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THE MAXIMUM DISTANCE BETWEEN
TWO-DIMENSIONAL BANACH SPACES

WALTER STROMQUIST
Abstract.

The maximum Banach-Mazur distance between two two-dimensional
Banach spaces is shown to be 3. This is done by defining a plane figure R which
is closed, bounded, convex, symmetric, and has a non-empty interior—i.e.,
which can be the unit ball of a Banach space structure in the plane. It is shown

that any plane figure C with the same properties has an affine image C’ such
that R C')/3/2R.

The author wishes to thank Professor William Davis for his help and
encouragement, and the referee for his constructive suggestions. Most of this
work was done while the author was with the Applied Mathematics
Department of Brookhaven National Laboratory.

Let I' be the set of subsets C of the plane R?* which are closed, bounded,
convex, and symmetric, and which have non-empty interiors. By symmetric we
mean that x € C implies —x € C; that is, C is centered on the origin and is
invariant under 180° rotation.

Two elements of I' are equivalent if one is the image of the other under an
affine (linear) transformation. This is an equivalence relation, and we let y be
the set of equivalence classes. Following Edgar Asplund [1] we let i: ' — y
be the canonocal map.

The sets in I are exactly those which can be the unit balls of Banach space
structures on R?, and the elements of y are in 1 —1 correspondence with the
isomorphism classes of two-dimensional Banach spaces. The results in this
paper draw their significance from their Banach-space interpretation, but no
knowledge of Banach spaces is necessary for their understanding.

We define a “distance” function in y by

d(a,b) = inf{h=1]| 34 i '(a), Bei '(b), such that ASBShd} .
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In other words, to determine the distance between a and b, we choose
representatives A and B such that B contains A but fits as closely as possible.
The relation A = B< hA expresses the closeness of fit, and the minimized value
of h is the “distance”. This is not a conventional metric because it has the
property that d(a,b)=1 with equality only when a=b. The “triangle
inequality”, which is easy to verify, is multiplicative:

d(a,c) < d(a,b)d(b,c) .

One could obtain a conventional distance function be replacing this one by its
logarithm.

In the Banach-space context this distance function is called the Banach-
Mazur distance, and is usually defined by

d(X,Y) = il;fllTlI 1T~

where the infimum is taken over all linear transformations T: X — Y.

As examples we may take the class p € y consisting of all parallelograms in
I', and the class h € y which includes regular hexagons. It is known that d(p, h)
=3, this is illustrated in Figure 1. Asplund conjectured that d(a,b)<% in all
other cases, hence that % is the maximum distance between elements of y. He
proved that d(p,c) <3 when c+h, and that d(c, h) <3 when ¢+ p. Here we will
derive Asplund’s conjecture as a consequence of a stronger result.

Fig. 1. PEHS3P.

THEOREM. There exists a class r € y such that for any ¢ € y,d(c,r)£)/3/2, with
equality only when c=p or c=h.

We define r=i(R), where R is the closed convex set bounded by the lines
y=+1 and y=—1, the circle x*+y*=2, and the ellipse $x2+y*=%. (See
Figure 2.)



THE MAXIMUM DISTANCE BETWEEN TWO-DIMENSIONAL BANACH SPACEs 207

Fig. 2. Definition of R.

The relationships d(p,r)=]/3/2 and d(h,r)=]/3/2 are illustrated in Figure 3.

The class r is a “center” for the metric space y, but it is not the only one.
From its existence we may conclude that an infinity of shapes exist that could
play the role of r in the theorem. Some can be obtained by making small
modifications in R or by passing to the dual.

< >P
dp.n=)/3/2 dh,r)=)/3/2

Fig. 3.

O Q

inscribed not inscribed

Fig. 3a. Definition of “inscribed”.

CoROLLARY. For any a,b € y, d(a, b) < 3/2, with equality only when a,b=p, h.

This establishes that the diameter of the metric space of two-dimensional
Banach spaces is 3. In higher dimensions, very little is known; even examples
are hard to compute. (In three dimensions, even the distance between [, and
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— 1

L (y=1)

!
Fig. 4. #=2arccos 7
2

l.,—in other words, between an icosahedron and a cube —is unknown.) W. J.
Davis and others have obtained some partial results for very high dimensions,
and for the limiting case as the dimension approaches infinity; see for example
[2], [3], and [4].

