GEOMETRIC ASPECTS OF THE TOMITA-TAKESAKI THEORY II

UFFE HAAGERUP and CHRISTIAN F. SKAU

Introduction.

In the present paper we will study some problems, which grew out of the second author's work reported in the paper [6]. As in [6] we consider a σ -finite von Neumann algebra M on standard form (M, H, J, P^{\natural}) in the sense of [3]. To each cyclic and separating vector $\xi \in P$ are associated two cones

$$P_z^* = (M_+ \xi)^-$$
 and $P_z^b = (M'_+ \xi)^-$.

Since $P_{\xi}^{\flat} = J(P_{\xi}^{\sharp})$, P_{ξ}^{\flat} is the reflected image of P_{ξ}^{\sharp} with respect to the "selfadjoint" part H^{\natural} of the Hilbert Space H,

$$H^{\mathfrak{p}} = \{ \zeta \in H \mid J\zeta = \zeta \} = P^{\mathfrak{p}} - P^{\mathfrak{p}}.$$

We shall study the orthogonal projected image Q_{ξ} of P_{ξ}^{\sharp} onto the real subspace H^{\natural} :

$$Q_{\xi} = \frac{1}{2}(1+J)P_{\xi}^{*} = \frac{1}{2}(1+J)P_{\xi}^{\flat}$$
.

It turns out that Q_{ξ} is a closed cone in H^{\natural} , and that $P^{\natural} \subseteq Q_{\xi}$ for any choice of ξ . Moreover $Q_{\xi} = P^{\natural}$ if and only if ξ is a trace vector for M. Our main result is: If M is a factor not a type III_1 , and $\xi, \eta \in P^{\natural}$ are cyclic and separating for M, then $Q_{\xi} = Q_{\eta}$ if and only if

- 1) $\eta = \lambda \xi$, $\lambda \in \mathbb{R}_+$ or
- 2) M is finite, and $\eta = \lambda \xi^{-1}$ for a $\lambda \in \mathbb{R}_+$.

Case 2) should be understood in the following way: When M is a finite factor, we may identify H with $L^2(M,\tau)$ and P^{\natural} with $L^2(M,\tau)_+$, where τ is the normalized trace on M. Doing this ξ, η become positive, injective, selfadjoint operators affiliated with M, and the equation $\eta = \lambda \xi^{-1}$ makes sense.

Using [6, § 3] the above statement may also be expressed:

If M is a factor not of type III₁, and $\xi, \eta \in P^{\sharp}$ are cyclic and separating for M then $Q_{\xi} = Q_{\eta}$ if and only if 1) $P_{\xi}^{\sharp} = P_{\eta}^{\sharp}$ or 2) $P_{\xi}^{\sharp} = P_{\eta}^{\flat}$.

Received May 21, 1980.

A crucial step in the proof is to show, that $Q_{\xi} = Q_{\eta}$ implies that the centralizers M_{φ} and M_{ψ} for the vector functionals $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$ are equal. For factors of type III₁, the centralizer M_{φ} gives little information about the functional φ , and that is the reason why our proof fails in this case. However, we are strongly convinced that the above statement is also valid for factors of type III₁.

1. The cone Q_{ε} .

Let (M, H, P^{\natural}) be a σ -finite von Neumann algebra on standard form. For each cyclic and separating vector $\xi \in P$, the natural cone can be recovered from ξ , by the formula

$$P^{\natural} = (\Delta_{\xi}^{\frac{1}{4}} M_{+} \xi)^{-},$$

where Δ_{ξ} is the modular operator associated with ξ . The cone P^{\natural} induces a partial ordering \leq of the real Hilbert space $H^{\natural} = \{\zeta \mid J\zeta = \zeta\}$. When $\xi_1, \xi_2 \in H^{\natural}$ and $\xi_1 \leq \xi_2$, we let $[\xi_1, \xi_2]$ denote the set

$$[\xi_1, \xi_2] = \{ \eta \in H^{\natural} \mid \xi_1 \leq \eta \leq \xi_2 \}.$$

Since J coincides with the unitary involution J_{ξ} obtained from ξ , we have

$$J\Delta_{\xi}^{\frac{1}{2}}a\xi = a^{*}\xi, \quad a \in M.$$

Consider now the cone $Q_{\xi} = \frac{1}{2}(1+J)P_{\xi}^{\sharp}$. Clearly $Q_{\xi} \equiv H^{\natural}$. Since $\Delta_{\xi}^{\frac{1}{\xi}}$ and J coincide on $P_{\xi}^{\sharp} = \{a\xi \mid a \in M_{+}\}^{-}$, the map $\frac{1}{2}(1+J)$ of P_{ξ}^{\sharp} onto Q_{ξ} , is bounded and has bounded inverse. Since P_{ξ}^{\sharp} is closed, it follows that Q_{ξ} is complete, and hence closed in H^{\natural} . Using that $J\xi = \xi$, one has $(1+J)a\xi = (a+JaJ)\xi$, $a \in M_{+}$. Therefore

