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CLASSIFICATION OF DIMENSION GROUPS
AND ITERATING SYSTEMS

NORBERT RIEDEL

1. Introduction.

The notion of a dimension group has been introduced by Elliott in [4] in
order to classify approximately finite dimensional C*-algebras. Recently some
considerable progress has been done in the investigation of the dimension
groups by Effros, Handelman, and Shen in [1], [2], [3], and [8]. For definition
we refer to [3].

In [2], Effros and Shen conjectured that every finitely generated dimension
group is isomorphic to the limit of a system

zr A, zr A,

where A, is in the set GL (r,Z)* of all unimodular matrices whose entries are
non negative integers. Using the multidimensional continued fraction
algorithm (the Jacobi—Perron algorithm, see [6] and [7]), Effros and Shen
could show in [2] that the conjecture is true for finitely generated dimension
groups which are simple and totally ordered. In the present paper our main
purpose is to show that, more generally, the conjecture is also true for simple
finitely generated dimension groups with a unique state. Since the Jacobi-
Perron algorithm is no longer applicable in this situation we develop a new
procedure to generate such a sequence A,A4,,... in GL(r,Z)* (see
Proposition 2.8).

Let us first introduce some notations. Let J, be the interior of (R")*. If 4 is
any matrix with non negative entries then we denote by cone (A) the positive
convex cone which is generated by the column vectors of A. Throughout in the
remainder of this paper we only use the /'-norm on R" which we denote by | - ||.
For any x,y € (R)* \ {0} we define

dx,y) =[xl ~*x— Iyl "'yl .
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We note the following useful relation which will be needed below:
21 dx+yy) = A+ylIxI™H 7 deGy),  if x,y e RYYN{0} .

Observe that the norm || -| is additive on (R")*. For any matrix 4 with non
negative entries we define

d(A) = sup{d(x,y) | x,y € cone (A)\ {0}} .

By [3], 3.5 and 4.1 any simple finitely generated dimension group with a
unique state is isomorphic to one of the following forms. Fix a vector x € J,
such that x ¢ RZ". Let Z" be ordered by the cone

P, ={aeZ

{a,x>>0} U {0} .

We want to prove the following.

2.2. THEOREM. For every x € J,\ RZ" there exists a sequence Ay, A,,... in
GL (r,Z2)* such that

P, = (:]1 (A, ... A)" @) .

Equivalently, for any x € J,\RZ" we must find a sequence A, A4,,...
in GL (r,Z)* such that

(2.3) R*x = [) cone(4]...4),
n=1

where A} denotes the transposed of the matrix 4,.
Instead of (2.3) we consider the following equivalent condition,
(2.4) (A ... A)"'xeJ, and limd(A}...A4) =0.

n—oo

Thus, Theorem 2.2 is proved if for any x € J,\ RZ" we can find a sequence
{A,}nen in GL (r, Z)" such that (2.4) is satisfied. In order to determine such a
sequence {A,},.n We only use matrices of the following kind.
For 1<p,q<r, p%qlet T"?=(t"?9), ., ;<, be the matrix which is defined
as follows
(0 _ {1 ifi=jori=p,j=¢q
Y 0 elsewhere .

The inverse S%9 = (s{P?), ., ;, of the matrix T®? is given by
[ 1 ifi=j
sp? =\ -1 ifi=p, j=¢q
l 0 elsewhere.

Hence all the matrices T % belong to GL (r,Z)*.
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For convenience we also include permutation matrices. Thus let Q, be the set
of all matrices which are products of matrices of the form T*? and of
permutation matrices.

If A=(a;)); <i,j<,-1 18 any matrix then we define the matrix A= (di)1<i, j<r @S
follows

[ a; if1gijsr—1
a; =y 1 ifi=j=r
l 0  elsewhere.

Clearly, if A is contained in €,_, then A is contained in Q,. For any vector
x=(x,...,x,) € R" (r=2) we denote by X the vector (x,,...,x,_).
Next we need some lemmas.

2.5. LeMMA Let A=(a;j); <; j<, be any matrix such that the entries a;; are not
negative and the column vectors of A are not zero. Then for any £>0 there is
some 8>0 such that for any vectors x,y € (R")* \ {0} we have

d(Ax,Ay) £ ¢ ifd(x,y) £6.

Proor. Let A:=inf{3}_, a; | 1<j<r}. By our assumption we have i=0.
For any vector x=(x,,...,x,) € (R)* whose norm is 1 we obtain

lAx]| = Y Y ayx; 2 Y Ax; = Alx|| = 4.
i=1 j=1 ji=1
Now, let x,y € (R)* \ {0}. If we set X:=|x|| "'x, §:=|yl| "'y then we obtain

d(Ax, Ay) = ||| AX| " A~ | A7)~ 47|

IIA

AR~ A% — AFI + [ AZ) ™ 147~ 147
< JAIATHER =PI+ 141472 147) - 1A%
S (A7 AP DIZ=F1 = (1AIA™ + [ AI2A7%) d(x,y) .