The proof of the two-dimensional theorem is long, mainly because of the
great variety of objects in y. It takes several elaborate constructions to cover all
of them. Special cases, however, are generally easy, with one major exception:
the case of nearly-regular hexagons. The reader may wish to approach the
proof with that special case in mind. It falls within Case IIB, below.

To prove the theorem, we will let ¢ € y and find a representative C' € i~ (o)
such that ReC'c mR. It will be clear from the proof that the constant can
be improved when c is not p or h, but we will not check this explicitly.

A convex set C is inscribed in a circle S if no point of C is outside S, and
every arc of S of more than 90° contains a point of C. (This definition differs
slightly from the usual definition of “inscribed” polygons; see, for example,
figure 3a.) Every class ¢ € y has a representative C which is inscribed in the
circle Sy/; (that is, x? +y?=2), and this representative is unique up to rotations
and reflections. (This fact is due to Behrend [5].) We choose this representative
C, and we will show how to modify if to obtain the desired C'.

Cask L In the first case we assume that it is not possible to rotate C so that,
while still inscribed in the circle Sl/i, it also lies between the lines y= +\/3/_2
and y=-]/3/2.

Let L be a chord of §)/; of maximal length which does not intersect the
interior of C. Rotate C so that L is horizontal and above the x axis. Now L
coincides with a line y=1, with |/3/2<I<]/2. It follows from the choice of I
that the circle S, is contained in C. Let C’ be the image of C under the affine
transformation  ¥: (x,y) = (//3/2x,()/3/2/l)y). We will show that
RcCc)/3/2R.
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First we show that C'<]/3/2R. The set |/3/2R is bounded by the lines y=

3/2 and y= —|/3/2, the circle x> +y*=3, and the ellipse 1x*+y*=2. Let

(x,y) € C, and (x,y)= (mx, (]/3—/§/l)y) e C'. From |y| <], it follows that |y
<}/3/2. Since C is inscribed in Sy/3, we know x?+)” <2; therefore

3/2
WP +0F = b+ 0y

lIA

P +y) £33

3/2
and S+ () = X+ 1/2 y?

I\
=
)
+
<
)
IA
[\

so that (x,)) € }/3/2R.

To show that R= C’ we must subdivide the case.

Case IA. |/8/5<l1 §]/§. Since C contains the circle S;, C’ must contain the
image of S, under affine transformation ¥. That image is an ellipse with the

equation
) () -
32 3/2

or, more simply, (1/I2)x2+y>=3. We will show that R is in the interior of that
ellipse. Let (x,y) € R. Then x%+y? <2, which implies that

1 1
sz‘f—yz (X +y2)+<1—-17>

2 |
& +(1 12) ’

1
y4g 2=y

Il

Y +32-y)

A

= 343y? which is <3 if ?

Also, we know that $x2 +y? <%, which implies that
1 2
[—2x2+y2 (1x2 4y — (____1>

Math. Scand. 48 — 14
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8 2
51‘2“‘(72‘1>y2

1
y +a 3-2y%

I

< y*+3G5-2y%)

3—4y* which is <3 if y?>2.

It follows that R is contained in the interior of C’ as desired.

Cask IB. |/3/2 <I<]/8/5. This case is difficult because R does not lie inside
the ellipse used in case IA, so it is necessary to find some room between that
ellipse and the boundary of C’, or equivalently, between S, and the boundary of
C. But except for its difficulty, this case is not important. For example, in this
case C cannot be a parallelogram, hexagon, or any regular polygon.

Let @ be the angle subtended by the chord L, given by @ =2 arccos l/[/§. See
figure 4. Now & is a decreasing function of / and when |/3/2 <I<]/8/5, we have
53° <P =<60°.

Let P be any point of contact between C and S}/, as in figure 5. Since S, is
contained in C, so is the region bounded by S, and the tangents to S, through
P. The arc of S; which bounds this region has measure @.

Fig. 5.

Since C is inscribed in S/, there must be a point of contact with an
argument somewhere in the range from $® to 90°+4®. Since there is none
above the chord L, there must be one whose argument is from & to 90° — 1,
inclusive. See figure 6. It follows that every point in the shaded region must be
in C. The lines L, and L,, which bound the shaded region, are tangent to S, at
the points P, = (Isin @, lcos ®) and P, = (Icos &, Isin P) respectively.
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M
Sy2
Fig. 6.

