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SOME REMARKS ON THE C*-ALGEBRAS
ASSOCIATED WITH CERTAIN
TOPOLOGICAL MARKOV CHAINS

JOACHIM CUNTZ and DAVID E. EVANS

In this note we show how certain algebras @, of the type constructed in [ 5],
and associated to certain topological Markov chains, can be constructed as
crossed products and fixed point algebras of certain natural group actions on
0,, the algebra of the full shift. This helps to clarify their structure somewhat,
including their K-theory. For simplicity, we work in detail with actions of Z,
only, and merely indicate what happens with more general group actions.

Let O, be generated by n isometries S,,...,S, on a Hilbert space H, with
3 S.S¥=1. If ro,r; € N, with ro+r;=n, then by [2], there is an action
a=a(rgry) of Z, on O, given by S; —> S, iZry, and S; » =S, if i>r,.

Fo I
THEOREM Z,x0, =0, where A = .

ry To

Proor. The crossed product acts on H®H, and is generated by

X—XO'XCO d th nitarU-—01
n()_Oa(X)'E"’an eu YY=14 o)’

where n(a(X))=Un(X)U* X €0, If U=R,—R, is the spectral decom-
position of U, then

Z,x0,

C*(n(si)’ Rj : 1§l§na O_S.Jél)

i

C*(n(S)R; : 15isn, 0<j<1)

where n(S)R;%0, Vi, j. Now a(S5;S¥)=S5,S¥, Vi, hence if P; denotes the range
projection S;S¥, then n(P;) commutes with each spectral projection R;. Hence
we can decompose H@H into 2n orthogonal subspaces by

1=y

1
Jj=0

Y. n(P)R;.
iT1
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Then Z, x 0, is generated by certain transitions, given by the operators n(S;)R;,
relative to this decomposition. This enables Z, x ¢, to be expressed as a C*-
algebra of the form @, where B is a 2n x 2n matrix, with entries consisting
entirely of zeros and ones. The admissable transitions can be obtained from

S, ifr,,
S.

1

(Ro—R)n(S)(Ry—R,) = {_ i>r,

so that certainly
Ron(S)R, = Rym(SHR, = Roﬂ(sj)Ro = Rln(sj)Rl =0

for i<ry <j. Moreover, Ryn(S)Ry, Ryn(S)R;, Rom(S;R,, Ryn(S;)R, are all non
zero for isr,<j. Thus we see

Z,x0, = O,
where B'=[b,], gc 1, A=1{1,...,n} x{0,1} is given by
by=0 ifa=(1),p=1(0), Iisr
a= (0, g = (1, i=r
a= (1,0, B =(,0, j>r
a= @1, =301 Jj>r

and b,; =1 otherwise. This matrix can be reduced to an equivalent 2 x 2 matrix

A as follows: First define
A = (ro Vl) - [aij]
ry o

A, = {(l,%’j) léla] é 2’ %-_<~aij} .

and set

Then A’ can be matched with A by

(1,i,1) & (1,0), I<iZr,

(Li2) & (j+r,,0, 15jsr,

(2,i,1) & (4,1), I<igr,

(2,),2) & (j+1r0,2), 1=5jsn
Then in the notation of [5, Remark 2.16], it is easily checked that A'=B, so
that 0 ,=0p. Hence Z,x0,=0,.

RemaRrk 1. Note that the fixed point algebra
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0% ~ Ry(Z, x0O)Ry = O,
where

C = (r° ") if r,40, and C=nif r,=0.
'y To

In fact this can be seen directly as follows. If r,=0, then
Or = C*(SS;: 1<i,j<n) = OF,

and if ry+0, then (% is generated by 357, (SF)F% r=0,1,..., where % is
the fixed point algebra of the UHF algebra %, under the restricted action of a.
This is an AF algebra with homogeneous embeddings

by [7]. Hence

0% = 0y where C = ("’ r’).
" To

COROLLARY. If ro,1y,S0,8; € Z with ro+r,=n=s,+s;, then o(ry,r,) is not
conjugate to a(Sg,S;) if ro£1+sy, So

Proor. If 0 =a(ry, r;) is conjugate to ¢ =a(so,s,), then Z, % O, is isomorphic
to Z,%0,, that is, ¢4, is isomorphic to 0,4, where

we) e ()
Hence by considering weak extensions [5],
[det (1—A))| = |det (1 —A4%)] .
Straightforward computation shows that
|det (1—AY)| = |det(1—A4))| = |(1=ro+r)l(n=1).
Thus |1 —ry+r =1 —5+5,|.

