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A LAGRANGE MULTIPLIER THEOREM
AND A SANDWICH THEOREM
FOR CONVEX RELATIONS

J. M. BORWEIN
Abstract.

We formulate and prove various separation principles for convex relations
taking values in an order complete vector space. These principles subsume the
standard ones.

Introduction.

In this note we formulate and establish a set-valued version of the Lagrange
multiplier theorem and the sandwich theorem for convex-operators ([7], [17],
[26]). Certain preliminary definitions need to be made.

Let Z, X and Y be real topological vector spaces. Let S Y be a convex cone
which induces an order-complete ordering on Y by y=0 if y € S. We assume
throughout, for simplicity, that S is pointed: SN —S=0. We will also assume
that S is normal for the topology on Y. This is to say that there is a base of
neighbourhoods V of zero in Y with

(1.1 V=-8nNES-v)ycV.
A relation H: X — Y is convex if its graph in X x Y
(1.2) GrH = {(x)) | ye Hx), x € X},

is convex. Similarly H is a convex process if its graph is a convex cone in X x Y
containing the origin. The domain of H, D(H), is the set of points in X for which
H (x) is non-empty. The inverse relation H™! is defined by

(1.3) ye H(x) < xe H '(y)
and clearly H is convex (a convex process) exactly when H ™! is. The range of
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H, R(H), is D(H™1). There is a one-to-one identification between relations
H: X — Yand sets GrH in X x Y. In [7] the study of product space sets was
used to produce algebraic separation theorems. Our results could be derived in
this framework but we take for us the more natural course of looking at
topologized relations. A relation H: X — Y is lower semi-continuous at x, in
D(H) if for every y in H(x,) and neighbourhood V of zero in Y one can find a
neighbourhood U of zero in X with

(1.4) xeU+x, = HX) N (V+y) + & .

The points at which H is lower semi-continuous will be denoted LC (H). A
relation H: X — Y is open at y, in R(H) if H™': Y— X is lower semi-
continuous at y,. This is equivalent to saying that for any x in H " !(y,) and any
neighbourhood V of zero in Y

(1.5) Vo € int H(V+x) .

For general relations it is possible for H to be lower semi-continuous at
some y in H(x,) but not at every y. For convex relations this is not possible
([4] and Proposition 2.1 (a)). The reader is referred to [1], [12] for information
on general relations, to [2], [4], [14], [20], [21] for information on convex
relations and to [13], [18] for prerequisite material on ordered topological
spaces.

We conclude this section by recalling the relationships between convex
functions and relations. Let f: D < X — Y. Then fis B-convex for some convex
cone B exactly when its epigraph

(1.6) Epif = {(x))| yef(0+B, xe X},
is convex, and so exactly when the relation
1.7 Hy(x) = f(x)+B

is convex. Finally D(H)=D.

2. Properties of convex relations.

We begin by defining two ways of making new relations from old. Let H,
and H,: H — Y. The negative infimal convolution H, BH, of H, and H, is
defined by

The homogenization of H: X — Y, cone H, is defined by
(2.2) Gr (cone H) = cone (Gr H) .
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It is clear from (2.1) and (2.2) that convolution and homogenization preserve
convexity.

We now collect some information about convex relations.

ProrosiTioN 2.1. Let H;, H,: X — Y. Let X=X, x X, be the product of two
topological vector spaces.

(a) If H < H, with H, lower semi-continuous at x, and H, convex, then H, is
lower semi-continuous at x.

(b) If H,BH, is convex, and H,(-,x,) is lower semi-continuous at x, and
H,(xy, ") is lower semi-continuous at x,, then H,BH, is lower-semi-con-
tinuous at zero.

(c) Iff: X — Yis B-convex and B is normal, then f'is continuous at x if and only
if H, is lower semi-continuous at x.

(d) If X is given the finest convex topology and H is convex LC (H)=core D(H).

Proor. (a) Let y, € H,(x,) and let W be a neighbourhood of zero in Y. Let
y: € H,(x,) and pick a neighbourhood V of zero with tV+t(y, —y,) = W for
some 0<t<1.Let U+x,cH; ' (V+y,). Then for tu+x, in tU + x,, one has, by
convexity,

(2.3 (I —=t)y,+tH,(u+xo) = H,(tu+x,)
and since H,(u+x,) meets V+y,,
(2.4) H,(tu+x0) N (0 =0y, +t(V+y)) £ & .

Thus H,(tu+Xx,) meets W+y,. Since W and y, are arbitrary H, is lower
semi-continuous at x.