(*)
$$Q_{\xi} = \{(a+JaJ)\xi \mid a \in M_{+}\}^{-}.$$

For any cone K in H^{\natural} we put $K^{\circ} = \{ \eta \in H^{\natural} \mid (\eta \mid \xi) \geq 0, \forall \xi \in K \}$. From the Hahn-Banach Theorem one gets easily $K^{\circ \circ} = \overline{K}$. By (*) it follows that for $\eta \in H^{\natural}$

$$\begin{split} \eta \in Q_{\xi}^{\circ} & \Leftrightarrow \left((a+JaJ)\xi \,|\, \eta \right) \, \geqq \, 0, \quad \, \forall \, a \in M_{+} \\ & \Leftrightarrow \left(a\xi \,|\, \eta \right) + (\eta \,|\, a\xi) \, \geqq \, 0, \quad \, \forall \, a \in M_{+} \\ & \Leftrightarrow \, \omega_{\xi\eta} + \omega_{\eta\xi} \, \geqq \, 0 \; . \end{split}$$

Hence we have the following characterization of Q_{ε}° :

$$Q_{\xi}^{\circ} = \{ \eta \in H \mid \omega_{\xi_{\eta}} + \omega_{\eta \xi} \geq 0 \}.$$

Proposition 1.1.

- 1) Q_{ξ} is the closed cone generated by $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})[0, \xi]$. 2) Q_{ξ}° is the closure of $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}P^{\natural}$.
- 3) $Q_{\varepsilon}^{\circ} \subseteq P^{\natural} \subseteq Q_{\varepsilon}$.

PROOF. 1) The map $a \to \Delta_{\xi}^{\frac{1}{2}}(a\xi)$ is a bijection of $\{a \in M_+ \mid 0 \le a \le 1\}$ onto [0, ξ] (cf. [2, \S 3]). In particular [0, ξ] is contained in $D(\Delta_{\xi}^{-1})$, and since $J\Delta_{\xi}^{\frac{1}{2}}J$ $=\Delta_{\xi}^{-\frac{1}{4}}$ we have also $[0,\xi]\subseteq D(\Delta_{\xi}^{+\frac{1}{4}})$.

For $a \in M_{\perp}$:

$$(a+JaJ)\xi = (1+\Delta^{\frac{1}{2}})a\xi = (\Delta^{\frac{1}{2}}+\Delta^{-\frac{1}{4}})\Delta^{\frac{1}{2}}a\xi$$
.

Hence

$$\{(a+JaJ)\xi \mid a \in M_+\} = \bigcup_{\lambda>0} \lambda(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})[0,\xi].$$

This proves 1).

2) Note first that $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}$ is bounded and everywhere defined. Let $\eta \in (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} P^{\natural}$. We shall prove that $\eta \in Q_{\xi}^{\circ}$, i.e. that $(\eta \mid \zeta) \ge 0$ for all $\zeta \in Q_{\xi}$. By 1) it is enough to consider $\zeta \in (\Delta_{\xi}^{\frac{1}{2}} + \Delta_{\xi}^{-\frac{1}{2}})[0, \xi]$. However, in this case

$$(\eta \mid \zeta) = ((\Delta_{\varepsilon}^{\frac{1}{4}} + \Delta_{\varepsilon}^{-\frac{1}{4}})\eta \mid (\Delta_{\varepsilon}^{\frac{1}{4}} + \Delta_{\varepsilon}^{-\frac{1}{4}})^{-1}\zeta) \geq 0,$$

because both sides in the last inner product belong to the selfdual cone P^{\natural} . Hence $((\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}P^{\natural})^{-} \subseteq Q_{\xi}^{\circ}$. To prove the converse inclusion, put K = $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}P^{\natural}$ and assume $\eta \in K^{\circ}$.

For any $\zeta \in P^{\natural}$:

$$\left((\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} \eta \, | \, \zeta \right) \, = \, \left(\eta \, | \, (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} \zeta \right) \, \geqq \, 0 \; .$$

Hence $(\Delta_{\xi}^{\frac{1}{2}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} \eta \in (P^{\natural})^{\circ} = P^{\natural}$. Since $\Delta_{\xi}^{-\frac{1}{4}}(P_{\xi}^{\flat}) \subseteq P^{\natural}$ one has for every $\zeta \in P^{\flat}$, that

$$((1 + \Delta_{\xi}^{\frac{1}{2}})^{-1}\eta \,|\, \zeta) \,=\, ((\Delta_{\xi}^{\frac{1}{2}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}\eta \,|\, \Delta_{\xi}^{-\frac{1}{4}}\zeta) \,\geq\, 0 \;.$$

Thus by [7, Lemma 15.2], $(1 + \Delta_{\xi}^{\frac{1}{2}})^{-1} \eta \in P_{\xi}^{\sharp}$ or equivalently $\eta \in (1 + \Delta_{\xi}^{\frac{1}{2}}) P_{\xi}^{\sharp} = Q_{\xi}$. This proves that $K^{\circ} \subseteq Q_{\varepsilon}$, and hence $Q_{\varepsilon}^{\circ} \subseteq K^{\circ \circ} = \overline{K}$.

