 di+47h .

From (**) and (***) it follows, that if { € [0,£], then A € P* and £é—A(=
A(E—{) € P". Hence A([0,¢])<=[0,&]. We are going to show, that 4 maps
[0,&] onto [0,&]. Let { € [0, £]. Put

xZ
f,(x) = exp(—ﬁ), neN,

and put
{w = fullog 4, .
Then clearly |{,— (|| — 0 for n — oo. Moreover by spectral theory one gets
{,eDAHN DA, neN.

Since

log 4 n_ " "N gy
j;l( Og r]) - E o exp 2 n s

fu(log 4,) maps P’ into itself. Since 4,£=¢, we have f,(log4,)l=f,(0)¢=¢.
Therefore both {,=f,(log 4,)¢ and ¢ —{,=/,(log 4,)({ —¢) belong to P? that is
{n € [0,¢].

For {' € P* we have
(A + 4791 (M5 +47H710) = (LI 2 0.
Thus by lemma 1.1 (2)
(di+47H0, € @) =0, = Q-
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Using (*) we obtain

A7, = (A A7 b+ 40, € PR
The same arguments applied to &—{, gives

=AY, = A7) e PR
Hence A7'(, € [0,&], or ¢, € A([0,&]), n € N. This shows that A([0,¢&]) is
norm dense in [0, ¢]. However, by the proof of Proposition 1.1 (1)
(A4+479[0,8] = {(a+Jad)é| ae M, 0=<a<l}.

Therefore this set is weakly compact in H. This implies that

A[0.E]) = (Ai+4,7H7 (b +475(0,¢]

is also weakly compact in H. In particular A([0,¢]) is normclosed. Thus

A([0,ED)=[0,¢].

LEMMA 2.4. Let & € P be cyclic and separating vectors for M such that
@=w; and Y =, commute. If Q.=Q, then M+ A7i=A+ 4%

Proor. Following [2, §1] a positive hermitian form s on M is called selfpolar,
if the set of functionals s(-,y), y € M ,, is a face in M*%. By [2, Theorem 1.3],
there is only one selfpolar form s, on M, such that s,(x,1)=¢(x), x € M,
namely
sp(x,)) = (Abxg| 43y) .

Put now A= (A§,+ A,,’"‘)‘ ! (A%-!— Ag%) as in the preceeding lemma. By lemma 2.2
(2) the spectral projections of 4, and 4, commute. Therefore A4 is closable and
its closure is again a positive selfadjoint operator. Put now

S(x,y) = (A3xE|AAE), x,yeM .

Then s is well-defined, because M&< D(4 g), and s’ is a positive hermitian form
on M. Using

MM ¢ = | A0,¢],

A>0

we get by lemma 2.3, that also

AMM & = U o2

Thus the set of functionals x — s,(x,y), y € M, is the same as the set of
functionals x — s'(x,y), v € M .. However. the first of these sets is a face in
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M* . Therefore the set of functionals s'(.,y), y € M, is also a face in M*%, that
is 5" is selfpolar. Since A¢=¢, we have

S(x1) = (AxE18) = (RE1Y = o(x), xeM.
Therefore s'=s,. Thus we have proved that
(4ixe| Adlye) = (AbxE| b)), xyeM.
Since AéM ¢ is dense in H, and since A4 is closable, we have A =1. Therefore
(ME+47H70 = AME+47H71 = (Ab+a7H)71

This proves the assertion.

We are now going to apply the following recent result of Thaheem and
Vanheeswijck:

LemMMA 2.5 [9, Theorem 3.8]. Let a, and B, be two strongly continuous one
parameter groups of automorphisms on a von Neumann algebra M, such that

o+a_, = p,+p_, teR

then there exists a central projection p in M, such that o=, on pM,
and a,=f_, on (1—p)M.

The proof of the above result relies on Arvesons theory on spectral
subspaces, and is rather technical. However, we will only need Lemma 2.5 in
the case, when «, and 8, commute, and under this extra assumption, a much
simpler proof can be found in Thaheems Thesis [8].