Thus our assertion follows from this.

2.6 LEMMA. Let x=(x,,...,x,) € J,\RZ" and let {A,},.n be a sequence of
invertible matrices whose entries are non negative integers. Furthermore assume
that A, 'x €.J, holds for any n € N and lim,_, ,d(A4,)=0. Let A,=(a{});<; j<,
Then the following conditions are satisfied
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(2.6.1) lim af) = oo for 1<i,j<r,
(2.6.2) lim (A x| = 0.
Proor. Let us show that (2.6.1) is true. Let a{”,. . ., a™ be the column vectors

of A,. Since x lies in cone ({af",. ..,a™}) we have d(x,a™)<d(4,) if 1<i<r.
Hence

lim d(x,a!”) = 0
holds. By our assumption, at least one of the numbers | x| ~!x,,. .., x| "!x, is

not rational, say |x||~!x, for some k.
Since

Hafl ~al = lIxI " 'x,] < d(a,x)

holds, we must have lim,_,  [a}”| = oo for any j, 1<j<r.
Since x; is non zero and since
lim [af”] ™ af) — x| "'x| = 0
n—oo
holds for 1<i<r, we obtain from this that lim,_,, a{y = o0 is satisfied.
Next let us prove (2.6.2). Since 4, 'x is contained in J, we obtain for any
neN,

( inf aﬁ?’)liAJIXll < 1AA x| = lix] .
15i,jsr

By (2.6.1) we know that lim,_,, inf, ; ;<, a7 =0o. Hence we conclude from
this that lim,_, |4, !x|| =0 holds.

We need another notation. For any subset M = R we denote by (M) the vector
space over the rational field Q generated by M.

2.7 LEMMA. Let r =3 and let x= (x,,. . ., x,) € J, such that X is not contained in
RZ" ™. Furthermore let A=(a;)), <; j<,~1 be a matrix such that a;; is a positive
rational number. Then at least one of the vectors

Y1
x or y=]|": = Ax
Yr

satisfies the following condition on some vector z=(z,,...,z,).
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(2.7.1) There is some k, 1 £k<r—1 such that dim{{z,,z,})=2
and dim {{z; | 1Sisr, i+k})22 holds.

Proor. Suppose that the vector x does not satisfy the condition (2.7.1). Since
dim ({x; | 1<isr—1}) 22 holds, there is some k such that dim {{x;,x,}>=2.
Hence, since x does not satisfy (2.7.1), x; is the product of x, by a positive
rational number for i= k. By our assumption on 4 we infer from this that y; has
the form px, + gx, for some positive rational numbers p and q. Since y, = x, holds
we obtain from this

dim<{{y; | 1Si<r, i%k}) = dim{{y,0,}> = 2,
i.e. (2.7.1) holds for y.

The next proposition contains the crucial part of the proof of Theorem 2.2

2.8 PropPosITION. For any x € J,\ RZ" and for any ¢>0 there is some A € 8,
such that

A 'xeJ, and d(A) L
holds.

Proor. We proceed by induction on r. Observe that our statement is trivial
for r=1. Let us consider the case r=2. Let x=(x,, x,)' € J, such that x,x; ! is
not rational and let k,, k,,k,,... be the sequence of positive integers which
determines the continued fraction expansion of the number x,x; ' (see [5,
section 10.9]). We define a sequence {4,},.n of matrices in Q, by

4 = (T D)1 for n=1,3,5,...
" (T® Vs for n=2,4,6,. ..

if x;>x, holds and

4 = (T3 Dy for n=1,3,5,. ..
"(TE Dy for n=2,4,6,. ..

if x, <x, holds. By continued fraction theory and by the results of [1] we know
that the sequence {4,},.n satisfies the condition (2.3). We conclude that our
statement is true for r=2.

Suppose that our assertion has been proved already for some r— 1, where r
> 2. First we want to show that the following is true:

(2.8.1) For any x € J,\RZ" and for any A4 € Q, satisfying
A~ 'x € J, there is some B e Q, such that
B~ '4"!'x € J, and d(AB)<3d(A) holds.
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Let x=(x,,...,x,) € J,L\RZ" be given and let A € Q, be chosen such that
x{
xV = ] = A" !x
xM
is contained in J,. We assume that dim {{x{",...,x),1%>2 holds. For, if this
were not satisfied then we could apply some permutation matrix in order to
achieve this situation. We denote by a the last column vector of A. Since our

assertion is true for r—1, by 2.5 and 2.6 we can find some C, € Q,_, such that
the following conditions are satisfied:

(282 Ci'xMey,

(2.83) d(V, V) <{sd(A) holds for 1 <i, j<r—1, where y{",...,y{1)| are the
first r—1 column vectors of the matrix AC,.

(2.84) x?P<xP=xM holds for 1<i<r—1, where
x$?

x? = | = CyxW,
x2

(2.8.5) |Iy") = 4|a| holds for 1Zisr—1.