(b) Lety, € H,(x,,x5), ¥, € H,(xy, x,). Let V be a neighbourhood in Y. Pick
U, and U, neighbourhoods of zero in X, and X, with

(25) Hy(uy+x,x) N (V4yy) £ &3 Hy(x,uy+x) N (V4y,) £ &
for u, in Uy, u, in U,. Thus
(2.6) [H,y(u;+x1,x)—Hy(xp,uy +x,)] N [(V=V)+ (0 —y)] = & .

Since H, (u+ xy,x,)—H,(x,,u, + x,) lies in (H, BH,) (u,,u,) and V—V may be
made arbitrarily small, (2.6) shows that H, BH, is lower semi-continuous at
(0,y; —y,). Now part (a) applied to H,HH, and K defined by
0
@ K(x) = {HlE!Hz(x) x#
Yi—J)2 x=0 s

shows that H, HH, is lower semi-continuous at zero.
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(c) It is clear that if fis continuous at x,, then H is lower semi-continuous as
the sum of lower semi-continuous maps {f} and B. If B is normal the converse
holds as follows. Assume H ; is lower semi-continuous at x,. Let V be given and
select a symmetric neighbourhood U in X with

(2.8) fX)+BN (f(x)+V) + &
whenever x lies in U+ x,. Thus when x—x, € U

(2.9 J(xX)=f(x)) = V=B.

Since f is convex

(2.10) fxo)=f(xo+ (xo—X)) = f(X)=f(xo)—B,
and as U is symmetric

(2.11) f(x)=f(xo) = (V=B) N (B-V)

whenever x — X, lies in U. Since B is normal, f is continuous.

(d) Let V be a neighbourhood in Y. Let x, € core D(H) and y, € H(x,). Let
x € D(H). Then x € H™!(y) and for small t>0

(2.12) tx+ (1 —0)xo =« H" Y ty+ (1 —0)yo) = H ' (yo+ V)

since V is absorbing and H ™! is convex. For any x in X ax+ (1 —o)x, lies in
D(H) for small positive « and (2.12) shows that

(2.13) (to)x+ (1 —to)xg € H ' (yo+ V) .
Thus H ™ '(y,+V)—x, is a convex absorbing set in X and x, € LC (H).

Similar arguments show that whenever H is convex and LC (H) is not empty
LC (H)=core D(H).

ProposiTiON 2.2. Let H: X x X, — Z and F: X, x X, — Y. Suppose that
0 e H(x,,x,) and that H(-,x,) is open at zero. Suppose that F(-,x,) is lower
semi-continuous at x,. Then FH™': Z — Y defined by

(2.14) FH™'(2) = {F(xy,%;) | z € H(x;,x,)}

is lower semi-continuous at zero, if FH™! is convex.

Proor. Pick y in F(x,,x,)< FH™'(0) and a neighbourhood V in Y. Pick a
neighbourhood U, in X with

(2.15) Flx,x)) N (V+y) + &
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if x € x;+U,. Pick a neighbourhood Win Z with
(2.16) We H(x;+ Uy x,) .

Then if z lies in W, (x,x,) lies in H™'(z) for some x in x, + U, and F(x, x,)
meets V+y. Thus

217 FH ') N (V+y) + & ,

and FH ™! is lower semi-continuous at one y and so at any y in FH~'(0) as in
Proposition 2.1(a).

RemArk. The best possible case, in some senses, which can occur in
Proposition 2.2 is that X, be zero dimensional. Then the requirement on H is
that 0 € int H(x,) and the requirement on F is merely that x, € D(F). Here we
have suppressed the dummy variable x,. We will call H strongly open at 0 if
0 € int H(x,). The primary example of such H is H , given by (1.7) when Slater’s
condition holds:

(2.18) f(x;)e —intB, x,eX.
The other extreme case occurs when X, is zero dimensional. (See also [20].)

The following open mapping and closed graph theorem extends the usual
linear one [23] and gives useful sufficient conditions for a relation to be open
or lower semi-continuous.

ProposiTION 2.3. Let H: X — Y be a convex relation with a closed graph. Let
X and Y be Fréchet spaces. Then H is lower semi-continuous at any point in
core D(H) and open at any point in core R(H).