Let L] and L), be the images of L, and L, under ¥. We will show that every
point in R (in the first quadrant) is either inside the ellipse (1/1%)x? +y?=3, or it
is in the interior of the region bounded by the ellipse, L), and L. (The other
quadrants are symmetrical.) It will follow that R is contained in the interior of
C'. The following four lemmas will fulfill the program and complete case IB.

LemMA 1. If (x,y) € R and y 2|/3/2sin @, then (1/1*)x*+y* <3. (|/3/2sin @ is
the ordinate of ¥YP,.)

LemMa 2. If (x,y)eR and 0Zy=<)/32cos®, then (1/P)x*+y*<3.
(J/3/2 cos @ is the ordinate of ¥P,.)

Lemma 3. Every point of R is strictly to the left of L,.

LemMA 4. Every point of R is strictly to the left of L.

The proofs of the lemmas are at the end of the paper.

slope=— %[/5

L1 (slope between

—}/2 and —|/10/9)
slope= —[ﬁ

Fig. 7. Relationship between L\ and R.
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Case I1. By rotating C if necessary we may assume that C is inscribed in )/,
and lies between the lines y=|/3/2 and y= —|/3/2.

In this case we can find points Py, Py, P, € CN S);which satisfy all of these
conditions: (1) these points together with their symmetric images Py, P}, P,
respectively, divide the circle into arcs of no more than 90°; (2) arg P, <arg P,
<arg P, (although P, may coincide with P,); and (3) 30° <arg P,<60° and
—60°<arg P, < —30°. By a reflection and reindexing if necessary we can force
arc P, P, to be the shorter of PP, and P, P, and hence no longer than 60°. We
now choose a reflection and a rotation of C so that it lies between y =]/3/2 and
y= ——m and so that arg P, is as close as possible to 45° and we keep C in
that position throughout case II.

Now let C' be the image of C under the linear transformation
¥: (x,y) — (¥x,y) where ¥ is chosen as large as possible such that no part of
C' is outside the circle x?+y*=3. That is,

v = min{L 3=y

Y

(x,y) € C} .

Since C includes no point outside S/, but at least one point on the arc of 5/
between (1, —1) and (1,1), it is necessary that |/32<y <|/2.

We will show that Re C' < mR. The proof that C' < I/ﬁR is easiest. Our
construction guarantees that if (x,y) € C', then |y|<|/3/2 and x?+y*<3. The
other part of the boundary of |/3/2R is the ellipse 3x* +y> =2. But if (x,y) € C'
then (x/y,y) € C and therefore (x/y)*+y?<2, and since y <|/2, this implies
that x?+)? <2. Therefore C'<|/3/2R.

The proof that R C’ is more difficult. First we will require some lemmas
which establish that certain line segments are outside R; then we will subdivide
Case II according to the value of arg P,,. The proofs of the lemmas are saved for
the end.

LemMA 5. If L is a chord of Sy which spans an arc of at most 60° and lies
entirely in the region —|/3/2<y< +|/3/2, then YL is outside R. (If an endpoint
of Lis at y= +]/3/2, YL may intersect the boundary of R.)

LEMMA 6. If L is a chord of S)/; whose endpoints are in the region —1<y<
+1, and if some point of YL is on (or outside) S/, then ¥'L is outside R. (If the
endpoints of L are at (1, —1) and (1,1), then YL may intersect the boundary of
R)

LemMma 7. If L is a chord of Sy2 whose endpoints have arguments o and f
satisfying
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45°

IIA

a < 60°
g £0°

and a—ip < 60°,

-30°

1A

and if some point WL is on (or outside) S)/3, then WL is outside R. (If a=60°,
B=0°, then YL may intersect the boundary of R.)

Lemma 8. If L is a chord of S)/2 which spans an arc of at most 60° and lies
entirely in the region y< —|/1/2, then YL is outside R.

LemMa 9. If L is a chord of Sya whose endpoints have arguments o and B
satisfying

—45° = a

lIA
IIA

-30°,
—120° < B £ —90°,
and a—%p < 15°,

then WL is outside R.

Case IIA: arg P,=45°. Let P, be a point on the boundary of C such that
¥YP, is on the circle x?+y*=3. The construction guarantees that:

—60° < argP, < —45°

argP, < argP, £ 0
—45° < argP, < argP; < argP, = 45°.

We know that arg P, < —45° because the arc P,Pj can’t exceed 90°; and arg P,
= —45° because the arc PyP, can’t exceed 90°. We know that arg P, <0
because P, P, can’t be longer than P,P,. It is possible that P, and P, coincide,
as may P, and P,. See figure 8.