3) For any $\alpha > 0$ the function $f(x) = 1/\cosh(\alpha x)$ is positive definite. In fact

$$\frac{1}{\cosh{(\alpha x)}} = \frac{1}{2\alpha} \int_{-\infty}^{\infty} e^{ixt} \cosh{\left(\frac{\pi t}{2\alpha}\right)^{-1}} dt.$$

By spectral theory we can replace x by the selfadjoint operator $\log \Delta_z$. Putting $\alpha = \frac{1}{4}$ we get

$$(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} = \int_{-\infty}^{\infty} \Delta_{\xi}^{it} \cosh(2\pi t)^{-1} dt$$
.

As $\Delta_{\xi}^{it}P^{\sharp} = P^{\sharp}$, $t \in \mathbb{R}$ it follows that $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}P^{\sharp} \subseteq P^{\sharp}$. Hence by 2) $Q_{\xi}^{\circ} \subseteq P^{\sharp}$. Taking the dual cones we get $P^{\sharp} \subseteq Q_{\xi}$.

For each projection $p \in M$, $F_p = p(JpJ)P^{\natural}$ is a closed face in P^{\natural} . Moreover each closed face in P^{\natural} is of the form F_p (cf. [2, Theorem 4.2]). Put $\varphi = \omega_{\xi}$ (on M). Then for any projection p in M and $t \in \mathbb{R}$:

$$\begin{split} F_{\sigma_{\xi}^{\varphi}(p)} &= \varDelta_{\xi}^{it} p \varDelta_{\xi}^{-it} J \varDelta_{\xi}^{it} p \varDelta_{\xi}^{-it} J P^{\natural} &= \varDelta_{\xi}^{it} p (J p J) P^{\natural} \\ &= \varDelta_{\xi}^{it} F_{p} \,. \end{split}$$

In particular the face F_p is Δ_{ξ}^{it} -invariant if and only if p belongs to the centralizer M_{ω} of φ .

PROPOSITION 1.2. Let F be a closed face in P^{\natural} . The following conditions are equivalent:

- 1) F is $\Delta_{\varepsilon}^{it}$ -invariant.
- 2) There exists a vector $\eta \in Q_{\xi}^{\circ}$, such that $F = \{ \xi \in P^{\sharp} \mid (\xi \mid \eta) = 0 \}$.

PROOF. 1) \Rightarrow 2): Let $p \in M$ be the σ_t^{φ} -invariant projection in M, for which $F = F_p$. Put $\eta = (1-p)J(1-p)J\xi$. Clearly $\Delta_{\xi}^{it}\eta = \eta$, $t \in \mathbb{R}$. Thus $\eta = 2(\Delta_{\xi}^{\frac{1}{\xi}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}\eta$, which proves that $\eta \in (\Delta_{\xi}^{\frac{1}{\xi}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}P^{\natural} \subseteq Q_{\xi}^{\circ}$. Since ξ is cyclic and separating for M, the face in P^{\natural} generated by ξ is dense in P^{\natural} . Therefore the face in P^{\natural} generated by $\eta = (1-p)J(1-p)J\xi$ is dense in $F_{1-p} = (1-p)J(1-p)JP^{\natural}$. Hence

$$\{\zeta \in P^{\natural} \mid (\zeta \mid \eta) = 0\} = \{\zeta \in P^{\natural} \mid (\zeta \mid \eta') = 0, \ \forall \ \eta' \in F_{1-p}\} = F_p = F$$
(cf. [2, § 4]).

2) \Rightarrow 1): Let $\eta \in Q_{\xi}^{\circ}$, and put $F = \{ \zeta \in P^{\mathfrak{q}} \mid (\zeta \mid \eta) = 0 \}$. We shall prove that F is Δ_{ξ}^{i} -invariant. Consider the operator

$$T = 1 + 2(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}$$

Clearly $T(P^{\natural}) \subseteq P^{\natural}$. Since $1 \subseteq T \subseteq 2$, $T(P^{\natural})$ is a closed subset of P^{\natural} . We will show that $Q_{\xi}^{\circ} \subseteq T(P^{\natural})$. By Proposition 1.1, (2) it is enough to show that every $\zeta \in Q_{\xi}^{\circ}$ of the form $\zeta = (A_{\xi}^{\frac{1}{2}} + A_{\xi}^{-\frac{1}{4}})^{-1} \zeta'$, $\zeta' \in P^{\natural}$, is in $T(P^{\natural})$.