Proor. The Banach space case is given in [14], [20] albeit with slightly
different terminology. The present theorem is a special case of one in [2]. Let
us sketch a proof for Banach spaces due to Jameson [14] which holds for CS-
closed relations. A relation is CS-closed if its graph is a CS-closed set. A set C
is CS-closed if whenever 4,20, 3%,4,=1, x, € ¢ and > L AX,=X exists
then x is in C. Clearly closed and open convex sets are CS-closed as are many
others. A set is CS-compact if it is CS-closed and 3 ;% 4,x, always exists.

To prove the proposition it suffices by symmetry to consider the open case.
Let us normalize things so that 0 € H(0), 0 € core R(H). Let B be the unit ball
in X. One verifies first that

0 e coreH(B).

Then one observes that B is CS-compact being convex, bounded and complete.

Math, Scand. 48 — 13
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It is easily verified that the CS-closed image of a CS-compact set is CS-closed.
Thus H(B) is a CS-closed set. The Baire Category Theorem and the previous
equation show that

0 eint H(B) .

The final step is to show that CS-closed sets are semi-closed (have the same
interior as their closure). This is very close to a lemma of Holmes on ideally
convex sets [11].

The result remains true for CS-closed relations between complete metrizable
linear spaces or for closed relations between a Frechet space and a barreled
space.

For two relations H, H,: X — Ywe write H,(x)=H,(x) if y, =y, whenever
y1 € Hy(x), y; € Hy(x).

ProposiTION 2.4, Let H: X — Ybe a convex relation. Suppose that H is lower
semi-continuous at zero. Then if

(2.19) H@©0) 20
there exists a continuous linear operator T: X — Y with
(2.20) H(x) 2 T(x), VxeX.
Proor. Let K =cone H. Since 0 € LC (H) and K is a convex process, D(K)
=X. Let
(2.21) k(x) = inf,{y | ye Kx)}.
Since K is a convex process
K(x)+K(—x) =« K(0) = §,

by (2.19), and any point in —K(—x) is a lower bound for K(x). Thus k(x)
exists since S is order complete. Since

(2.22) aK(x)+BK(y) = K(ax+By)+S
for any o, >0 and x,y in X, standard properties of infima show
(2.23) ainf K(x)+ Binf K(y) € inf K (ax + By)+ S

and it follows that k: X — Y is sublinear. Moreover, H(x)ck(x)+ S so that it
follows from Proposition 2.1(a) that H, is lower semi-continuous at zero.
Proposition 2.1(c) shows that k is continuous at zero and so is continuous
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throughout X. The Hahn-Banach extension theorem [6, p. 123] guarantees
the existence of T: X — Y linearly with

(2.24) T(x) £ k(x) £ H(x), VxeX,
Finally Proposition 2.1 (c) shows T is continuous since S is normal. Indeed all

such T are equicontinuous.

Order completeness is only essential in Proposition 2.4 to ensure that k
exists. If this can be established in some other way one may use results of Zowe
[24] or the present author [3] to complete the proof. If a purely algebraic
result is desired one can place the order topology for S on Y[18] and the finest
locally convex topology on X. The same refers to all the results in the next
section.

The following proposition is very similar to one of Robinson’s in [20].
ProrposiTiON 2.5. Let H,: X — Y,, H,: X — Y, be convex relations between
topological vector spaces such that for some x, in H;*(0)N H; '(0),

(i) 0 € int H(x,), H, is open at 0,
(ti) H, is lower semi-continuous at X.

Then H defined by
(2.25) H(x) = (H,(x), H;(x))

is open at 0.

Proor. Let W, be a neighbourhood of zero in Y, with
(2.26) W,~W, « H (xp) -

Fix a neighbourhood U, of zero in X and pick a neighbourhood U, of zero
in X with U, +x,=H['(W,) and a neighbourhood W, of zero in Y, with

2.27) W, € Hy(xo+U,); U, = U, NU,.

Let (y,,y,) € (W,,W,). Then y,e H,(x,), x,—x,¢€ U,<U,. Thus
x, € H{'(y,) for some y, in W,. Also

(2.28) V1 —Y0,0) € (W, —W,;,0) = (H(xo), Hj(xo)) = H(xo)
and

(2.29) Vo, ¥2) € (Hy(x2), Hy(x;)) = H(xy) .
Thus
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(2.30) 31, 2) € 3H(xo)+3H (x;) = H(xo+3(x;— xo))
and
(2.31) (W, W) © H(xo+3U;) « H(x, +3U,) .

Since U, is arbitrary H is open at zero.