Now the boundary of C, in the region defined by x>0 and ~1<y< +1,is
on or to the right of the broken line PyP,P,P,. But ¥(P,P,) and ¥ (P,P,) are
outside R by lemma 6, and ¥ (P,P,) is outside R by lemma 5. Therefore all
parts of the boundary of C' are outside R, and R C'.

(If arg P, = —45° and the boundary of C includes the segment PyP,, then
the corresponding segment of the boundary of C' intersects the boundary of R
at ([ﬁ, 0). This occurs, for example, when C is a square.)

Caske IIB: arg P,>45°. Let arg P,=45°+ @, where 0 <® <15°. Define two
chords L; and L, of the circle S}; as follows: The endpoints of L; have
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y=)/32

P’
,V='“l/3/—2 0 =

Fig. 8. Case IIA.

arguments 30°+2® and —30°+ 29, and the endpoints of L, have arguments
30° and —30°. Each subtends an arc of 60°, and is therefore tangent to the
circle S/37. See figure 9.

Fig. 9. Case IIB.

If L is any 60°-chord strictly between L, and L,, then C must contain a point
on or to the right of L. Otherwise, we could apply a rotation and reflection to
make L coincident with the line y=[/§/§; then C would still be in the region
—1)/3/2=y<)/3/2 but arg P, would be closer to 45°.

Since L can be chosen arbitrarily close to L, and C is compact, there must be
a point of C on L,. Of all such points, let P, be the one with the largest y-
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coordinate. (In figure 9, P, is shown on the upper part of L,, but it could be as
low as the lower endpoint of L,.) Similarly there must be a point of C on L,;
let P be the one with the lowest y-coordinate. If P, is to the roght of L,, instead
let Ps=P,.

We will now examine the parts of the boundary of C in the region x>0, and
show that the image of each part under ¥ is outside R. (In one case, the
boundary of C' may intersect the boundary of R.) It will follow that R C".

(a) Above P,: This part of dC is above the line y=1, and so is its image
under ¥, so both are outside R.

(b) From P, to P,: If arg P,=60° then P,=P, and there is nothing to
prove; so we may assume that arg P, < 60°. Let P be the lower endpoint of the
chord of S); which goes through P, and P,. If argP>0, then ¥(P,P) is
outside of R by lemma 5; therefore, we may assume that arg P <0. In this case
no point of JC can be to the right of P. Since ¥ must map some point of dC
onto the circle Sy/3, it must also map some point of Py P onto /3. Now arg P2
—30° 424, which marks the lower endpoint of L,; and therefore

(arg Po)—3(arg P) £ (45°+D)—1(—30°+29) = 60° .

Thus lemma 7 applies to the chord P,P, and ¥ (P,P) is outside R.

(c) From P, to Ps: Every point on this segment of 0C is on, or to the right of,
some 60°-chord that lies between L, and L,. Therefore, by lemma 5, ¥ moves
this segment of dC outside R.

There is an exception in the case arg P,=60°, when P, = P,. In that case part
of dC may coincide with L,, and YL, may intersect the boundary of R. This
occurs if C is a regular hexagon.

(d) From Py to P;: If Ps=P, there is nothing to prove. Otherwise let L be
the chord through Ps and P,; then ¥L is outside R by either lemma 5 or
lemma 6.

() From P, to P,: This chord spans an arc of at most 60°, so by lemma 5,
¥ (P,P,) is outside R, unless arg P,=—60° and arg P, =0° in which case
¥ (P,P,) may intersect the boundary of R. The latter also occurs if C is a
regular hexagon.

(f) Below P,: If P, is below the line y= — 1, there is no problem; but that is
not necessary. See figure 10. We have arg P, = —135° 4+ @, so because the arc
Py P, cannot exceed 90°, we have arg P, < —45° + @. Let L, be the chord of Sy
with endpoints at —120°+2® and —60°+ 2@, and let L, be the chord with
endpoints at —120° and — 60°. If L is any 60°-chord between L, and L,, then
C must intersect L, or else C could be rotated to make L coincide with the line
y=— m, and then arg P, would be closer to 45°. Therefore C also intersects
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Sy2

, (args —45°+ @)
\ plarg=—1354 ) 27 60° 120

0 —

L, and L,. Let P4 be the point of CN L, with the largest x-coordinate, and let
P, be the point of CN L, with the smallest x-coordinate.