However,

$$T^{-1}\zeta = (1 + 2(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1})^{-1}(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}\zeta',$$

= $(2 + \Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}\zeta' = (\Delta_{\xi}^{\frac{1}{8}} + \Delta_{\xi}^{-\frac{1}{8}})^{-2}\zeta'.$

Since $1/\cosh\left(\frac{1}{8}x\right)$ is a positive definite function on \mathbb{R} , we conclude as in the proof of Proposition 1.1 (3), that $(\Delta_{\xi}^{\frac{1}{8}} + \Delta_{\xi}^{-\frac{1}{8}})^{-1}P^{\natural} \subseteq P^{\natural}$. Therefore $T^{-1}\zeta \in P^{\natural}$, or $\zeta \in T(P^{\natural})$. Hence we have proved that $Q_{\zeta}^{\circ} \subseteq T(P^{\natural})$. In particular $\eta \in T(P^{\natural})$. Put now $\eta' = T^{-1}\eta \in P^{\natural}$. Since

$$T = 1 + 2(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} = 1 + 2 \int_{-\infty}^{\infty} \Delta_{\xi}^{it} \frac{dt}{\cosh(2\pi t)},$$

we get that for any $\zeta \in F$:

$$(\zeta \mid \eta') + 2 \int_{-\infty}^{\infty} (\zeta \mid \Delta_{\xi}^{it} \eta') \frac{dt}{\cosh(2\pi t)} = (\zeta \mid \eta) = 0.$$

However $(\zeta \mid \Delta_{\xi}^{it} \eta') \ge 0$, because $\Delta_{\xi}^{it} \eta' \in P^{\natural}$. Therefore $(\zeta \mid \Delta_{\xi}^{it} \eta') = 0$, $t \in \mathbb{R}$. Let $s \in \mathbb{R}$. Then

$$(\Delta_{\xi}^{is\zeta}|\eta) = (\Delta_{\xi}^{is\zeta}|\eta') + 2\int_{-\infty}^{\infty} (\Delta_{\xi}^{is\zeta}|\Delta_{\xi}^{it}\eta') \frac{dt}{\cosh 2\pi t}$$
$$= (\zeta|\Delta_{\xi}^{-is}\eta') + 2\int_{-\infty}^{\infty} (\zeta|\Delta_{\xi}^{i(t-s)}\eta') \frac{dt}{\cosh (2\pi t)}$$
$$= 0$$

Hence $\zeta \in F \Rightarrow \Delta_{\xi}^{is} \zeta \in F$ for all $s \in \mathbb{R}$, i.e. F is Δ_{ξ}^{is} -invariant.

COROLLARY 1.3. If $Q_{\varepsilon} = P^{\natural}$, then $\varphi = \omega_{\varepsilon}$ is a trace on M.

PROOF. Any closed face F in P^{\natural} is of the form

$$F = \{ \zeta \in P^{\mathfrak{p}} \mid (\zeta \mid \eta) = 0 \}$$

for some $\eta \in P^{\natural}$. Indeed if $F = F_p$ one can use $\eta = (1 - p)J(1 - p)J\xi$ (cf. proof of 1) \Rightarrow 2) in Proposition 1.2). Hence if $Q_{\xi} = P^{\natural}$, we get by Proposition 1.2, that every face in P^{\natural} is Δ_{ξ}^{it} -invariant, or equivalently, every projection in M is σ_{ξ}^{ρ} -invariant. Hence σ_{ξ}^{ρ} is the identity on M.

COROLLARY 1.4. Let ξ and η be two cyclic and separating vectors in P^{\natural} . If $Q_{\xi} = Q_{\eta}$ the centralizers of $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$ coincide.

PROOF. By Proposition 1.2, $Q_{\xi} = Q_{\eta}$ implies that a closed face F in P^{\natural} is Δ_{ξ}^{it} -invariant iff it is Δ_{η}^{it} -invariant. Hence the centralizers M_{φ} and M_{ψ} for ω_{ξ} and ω_{η} must have the same projections, i.e. $M_{\varphi} = M_{\psi}$.

2. The equation $Q_{\varepsilon} = Q_n$.

Consider a σ -finite factor M on standard form, and let $\xi, \eta \in P^{\natural}$ be cyclic and separating vectors for M. In [6, Lemma 3.3 and Lemma 3.4] it is proved that

- 1) $P_{\eta}^* = P_{\xi}^* \Leftrightarrow \eta = \lambda \xi \text{ for a } \lambda \in \mathbb{R}_+,$
- 2) $P_n^{\sharp} = P_n^{\flat} \Leftrightarrow M$ is finite, and $\eta = \lambda \xi^{-1}$ for a $\lambda \in \mathbb{R}_+$.

(The interpretation of the equation $\eta = \lambda \xi^{-1}$ was clarified in the introduction.)