An important application of the proposition is that convex constraint sets of
the form

(2.32) 0Ocg(x)+B, 0eH,(x)

will give rise to an open relation (H,, H,) whenever H, is open at 0 and g
satisfies Slater’s condition (2.18) for some x in H; !(0) at which g is continuous.
This is of use in applying Theorem 3.1.

In connection with Proposition 2.5 let us observe that the product of open
relations is generally not open. Indeed even for continuous linear operators
this can fail.

3. The Sandwich Theorem and The Lagrange Multiplier Theorem.

We now derive two equivalent consequences of Proposition 2.4 from which
all other separation principles follow easily. In the next section we show some
of the other derivations in outline as application of our methods.

Let F:1 X=X xX,—> Y, H: X=X, xX, - Z be relations. We consider
the program

(3.1) (P p = inf,{F(x)| 0e H(x)} .

THeEOREM 3.1. (Lagrange Multipliers) Let (P) be as above. (a) Suppose that the
perturbation relation
3.2) K = FH™ !,

is convex and lower semi-continuous at zero. There is then a continuous linear
operator T: Z — Y with

(3.3 Fx)+TH(x) 2 p, VxeX.
(b) In particular, if F and H are convex and for some (x,,x,) in H™'(0),

(i) H(-,x,) is open at zero,
(ii) F(-,x,) is lower semi-continuous at x,,

then K is convex and lower semi-continuous at 0 and (a) applies.
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Proor. (b) Proposition 2.2 shows that K satisfies the hypotheses in (a).
(a) By Proposition 2.4 one may solve

34) K(z—p =Tz zinZ.

Let z lie in H(x). Then F(x) lies in K(z)=F(H~*(2)) and so for any z in H(x)
and y in F(x)

(3.5) y=T(2) 2 u
which is equivalent to (3.3).

THeoreM 3.2. (Sandwich Theorem) Let H; and H,: X — Y be convex
relations such that for some point (x,,x,) in X; xX,=X

(i) H,(-,x,) is lower semi-continuous at x,,
(i1) H,(x,,") is lower semi-continuous at x,.
Suppose that

(3.6) H,(x) = Hy(x), VxeX.

There then exists a continuous linear operator T: X — Y and a constant bin Y
with

3.7 H,(x) 2 T(x)—b =2 H,(x), VxeX.
Proor. Let H=H,BH,. Proposition 2.1(b) shows that H is lower semi-

continuous at 0. Since H is convex and H(0)=0, (by 3.6), we may apply
Proposition 2.4 and find a continuous linear T with

(3.8) T(x) < Hx) VxeX.

If x=x, —x,, then H(x) contains H,(x,)— H,(x,) and so
(3.10) T(x))—Hy(x,) £ T(xp)—Hy(x)
for any x,,x, in X. Let b satisfy

(3.11) sup T(x,)—H(x,) £ b < inf T(x;)—H(x,) .
Since S is order complete, (3.10) shows that b exists. Then (3.11) yields (3.7).

Much as in Theorem 3.1 one need only require that H, HH, be convex and
lower semi-continuous at zero.

Note that Theorem 3.2 contains Proposition 2.4 as the special case where K,
=K and Gr(K,)=0. Note also, that Theorem 3.2 can be derived from
Theorem 3.1 by setting F(x;, X;, X3, X4)=H, (x, x,)— H,(x3, x,) and
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(3.12) H(xy,%5,X%3,X4) = (X1 —X3,X3—Xg) .

Under assumptions (i) and (ii) of Theorem 3.2, F is lower semi-continuous in
x, and x, at a point where H is trivially open in x; and x, at zero.

The full perturbational duality theory [8], [22] can be viewed as a form of
(P) by replacing

(3.13) inf, f(x,u) = h(u)

by

(3.14) inf,{r | ue H(x,n)},
with

(3.15) ue H(x,r) < f(x,u) £ r.

Then Proposition 2.2 gives conditions for h to be continuous at 0.
Whenever B« Z is convex and S< Y is a convex cone we let B* denote all
(positive) continuous linear operators T: Z — Y with T(B)cS.

ExampLE 3.3. Let f: X — Y be S-convex and let g: X — Z be B-convex.
Consider
(3.16) (P p = inf{f(x)| g(x)<O0} = inf,{H (x) | 0 e H,(x)} .
Suppose that either
(3.17) (i) f(X) is defined for some x with g(X) e —intB
or that X and Z are Fréchet with H, closed and

(3.18) (i) fis continuous at some X with g(X) € —B and
Oecoreg(X)+B.