Now ¥ moves the chord through P, and P4 outside R, by Lemma 9. Any
point of dC between Pg and P, is below some 60° chord, and is therefore
moved outside R by lemma 8. Any point of dC between P, and Pj, is below the
line y= —1, so ¥ moves this segment outside of R as well.

This completes the proof that R C'.

Case IIC: arg P, <45°. The problems of this case are symmetrical to those of
case IIB and can be resolved in the same way.

This completes the proof of the theorem, except for the proofs of the lemmas.

PRrOOF OF LEMMA 1. Since @ =2arccos/}/2, we have

sin (2 arccos —l—)
V2
A )
2| sin arccos — )| cos arccos —
V2 V2

VD

=l/2-1.

sin @

Therefore

y = V32sin® 2 [/321)/2-P .
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This function is decreasing for 1<l<]ﬁ so it achieves its lowest value in the

range 1/372<l§ﬁ when 1=]/8/5. Thus
2 1/321/8/5)/2-@/5) =

Now following Case IA, we have

2
lz (2X +y ) (1_2—"1>
8 2
< | Z__ 2
=3 (12 1>y

1
=y +p6-2"

1/24/25 .

1
sz +y2

|
(]
—
N‘N
wiH
~

Ii
[N
e
5

A
[S10

PROOF OF LEMMA 2.

cosP =

l
cos <2 arccos -—~>
/2
R l
2 cos”| arccos —ﬁ -1

2-1.

Therefore y<|/3/2 cos ®=]/3/2 (I*—1). Again following case IA,

1 | 1
Sx?+)? = 1—2(x2+y2)+<1-—l-2)

l

722—+( 12>2(12—1)2

112(2 +3(P-1)%).

It

It is routine to check that this is always less than 3/2 when |/3/2 <I<]/8/5.

Proor oF LEMMA 3. We will do this in reverse: we will let (x,y) be on the
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line L, and show that ix?>+y?>% and hence that (x,y) is not in R. The
equation of L, is

(cos D)x + (sin D)y = 1

and the equation of L is

(cos <I>)<V_/_ ) + (sin <I>)<V— )'>

If (x,y) satisfies this equation then

X =

[ — (sin P) (l/—i)’> _ <Im>_y<lsin¢> |

cos @ cos
(cos cb)( 3/2>

Therefore ) <l|/3/2 B <l sin ¢>)2 e

cos @

It is always true that (4 — By)? +y? = A%/(2 + B?), and in this case that implies
that

32
2
2 352
cos* @ s
x4y 2z e 222-2
Isin“ @ 2cos* @+ 1*sin“ @
cos?
i 3

T 2=P)costd+E T Q=P -1+’
This function reaches its minimum value (for possible values of ) when 12 =8/5,
and then $x2+)? 2138 >4%.
Proor oF LEMMA 4. The equation of L, is
(sin ®)x + (cos )y =

and the equation of L] is

(sin <P)<

The slope of L) is therefore

R

1
sin @

l " lcos®
3

I

(sin P)

w
~
N

~
N
SN——"

(cos ¢)(
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This is an increasing function of I (in the relevant range) and has values from
—)/2 (when I=|/3/2) to —]/10/9 (when I=]/8/5).
The slopes of the half-tangents to R at the corner point (|/4/3, |/2/3) are
1/2 and —|/2 (see figure 7). It is clear, therefore, that if ()/4/3, |/2/3) is to
the left of L}, then so is every point of R.

To see that (}/4/3, |/2/3) is to the left of R, it is necessary only to check that

1 l
i ——=/4/3 ——/
(smdi)(m / >+(cos<1>)<l/375 2/3) <1,

or equivalently that

V2= /3H+@E-1)E&)-1< 0,
when |/3/2<1<]/8/5. This is a routine calculation. There is equality if !

—)/3.

Proor oF LEMMA 5. Assume without loss of generality that L spans an arc of
exactly 60°. We show that if (x,y) is on L, then (¥x)*+y?>>2, so that
(¥x,y) € YL is outside of R. First assume |y| <|/1/2. Since L is tangent to the
circle S)/33, we know x2+y?23/2; and therefore

Wx)?+y* 2 3x*+y? (since ¥=)/3/2)

= 32 +y)—%y?
2z 33-»°
>3-4 = 2

If y=]/1/2, then (x,y) must be to the right of the chord with endpoints at 0°
and 60°. The equation of that chord is |/3x+y=]/6, so we have x> (]/6
-y)/)/3 and

(Px)?+y* = 3x24+)?