Since the projected images of P_{ξ}^* and P_{ξ}^{\flat} on H^{\natural} both are equal to Q_{ξ} , the "ifpart" of the following Theorem is immediate:

THEOREM 2.1. Let M be a factor not of type III₁, and let $\xi, \eta \in P^{\sharp}$ be cyclic and separating vectors for M. Then $Q_{\varepsilon} = Q_{\eta}$ if and only if, either

1)
$$\eta = \lambda \xi$$
 for $a \lambda \in \mathbb{R}_+$,

or

2) M is finite, and $\eta = \lambda \xi^{-1}$ for a $\lambda \in \mathbb{R}_+$.

To prove the "only if-part" we need a series of lemmas. In the following M denotes (unless specified) an arbitrary σ -finite von Neumann algebra.

Lemma 2.2. Let $\xi, \eta \in P^{\natural}$ be cyclic and separating vectors for M. If $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$ commute then

- 1) $\Delta_{\xi}^{it} \eta = \eta$ and $\Delta_{\eta}^{it} \xi = \xi$, $t \in \mathbb{R}$
- 2) $\Delta_{\varepsilon}^{is} \Delta_{n}^{it} = \Delta_{n}^{is} \Delta_{\varepsilon}^{it}$, $s, t \in \mathbb{R}$.

PROOF. 1) By definition φ and ψ commute iff ψ is σ_t^{φ} -invariant, or equivalently, φ is σ_t^{ψ} -invariant (cf. [5]). Hence, when φ and ψ commute, η and $\Delta_{\xi}^{it}\eta$ induce the same vector-functional on M. As both vectors are in P^{\natural} it follows that $\Delta_{\xi}^{it}\eta = \eta$, $t \in \mathbb{R}$ [2, Theorem 2.7 (f)]. Similarly $\Delta_{\eta}^{it}\xi = \xi$, $t \in \mathbb{R}$. 2) When φ and ψ commute, σ^{φ} and σ^{ψ} are commuting automorphism groups. Since by 1) ξ is both Δ_{ξ}^{is} - and Δ_{η}^{it} -invariant, we have for $x \in M$, that

$$\varDelta_{\xi}^{is}\varDelta_{\eta}^{it}x\xi \; = \; \sigma_{s}^{\varphi}\circ\sigma_{t}^{\psi}(x)\xi \; = \; \sigma_{t}^{\psi}\circ\sigma_{s}^{\varphi}(x)\xi \; = \; \varDelta_{\eta}^{it}\varDelta_{\xi}^{is}x\xi \; .$$

This proves 2), because ξ is cyclic for M.

LEMMA 2.3. Let $\xi, \eta \in P^{\natural}$ be cyclic and separating for M, such that $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$ commute. If $Q_{\xi} = Q_{\eta}$ then

$$(\varDelta_{\eta}^{\frac{1}{4}} + \varDelta_{\eta}^{-\frac{1}{4}})^{-1} (\varDelta_{\xi}^{\frac{1}{4}} + \varDelta_{\xi}^{-\frac{1}{4}})[0, \xi] \; = \; [0, \xi] \; .$$

PROOF. By proposition 1.1 (1), Q_{ξ} is the closure of $\bigcup_{\lambda>0} \lambda (\Delta_{\xi}^{\frac{1}{2}} + \Delta_{\xi}^{-\frac{1}{2}})[0, \xi] .$

Therefore

$$(4) \qquad (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} Q_{\xi} \subseteq \left(\bigcup_{\lambda > 0} \lambda[0, \xi]\right)^{-} \subseteq P^{\natural}.$$

Similarly

$$(\Delta_n^{\frac{1}{4}} + \Delta_n^{-\frac{1}{4}})^{-1} Q_n \subseteq P^{\natural}.$$

Thus, when $Q_{\xi} = Q_n$

$$(2^{\frac{1}{\eta}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})[0, \xi] \subseteq (\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} Q_{\xi} \subseteq P^{\sharp}.$$

Since ξ is both Δ_{ξ}^{it} and Δ_{η}^{it} -invariant by Lemma 2.2, we have

$$(2^{\frac{1}{\eta}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} (\Delta_{\xi}^{\frac{1}{\xi}} + \Delta_{\xi}^{-\frac{1}{4}}) \xi = (\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} 2\xi = \xi.$$

Put now

$$A = (\Delta_n^{\frac{1}{4}} + \Delta_n^{-\frac{1}{4}})^{-1} (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}}).$$

From (**) and (***) it follows, that if $\zeta \in [0, \xi]$, then $A\zeta \in P^{\natural}$ and $\xi - A\zeta = A(\xi - \zeta) \in P^{\natural}$. Hence $A([0, \xi]) \subseteq [0, \xi]$. We are going to show, that A maps $[0, \xi]$ onto $[0, \xi]$. Let $\zeta \in [0, \xi]$. Put

$$f_n(x) = \exp\left(-\frac{x^2}{2n^2}\right), \quad n \in \mathbb{N},$$

and put

$$\zeta_n = f_n(\log \Delta_n)\zeta.$$

Then clearly $\|\zeta_n - \zeta\| \to 0$ for $n \to \infty$. Moreover by spectral theory one gets

$$\zeta_n \in D(\Delta_\eta^{\frac{1}{4}}) \cap D(\Delta_\eta^{-\frac{1}{4}}), \quad n \in \mathbb{N} .$$