ProposITION 2.6. Let M be a o-finite factor. Let &, n be two cyclic and
separating vectors in P* and let @,y be the corresponding vector functionals on
M. The following conditions are equivalent

1) Q:=Q, and ¢ commutes with ,

2) AE+A7"=A40+47", teR,

3) d;=4, or A;=4,",

4) n=4i¢ for a L € R, or M is finite and n=AE"" fora A eR,.

Proor. 1) = 2) By Lemma 2.4, 1) implies that A§+Ag%=A§+A,,“%. Hence
f(log 4)=f(log 4,) where f (x)=cosh (3x). Since any even function h on R can
be written in the form h=gof for some function g on [1, oo, it follows that

h(logd,) = h(log4,)

for any even Borel function h on R. Putting h(x)=cos (xt) we get 2).
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2) = 1) By the proof of Proposition 1.1(3) we have

(Ai+47H

J A cosh (2nt)~ ' dt

- 00

1 ‘[ (4% + 47 ") cosh (2me)~ " dt .

- 00

Hence 2) implies that (4%+4;%) ™' = (4% + 4,74~ '. Thus by Proposition 1.1(2)
it follows that Q% =07, or equivalently Q.=Q,. Moreover

I45E—¢1? = (2—4y=4,"¢18)
= (- 484719 =0, teR.
Hence ¢ is 4)-invariant, which implies that ¢ =, is o’-invariant, i.e. ¢ and ¥
commute.

2) = 3) Assume 2) is valid. By the proof of 2) implies 1) we know that ¢ is 4;-
invariant. Hence for x € M:

(0¥ (x)+ 0¥ (x))¢

AixE+A4,"x¢

IxE+4;7"x¢ = (67(x)+0%,(x)E .
Since ¢ is separating for M, it follows that

' (X)+ 0% (x) = af(x)+0%,(x), xeM.

Using that M is a factor, we get by Lemma 2.5 that ¢¥ =¢?,t € R, or ¥ =0¢?,,
t € R. Since for x € M:

Aix¢ = o?(x)E  and  AfxE = o¥(x)
it follows that A¥ =4}, t € R or A¥=4,",t € R. This proves 3). Since 3) = 2) is
trivial we have now proved (1) <> (2) <= (3). Finally (3) <= (4) is contained in
[6, Lemma 3.3 and Lemma 3.4].
To finish the proof of Theorem 2.1 we need the following lemma.
LemMMA 2.7. Let M be a factor not of type 111,. If ¢ and  are two positive,

normal faithful functionals on M, such that M ,= M,, then ¢ and y commute.

Proor. The proof relies on the fact, that for factors not of type III,,
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M, N M < M, for any positive, normal faithful functional ¢ on M. Indeed, if M
is a factor of type III,, 4 € [0, 1[ this is stated in [1, Theorem 4.2.1(a) and
Theorem 5.2.1(a)]. If M is semifinite we may write ¢ =1(h-), where 7 is a
normal, faithful, semifinite trace on M, and h is a positive operator affiliated
with M. Thus

M,NMc{hyNM=M,.

It follows now as in the proof of [ 1, Theorem 4.2.1(b)] that M < M,, implies
=(k-), where k is a positive selfadjoint operator affiliated with the center of
M. In particular ¢ and y commute.

ReMARK. Lemma 2.7 fails of M is of type III;. In fact, in [4] there is an
example of a III,-factor with a normal state ¢ such that M ,=C-1.

END OF PROOF OF THEOREM 2.1. If Q,=Q, we get by Corollary 1.4 that M,,
=M, where ¢ =, and ¢ =w,. Thus when M is a factor not of type III;, we
get by Lemma 2.7 that ¢ and y commute. Theorem 2.1 follows now from
proposition 2.6 (1) < (4).

CONCLUDING REMARKS. We are convinced that Theorem 2.1 is also valid in
the III;-factor case. What remains to be prove is, that Q.=Q, implies that w,
and ®, commute. At present we have been able to show this if M admits a
normal state ¢, (possibly different from both ®, and w,), such that
M, "\McM,. This is the case for IlI,-factors coming from the group-
measure space construction, and in fact for all known examples of factors of
type 111,.
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