6216
>2< y+y>
=2

= 30-)/2/37+2

The case y< —]/1/2 is symmetrical.
Equality occurs if (x, y) = (]/8/9,]/2/3), which is on the chord with endpoints
at 0° and 60°, and Y =]/3/2. Of course, equality also occurs when (x,y)

=(1/8/9, =)/2/3).
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Proor ofF LEmMA 6. It suffices to consider the case of a chord L whose
endpoints are at (1,1) and P= (|/2—bz, —b), with 0<b< 1, and with ¥YP on
the circle S)/3. In this case iy = (]/3 —b2/|/2—b2) and the segment YL joins the
points ((}/3- b’/]/2 —b?),1) and (/3- b?, —b).

A general formula for the minimum distance from the origin to a line
through (x,y) and (z,w) is

x Yy
z W

T V-2t 0w}

In the case of YL, it is enough to show that d>]/2, since that will imply that
YL is outside Sl/i’ and hence outside R. It is easier to work with d?, and prove
that the numerator is more than twice the denominator.

3—b* -b
-b
2-b?

] 2\ 2
(|/3—b2 3 b2> b+1)2

[

w

&2 =

o

= (3—b2)(1 ) —203- bz)(l—l/z_i?>2—-2(b+1)2

Viw
b2 4 2
= (3——b2)<1 -2+ - >
l/—

2—p? 2-b

—2(b+1)?

- (3—b2)< b+4 ——2>—2(b+1)2

J/2-b?

= (—3—:—?—2——> (2b+4)-2(3-b»)—-2(b+1)

) 2-b?

_ (___1__+ 2—-b2>(2b+4)—2(2b+4) >0

y2-b?



THE MAXIMUM DISTANCE BETWEEN TWO-DIMENSIONAL BANACH SPACEs 221

since (1/4)+ A>2 whenever 4+ 1. Equality occurs when |/2—b* =1; that is,
when b=1.

Proor oF LEMMA 7. We need only consider the case in which a—3p=60°,
since any chord satisfying a—38<60° must lie to the right of a chord

satisfying o —31f=60°. Similarly, we may assume that ¥ moves the lower
endpoint of L onto the circle S)/3

Let y=|B|, so that the endpoints of L have arguments (60° —1y) and (—7).
The chord L is bisected by the ray with argument (30°—3y), and includes the
point ([/Ecos 7, —|/§sin 7). We can therefore write the equation of the line

which includes L:
cos (30° —2y)x +sin (30° —2y)y
= |/2cos (30° —32y)cos y —|/2sin (30° —3y)siny

= l/icos (30°+1y) .
This line meets the positive y axis at the point (O,]/EC) where

_cos (30° +%7)
" sin(30°=32y) °

If the segment WL is extended, it meets the positive y axis at the same point.
The image of ([/§ cos 7, —-]/isin y) under ¥ is the point (]/3——25in2 R
—]/2siny) on Sy/3-

Now see Figure 11. The line PR is the extension of the chord YL, and R is
the lower endpoint of that chord. The segment OS, whose length is given as
]ﬁa, is perpendicular to PR. We intend to show that a> 1, and it will follow
that PR is outside S}/; and therefore that ¥L is outside R.

PL(O, ‘/ic)
o

0

Q

Fig. 11. R=()/3~2sin’y, —}/2sin).
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By similarity of triangles, we have
- ) - 6 - e
¢ ~\opP) ~\PR) ~ (PQ¥+(QR)
B 3—2sin?y _ 3-2sin’y
B (]/5c+1/§siny)2+3—25in2y 2% +4csiny+3

Therefore
, _ (3—2sin’y)
"~ 2c*+4csiny+3
and in order to show that a>1, it suffices to show that
f() = c2(3-2sin?y)—2c*—4csiny—3 > 0,
whenever 0<7y<30°. Recall

_cos (30°+3y)
T sin (30°—2y)

The verification that f(y)>0 is tedious and mechanical, but crucial to the
proof of the theorem, so an outline will be given here. The first step is to
simplify f:

f() = c*(1—-2sin?y)—4csiny—3

c?cos2y—dcsiny—3 .

If we treat f as a function of two variables, we find that df/dc >0 for relevant
values of y and c, so that if we substitute a lower bound for ¢ we obtain a lower
bound for f.