Since

$$f_n(\log \Delta_{\eta}) = \frac{n}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{n^2 t^2}{2}\right) \Delta_{\eta}^{it} dt ,$$

 $f_n(\log \Delta_\eta)$ maps P^{\natural} into itself. Since $\Delta_\eta \xi = \xi$, we have $f_n(\log \Delta_\eta) \xi = f_n(0) \xi = \xi$. Therefore both $\zeta_n = f_n(\log \Delta_\eta) \xi$ and $\xi - \zeta_n = f_n(\log \Delta_\eta) (\zeta - \xi)$ belong to P^{\natural} that is $\zeta_n \in [0, \xi]$.

For $\zeta' \in P^{\natural}$ we have

$$\left(\left(\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}} \right) \zeta_{n} | \left(\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}} \right)^{-1} \zeta' \right) = (\zeta_{n} | \zeta') \geq 0.$$

Thus by lemma 1.1 (2)

$$(\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})\zeta_{n} \in (Q_{\eta}^{\circ})^{\circ} = Q_{\eta} = Q_{\xi}.$$

Using (*) we obtain

$$A^{-1}\zeta_n = (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}(\Delta_n^{\frac{1}{4}} + \Delta_n^{-\frac{1}{4}})\zeta_n \in P^{\sharp}.$$

The same arguments applied to $\xi - \zeta_n$ gives

$$\xi - A^{-1}\zeta_n = A^{-1}(\xi - \zeta_n) \in P^{\natural}.$$

Hence $A^{-1}\zeta_n \in [0, \xi]$, or $\zeta_n \in A([0, \xi])$, $n \in \mathbb{N}$. This shows that $A([0, \xi])$ is norm dense in $[0, \xi]$. However, by the proof of Proposition 1.1 (1)

$$(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})[0, \xi] = \{(a + JaJ)\xi \mid a \in M, 0 \le a \le 1\}.$$

Therefore this set is weakly compact in H. This implies that

$$A([0,\xi]) = (\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})[0,\xi]$$

is also weakly compact in H. In particular $A([0, \xi])$ is normclosed. Thus $A([0, \xi]) = [0, \xi]$.

Lemma 2.4. Let $\xi, \eta \in P^{\natural}$ be cyclic and separating vectors for M such that $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$ commute. If $Q_{\xi} = Q_{\eta}$ then $\Delta_{\xi}^{\frac{1}{\xi}} + \Delta_{\xi}^{-\frac{1}{4}} = \Delta_{\eta}^{\frac{1}{\eta}} + \Delta_{\eta}^{-\frac{1}{4}}$.

PROOF. Following [2, §1] a positive hermitian form s on M is called selfpolar, if the set of functionals $s(\cdot, y)$, $y \in M_+$, is a face in M_+^* . By [2, Theorem 1.3], there is only one selfpolar form s_{φ} on M, such that $s_{\varphi}(x, 1) = \varphi(x)$, $x \in M$, namely

$$s_{n}(x, y) = (\Delta^{\frac{1}{4}} x \xi | \Delta^{\frac{1}{4}} y \xi).$$

Put now $A = (\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1} (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})$ as in the preceding lemma. By lemma 2.2 (2) the spectral projections of Δ_{ξ} and Δ_{η} commute. Therefore A is closable and its closure is again a positive selfadjoint operator. Put now

$$s'(x,y) = (\Delta^{\frac{1}{2}} x \xi \mid A \Delta^{\frac{1}{2}} y \xi), \quad x,y \in M.$$

Then s' is well-defined, because $M\xi \subseteq D(\Delta_{\xi}^{\frac{1}{2}})$, and s' is a positive hermitian form on M. Using

$$\Delta_{\xi}^{\frac{1}{4}}M_{+}\xi = \bigcup_{\lambda>0} \lambda[0,\xi] ,$$

we get by lemma 2.3, that also

$$A\Delta_{\xi}^{\frac{1}{4}}M_{+}\xi = \bigcup_{\lambda>0} [0,\xi].$$

Thus the set of functionals $x \to s_{\varphi}(x, y)$, $y \in M_+$ is the same as the set of functionals $x \to s'(x, y)$, $y \in M_+$. However, the first of these sets is a face in

 M_{+}^{*} . Therefore the set of functionals s'(.,y), $y \in M_{+}$, is also a face in M_{+}^{*} , that is s' is selfpolar. Since $A\xi = \xi$, we have

$$s'(x,1) = (\Delta^{\frac{1}{2}} x \xi | \xi) = (x \xi | \xi) = \varphi(x), \quad x \in M.$$

Therefore $s' = s_{\infty}$. Thus we have proved that

$$(\Delta^{\frac{1}{2}}_{\xi}x\xi \mid A\Delta^{\frac{1}{2}}_{\xi}y\xi) = (\Delta^{\frac{1}{2}}_{\xi}x\xi \mid \Delta^{\frac{1}{2}}_{\xi}y\xi), \quad x, y \in M.$$

Since $\Delta_{\xi}^{\frac{1}{2}}M\xi$ is dense in H, and since A is closable, we have $\bar{A}=1$. Therefore

$$(\Delta_n^{\frac{1}{4}} + \Delta_n^{-\frac{1}{4}})^{-1} = A(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} = (\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1}.$$

This proves the assertion.