Let ¢, denote the endomorphism X — > S;XS* on (,, which commutes

with the action a of Z,, and hence extends to an endomorphism @, of Z, x 0,
by

(X0 + X, U) = ¢0,(Xo)+0,(X)U, X, €0

n-
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PROPOSITION. @, is homotopic to the identity on Z,x 0,

Proor. In the notation of [3], ¢,=4y, where V=3, ;5;5;S*S} is a self
adjoint unitary with spectral decomposition V=E, —E, say. Then «(E,)=E,
since a(V)=V. Let V, denote the unitary E, —tE,, for ¢ € T, so that 4, gives a
homotopy from the identity to ¢,. Now a=4p, where

D=Y SS¥r—Y S;Sf,

iSry j>ro
and so Ay(D)=X*DX for all unitaries X in O,. Then
Aphy, = Apipwy = 4py,  as a(V) =V,
= ;LV,AD N

ie. « commutes with Ay, and so 4, extends to an endomorphism ZV‘ on Z,
x 0,, which gives a homotopy from the identity to ¢, on the crossed product.

COROLLARY. If G denotes the dual action of Z, on Z,x(0,, then x=ryx
+r8,(x), for all x in K(Z,x0,) (i=0,1).

Proor. Consider first the case i=0. By [4] it is enough to consider classes x
=[F],, where F is a projection majorized by R,, thus F=ER,, with E € 0%
Then F=4(E+ EU), and so

@u(F) = 3(@n(E)+ @, (E)U) = ¢,(E)R,

SEES¥R, = Y SER,S¥+ Y S.ER,S¥

M=

i=1 isrg i>ro
= Z S,FS¥+ Z S (F)S¥
iSrg i>rg

since S;Ry=R,S;, i<ry, Si;Ro=R,S;, i>r,, and &(ERy)=ER,. Thus by the
proposition,

[Flo = ro[Flo+r[&(F)], .

To get the result for K,(Z,x0,) it suffices, again by [4], to consider
equivalence classes of unitaries U in Z, x 0, of the form U=U’+ R, where U’
is a unitary in Ry(Z, x 0,)R,. The argument then works just as for the case of
KO'

Remark 2. This global condition is enough in a large number of interesting
cases to deduce that K;(0 4) are torsion groups. In this case one can proceed in
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the spirit of [4] to compute K,(® ,). Consider the action a(ro+1,r,) of Z, on
0,., which leaves

En = C*Spre 1S Sruzse - Susy)

globally invariant. If # is the ideal of &, generated by S, ., 5* ., which is also
invariant and isomorphic to the compacts’¥’, then

Z,x8,)L,x § 2Z,x0, and Z,xf = ADA .
Then one can show using exact sequences as in [4], that
Ko(0y) = Z*/(1-A)Z* = Z, \@Z,, -1,
where the components are generated by [1],, [R,]o—[Ro]o, at least if
Z%/(1 — A)Z? is 2-torsion free.

Alternatively, one can use the decomposition of 4" ® O 4 as a crossed product

of an AF-algebra by a single automorphism and apply the exact sequence [9,
2.4] to show that

Ko(O0y) = Z7/(1-A)Z",  K,(0y) = Ker (1-4)

on Z" for every n x n-matrix A that satisfies condition (I) of [5].

REMARK 3. A similar analysis works for the actions of finite abelian groups,

e.g. if o=e?"3, and r,r,,r, € Z with ro+r, +r,=n, let « denote the action of
Z, on O, by

S,-—>(J)'Si ifzr1§i<zrl.

0 0

Then Z;x 0,=0,, where
o Fy T2
A=1r, rp n
ry r; To

In particular the matrix

011
A=]1 01
1 10

for which Ext (0,)=Z,®Z, arises in this way.

REMARK 4. For a compact abelian group G, let y,,...,7, € G and let « be the
corresponding action of G on 0, given by a(g)(S;)=7,(g)S;, g€ G, i=1,...,n
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For example, if G=T, and y;(¢t)=t¢, Vi, then T x @, is stably isomorphic to a
Glimm algebra and so simple [8, Remark]. However, if G=T2, n=2, and if
y,(t;,t,)=t;, then T>x ), is not simple (see [6]), and cf. [1] for actions on
UHF algebras. Some insight into the distinction may be found by considering
the related objects

C*(R,n(S): 1<i<n, neG),

where (m, U) is the natural covariant representation of (¢,,G,«) on L*(G, H)
and where R, are the projections with U(g)=3,.57n(g)R,- Then C*(R,n(S))
can be expressed, modulo the fact that B does not satisfy condition (I) in [5],
as Op, where B=[b,;], s.4 is the matrix with A={1,...,n} x G and {0,1}
entries of admissable transitions (i,n) — (,n—y), 1=Lj<n, ne G. In both
examples cited above, the matrices obtained are not irreducible in the strict
sense. However, in the first case, if o, € A, then there exists a path of
transitions from either a to f or f§ to a, but not both if o & f. This is not the case
in the second example. Further investigation of the ideal structure of these
algebras, might shed more light on the question of simplicity of the crossed
products themselves.
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