We want to arrange the situation in such a manner that in addition (2.7.1)
holds for the vector x®. This can be achieved as follows. If x® satisfies the
condition (2.7.1) then we change nothing. If x'¥ does not satisfy this condition
then, applying our assumption to the vector X and using 2.5 as well as 2.6 we
can find some matrix C, € Q,_, such that the conditions (2.8.2), (2.8.3), (2.8.4),
. and (2.8.5) remain valid if we substitute C, by C,C, and any entry of this
matrix is positive. Now, by 2.7 the “new” vector x® satisfies the condition
(2.7.1). For the remainder of the proof of (2.8.1) let us keep this situation. Thus
let k e {i | 1<i<r—1} be chosen such that

(28.6) dim{{x? | 1<i<r, i%k}> 22 and dim{{xP,x?}) = 2

holds.
We define a positive integer n, as follows

ne :=sup{ne N | nx@<x®}.

By the second relation in (2.8.6) we must have nyx{¥ <x{?. By (2.1) and (2.8.5)
we can find some n; € N such that



232 NORBERT RIEDEL

(287 fed(ay) < dima+y, ) £ Fed(a, ")
for me {n;,n, +1}

holds. We will consider two different cases.

First, let ny<n,. We set B:=C, (T"®y»T®"_Since n,x{? <x? < (ny+ 1)x{?
holds, we obtain that B~ !x") is contained in J,.

Let y?,...,)*) be the column vectors of AB. Then the following identities
are valid.

[y;”+noa if i=k
YW =3 Wi me+a if i=r
o if ik, i%r.

Since ny<n, holds we obtain from (2.8.7) and (2.1)
APyl = dOP )0 S Ted(a)il) S Ted(4) .
Since
AP, y?) = doP P +a) < 0P, a) < 3d(4)
holds, we obtain from (2.8.3) that
dy®,yP) < 3d(4)

is satisfied for 1<i, j<r. This implies that d(4B)<3d(A) holds, ie. (2.8.1) is
satisfied in this case.

Next, we assume that n,>n, holds. From (2.8.6) we deduce that the
following is true

(2.8.8) dim{({x? | 1<i<r itkr} U {x@—mx@}> 2 2
for some m € {n;,n;+1} .

Let P be the permutation matrix which is obtained from the identity matrix,
interchanging the kth and the rth column vector and let C,:=C, (T"")"P.
Since ny>n, holds, the vector

xP
x® = | = C;'47x
x
is contained in J, and the following identities are satisfied.
x@—mx@ if i=k
xP = §x@ if i=r
x{ if i%k,r.
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Thus, by (2.8.6) and (2.8.8) our assumption is applicable to the vector X
Hence by 2.5 we can find some C; € @, such that

Ci'xPeJ, and AP, £ fd(4)

holds for 1 <i, j<r—1, where y,. . .,y®, are the first r— 1 column vectors of
the matrix AC,C;. The last column vector y® of AC,C; is y\" +ma. Since all
vectors y2,. . .,y are contained in cone (AC,) there exists some non negative
scalar 4 and some z € cone (){",...,¥",) such that

W2 = la+z

holds. Since d(z, y{!’) <id(A) is true we can easily deduce from (2.8.7) that the
inequality d (W, y\*)<3d(A) is satisfied for 1<i,j<r if A=0 or A=m holds.
Now let us suppose that 4 is not zero and A%+ m. Then we obtain from the
triangle inequality

AOP. ) = d(z+ a0+ ma)

IIA

d(z+Aa,y) + ia)+d(y{) + Aa, y{V + ma)
< 16d(A) +d() + Aa, P + ma) .

We consider two different cases. First let 2>m. Then we obtain from (2.1) and
(2.8.7)

Ay +da, y +ma) = d((p +ma)+ (A —ma,yi" +ma)

IIA

dy +ma,a)

d(a,y")—d (i +ma, ")

ted(a, 3 .

Next, let A <m. Then we obtain from (2.1) and (2.8.7) again
dV + Aa, y\ + ma)

IIA

d((m™ 'y +a)+ (27 —=m ™y m D +a)

A

dm™ 'y +a, (A7 —m~YWY) = dOi +ma, yiD)

< 1ed(@ 1) < Ted(A) .
Hence, in any case we infer the validity of the following inequalities
d(y®,y?) £ 15d(4) < 3d(A)

for 1 <i, j<r. If we define B:=C,C,, then we obtain that our statement (2.8.1)
is true also if ny>n,.
Now we can easily deduce our main statement from (2.8.1). For, if
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x € J,\RZ"and n € N are given, then by successive applications of (2.8.1) we
can find some matrix 4 € ©, such that A™!x € J, and d(4) = (3/4)" holds. Thus
our proposition follows from this.

Now the condition (2.4) and hence Theorem 2.2 is a trivial consequence of
2.8 and 2.5.

ADDED IN PROOF. Recently the author has shown that the conjecture of
Effros—Shen is not true in general (to appear in Proc. Amer. Math. Soc.).
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