We are now going to apply the following recent result of Thaheem and Vanheeswijck:

LEMMA 2.5 [9, Theorem 3.8]. Let α_t and β_t be two strongly continuous one parameter groups of automorphisms on a von Neumann algebra M, such that

$$\alpha_t + \alpha_{-t} = \beta_t + \beta_{-t}, \quad t \in \mathbb{R}$$

then there exists a central projection p in M, such that $\alpha_t = \beta_t$ on pM, and $\alpha_t = \beta_{-t}$ on (1-p)M.

The proof of the above result relies on Arvesons theory on spectral subspaces, and is rather technical. However, we will only need Lemma 2.5 in the case, when α_t and β_t commute, and under this extra assumption, a much simpler proof can be found in Thaheems Thesis [8].

Proposition 2.6. Let M be a σ -finite factor. Let ξ, η be two cyclic and separating vectors in P^{a} and let φ, ψ be the corresponding vector functionals on M. The following conditions are equivalent

- 1) $Q_{\xi} = Q_n$ and φ commutes with ψ ,
- 2) $\Delta_{\xi}^{it} + \Delta_{\xi}^{-it} = \Delta_{\eta}^{it} + \Delta_{\eta}^{-it}, t \in \mathbb{R},$ 3) $\Delta_{\xi} = \Delta_{\eta} \text{ or } \Delta_{\xi} = \Delta_{\eta}^{-1},$
- 4) $\eta = \lambda \xi$ for a $\lambda \in \mathbb{R}_+$, or M is finite and $\eta = \lambda \xi^{-1}$ for a $\lambda \in \mathbb{R}_+$.

PROOF. 1) \Rightarrow 2) By Lemma 2.4, 1) implies that $\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}} = \Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}}$. Hence $f(\log \Delta_{\varepsilon}) = f(\log \Delta_n)$ where $f(x) = \cosh(\frac{1}{4}x)$. Since any even function h on R can be written in the form $h = g \circ f$ for some function g on $[1, \infty)$, it follows that

$$h(\log \Delta_{\xi}) = h(\log \Delta_{\eta})$$

for any even Borel function h on R. Putting $h(x) = \cos(xt)$ we get 2).

2) \Rightarrow 1) By the proof of Proposition 1.1(3) we have

$$(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} = \int_{-\infty}^{\infty} \Delta_{\xi}^{it} \cosh(2\pi t)^{-1} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} (\Delta_{\xi}^{it} + \Delta_{\xi}^{-it}) \cosh(2\pi t)^{-1} dt .$$

Hence 2) implies that $(\Delta_{\xi}^{\frac{1}{4}} + \Delta_{\xi}^{-\frac{1}{4}})^{-1} = (\Delta_{\eta}^{\frac{1}{4}} + \Delta_{\eta}^{-\frac{1}{4}})^{-1}$. Thus by Proposition 1.1(2) it follows that $Q_{\xi}^{\circ} = Q_{\eta}^{\circ}$, or equivalently $Q_{\xi} = Q_{\eta}$. Moreover

$$\|\Delta_{\eta}^{it}\xi - \xi\|^{2} = ((2 - \Delta_{\eta}^{it} - \Delta_{\eta}^{-it})\xi | \xi)$$

$$= ((2 - \Delta_{\xi}^{it} - \Delta_{\xi}^{-it})\xi | \xi) = 0, \quad t \in \mathbb{R}.$$

Hence ξ is Δ_{η}^{it} -invariant, which implies that $\varphi = \omega_{\xi}$ is σ_{t}^{ψ} -invariant, i.e. φ and ψ commute.