Next we calculate the first four derivatives of ¢ with respect to y and show
that they satisfy (writing u for 30°—3)

cosp cosy
sing  4sin?pu

’

Ccos
¢ = %c’——,—#—+%c
sin u
({0 1]
@ =328 s 4y
sin pu sin® p

cos u
inpy

cos# ’’ l "
c® = %C(s)'.—“-’-%c *‘.—‘2‘“+%C +%%C'
sin sin?
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It is clear that ¢’®>0 when 0<y<30°, and that when y=0, we have c=|/3,
=2, "=3)/3, =1, and Y =2§3|/3. It follows that when 0<y<30°,

¢ 2 V3+2+1/37 + 14229+ 883)/3p4 .

We also have cos2y=1-—2y?, and siny<7y. (For these expressions, y must be
measured in radians.)

We next substitute these expressions for ¢, cos 2y, and sin y into the equations
for f. For convenience, the terms beyond y° in the series for ¢? are deleted.
Simplifying, we obtain

FO) 2 32 +5)/37° + 804 -8/ 30° 4550 - 43y

This is positive at least for 0<y<0.2 radians (about 11°).

For larger values of y, we can divide the range 0.2<y<{n into smaller
intervals, and use the same method to construct a power series for f centered
around the lower endpoint of each interval. It is necessary to calculate (siny) to
the first-power term and (cos 2y) and c to the square term, and we can drop the
fourth-power term from c2. The result is a lower bound for f, and the lower
bound is positive if we use the intervals 0.2<y=<0.3, 0.3<7y<04, and 04y
<0.524>Ln. We can conclude that f(y)>0 whenever 0 <y < 30°, which proves
the lemma.

Proor oF LEMMA 8. Any point on one of these chords must be on or to the
right of the chord L, through the points (0, —|/2) and ()/3/2, —}/1/2), on or to
the left of the corresponding chord in the third quadrant, or below the
midpoints of these chords. The last possibility forces the point to be strictly
below the line y= — 1, so that both the point and its image under ¥ are outside
of R. It therefore suffices to prove that WL, is outside of R. That is a special
case of Lemma 9, whose proof follows.

ProoF oF LEMMA 9. We need to consider only chords L satisfying a—3,
=15°, since any chord with a—38<15° lies below some chord for which
equality holds. Also, we may assume that y =]/3/2. These assumptions imply
that the endpoints of L are at (j/2cosa,}/2sin«) and (}/2cos §,}/2sin f) and
the endpoints of YL are at (/3 cosa,]/2sina) and (}/3 cos B, }/2sin ).

If —34°<a< —30° we can prove that this line lies outside of the ellipse $x?
+y?=%, and therefore outside of R. It is equivalent to show that the line
through ()/3/2 cos o, }/2sin ) and (}/3/2 cos B,}/2sin f) is outside the circle x>
+y%=%. To do this, we let d be the perpendicular distance from the origin to
the line, and apply the formula from lemma 6:
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MCOS B ﬂ sin B2
2= [/%cosa ﬁsina
(]/375 cos f— ‘/5/_2—008 o) + (1/5 sin f— 1/5 sin a)?
3(cos B sin a — cos o sin B)?
3[(cos B —cos a)? + (sin B —sin )?] + 3 (sin B —sin a)?
3sin? (a— )
3—3cos (a—P)+Li(sin f—sina)?

The last term in the denominator is clearly maximized by setting a = —30°, §=
—90°. Then its value is 3, so we have

dz > 253 Si3n2 ((Z-—ﬂ) )
% —3cos (a—f)
The angle (x— f) must be from 60° to 64°, and in this range, the last expression
is a decreasing function of (a—f8). Therefore
5 3°sin?64° .
d gm_1.3390>3.
Therefore in this case, YL must be outside R.

If a< —34° a different approach is necessary. Note that the chord L is
bisected by the ray in the direction 4(x+ ), which can vary from —66° to
—824°. Therefore the slope of Lis — (tan$(x+ f)) ', which must be a positive
number not exceeding (tan66°)~'. The slope of WL is therefore at most
}/2/3/tan 66°. The slope of the upper half-tangent to R at the point (}/2/3, —1)
is 4]/2/3, and since tan 66° =2.246 > 2, the latter slope is larger. It follows that if

YL passes below (]/2/3, —1) it is entirely outside R. This verification is lengthy
but elementary.
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