2) \Rightarrow 3) Assume 2) is valid. By the proof of 2) implies 1) we know that ξ is Δ_{η}^{it} -invariant. Hence for $x \in M$:

$$(\sigma_t^{\psi}(x) + \sigma_{-t}^{\psi}(x))\xi = \Delta_{\eta}^{it}x\xi + \Delta_{\eta}^{-it}x\xi$$
$$= \Delta_{\varepsilon}^{it}x\xi + \Delta_{\varepsilon}^{-it}x\xi = (\sigma_{\varepsilon}^{\varphi}(x) + \sigma_{-t}^{\varphi}(x))\xi.$$

Since ξ is separating for M, it follows that

$$\sigma_t^{\psi}(x) + \sigma_{-t}^{\psi}(x) = \sigma_t^{\varphi}(x) + \sigma_{-t}^{\varphi}(x), \quad x \in M.$$

Using that M is a factor, we get by Lemma 2.5 that $\sigma_t^{\psi} = \sigma_t^{\varphi}$, $t \in \mathbb{R}$, or $\sigma_t^{\psi} = \sigma_{-t}^{\varphi}$, $t \in \mathbb{R}$. Since for $x \in M$:

$$\Delta_{\xi}^{it} x \xi = \sigma_{t}^{\varphi}(x) \xi$$
 and $\Delta_{\psi}^{it} x \xi = \sigma_{t}^{\psi}(x) \xi$

it follows that $\Delta_{\xi}^{it} = \Delta_{\eta}^{it}$, $t \in \mathbb{R}$ or $\Delta_{\xi}^{it} = \Delta_{\eta}^{-it}$, $t \in \mathbb{R}$. This proves 3). Since 3) \Rightarrow 2) is trivial we have now proved (1) \Leftrightarrow (2) \Leftrightarrow (3). Finally (3) \Leftrightarrow (4) is contained in [6, Lemma 3.3 and Lemma 3.4].

To finish the proof of Theorem 2.1 we need the following lemma.

LEMMA 2.7. Let M be a factor not of type III_1 . If φ and ψ are two positive, normal faithful functionals on M, such that $M_{\varphi} \subseteq M_{\psi}$, then φ and ψ commute.

Proof. The proof relies on the fact, that for factors not of type III₁,

 $M'_{\varphi} \cap M \subseteq M_{\varphi}$ for any positive, normal faithful functional φ on M. Indeed, if M is a factor of type III_{λ}, $\lambda \in [0,1[$ this is stated in [1, Theorem 4.2.1(a) and Theorem 5.2.1(a)]. If M is semifinite we may write $\varphi = \tau(h \cdot)$, where τ is a normal, faithful, semifinite trace on M, and h is a positive operator affiliated with M_{φ} . Thus

$$M'_{\alpha} \cap M \subseteq \{h\}' \cap M = M_{\alpha}$$
.

It follows now as in the proof of [1, Theorem 4.2.1(b)] that $M_{\varphi} \subseteq M_{\psi}$ implies $\psi = \varphi(k \cdot)$, where k is a positive selfadjoint operator affiliated with the center of M_{φ} . In particular φ and ψ commute.

REMARK. Lemma 2.7 fails of M is of type III₁. In fact, in [4] there is an example of a III₁-factor with a normal state φ such that $M_{\varphi} = C \cdot 1$.

END OF PROOF OF THEOREM 2.1. If $Q_{\xi} = Q_{\eta}$ we get by Corollary 1.4 that $M_{\varphi} = M_{\psi}$, where $\varphi = \omega_{\xi}$ and $\psi = \omega_{\eta}$. Thus when M is a factor not of type III₁, we get by Lemma 2.7 that φ and ψ commute. Theorem 2.1 follows now from proposition 2.6 (1) \Leftrightarrow (4).

Concluding remarks. We are convinced that Theorem 2.1 is also valid in the III₁-factor case. What remains to be prove is, that $Q_{\xi} = Q_{\eta}$ implies that ω_{ξ} and ω_{η} commute. At present we have been able to show this if M admits a normal state φ_0 (possibly different from both ω_{ξ} and ω_{η}), such that $M'_{\varphi_0} \cap M \subseteq M_{\varphi_0}$. This is the case for III₁-factors coming from the group-measure space construction, and in fact for all known examples of factors of type III₁.

REFERENCES

- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133– 252.
- A. Connes, Caracterisation des espace vectoriels sousjacent aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24.4 (1974), 121–155.
- 3. U. Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), 271-283.
- R. H. Hermann and M. Takesaki, States and automorphism groups of operator algebras, Comm. Math. Phys. 19 (1970), 142-160.
- G. K. Pedersen and M. Takesaki, The Radon Nikodym theorem for von Neumann algebras, Acta Math. 130 (1973), 53-87.
- 6. C. F. Skau, Geometric aspects of the Tomita-Takesaki theory I, Preprint, Trondheim, 1979.
- M. Takesaki, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics 128, Springer-Verlag, Berlin - Heidelberg - New York, 1970.

- 8. A. B. Thaheem, One parameter groups of automorphisms of von Neumann algebras, Thesis, Katholieke Universiteit Leuven, 1975.
- 9. A. B. Thaheem and L. Vanheeswijck, A completely positive map associated to a one-parameter group of *automorphisms on a von Neumann algebra, Preprint, Katholieke Universiteit Leuven, 1978.

MATEMATISK INSTITUT ODENSE UNIVERSITET DK-5230 ODENSE M. DENMARK

AND

MATEMATISK INSTITUTT UNIVERSITETET I TRONDHEIM, NLHT 7000 TRONDHEIM NORWAY