Then in both cases H, is open at zero and Theorem 3.1(b) applies. We derive
that

(3.19) p = max, {inf (f(x)+ Tg(x)) | Te B},

which is the vector “strong duality” result. The fact that any solution T to (3.3)
lies in B° relies on the fact that an order complete cone is linearly closed [6].

A special case of Example 3.3 is worth examining further as it plays a central
role in vector Kuhn-Tucker Theory [4], [9], [16].

THEOREM 3.4. Let K, and K, be convex cones in X and Z respectively. Let
A: X — Z be linear and suppose the convex relation defined by
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_JA—-K, if xeKk,
(3.20) Hy(x) = {Q if x¢ K,

is open at zero. Then

(3.21) (K; N A YK, = K3A+KS .

Proor. Let T, € (K; N A7 }(K,))’. Then
(322) (P, 0 = inf{Ty(x)| 0eH, W)},

and as T, is continuous and H , is open at 0 we may apply Theorem 3.1 (or

Example 3.3) and deduce that T: Z — Y exists with
(3.23) To(x)+T(A(x)—K,) =« § if xeK,,

Thus Ty+ TA € K{ and — T e K§. This shows that T, lies in K34+ Kj.

(3.21) will hold if either: X and Z are Fréchet, A is continuous and K, and
K, are closed and

(3.24) AK,)-K, = Z,
or if
(3.25) AK)NKY + .

Condition (3.24) extends, by much different arguments, a scalar result in [15].
Condition (3.25) extends the Krein—Rutman theorem [11], [18]. One can often
directly show that H, is open when (3.24) or (3.25) fail. At the expense of a
little more notation one can formulate similar results when K, and K, are
convex sets (containing zero) but not cones. Theorem 3.4 is a special
subgradient result but the openness condition on H , emerges more clearly in
the Lagrange multiplier framework.

An example of Zowe’s [25] can be interpreted as showing that in an non-
lattice polyhedral ordering in R? it is possible for k in Proposition 2.4 to fail to
exist. Since order-completeness is essentially equivalent to the Hahn-Banach
extension theorem holding [6], this is hardly surprising.

4. Alternate formulations.

We now sketch the derivation of several of the equivalent variants of the
separation principle. We begin by defining the conjugate P* of a relation
F: X — Y. If T lies in B[ X, Y], the continuous linear operators on X into Y,
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we set
(4.1) F*(T) = sup{T(x)—y | y € F(x)} .

Then if F,cF,, F¥<F%. Also Hf =f* is the standard conjugate of f[25]. F*
is a convex operator from B[X, Y] into Y when it is defined.
If yo < F(x,) we define the subgradient of F at (x,,y,) by

(4.2) 0,,F(xo) = {Te B[X,Y]| T(hSF(xo+h)—yo} .
If {f}=F is single-valued and y,=f(x,)—¢ for some ¢ in S then
(4.3) 0.f (x0) = 0,,F(xo)

where the left-hand side is the standard e-subgradient of fat x, [5], [10], [22].
If y, actually lies in F(x,) then

(4.4) F*(T)+y, 2 T(xo),
with equality exactly when
(4.5) Ted, F(x) .
Indeed, for any y, < F(x,)
(4.6) Te d,F(xy) < F*(T) £ T(x¢)—Yo -
THEOREM 4.1. (Subgradient Formula) Let F;: X —» Y and F,: Z — Y be
convex relations. Let A: X — Z be linear. Suppose that
4.7 LC(F,) N A(D(F)) = & .
a) Then for any y in Y
(4.8) 0,(Fi+F,A)(x0) = U {0,,F,(x0)+A70,,F5(Axo) | y,+y, 2y} .
b) Letting F, =0, this becomes
4.9 0,(F2A)(xo) = AT F,(Ax,) .
c) Letting Fi={f1}, F,={f,} and y=f,(xo)+f,(Ax,)—¢, this reduces to

(4.10)  8,(fi +f,A)(x0) = U {0,,f1(x0)+ AT0, f,(Axo) | & +e,5¢} .

Proor. (a) Let T, lie in the left hand side of (4.8). Set

4.11)
F(x) = Fi(x;)+Fy(x;)=To(x;—%o) and H(x) = A(x;)—x, .

Apply Theorem 3.1 to derive the existence of T in B[ X, Y] such that for all x,
in X, and x, in X,,
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(4.11) Fl(x1)'|‘F2(x2)—To(x1_x0)+T(Ax1_x2) Zy.

Note that H is open in x, at any point for which F is lower semi-continuous in
X,
Equivalently

(4.12) infF(x;)— (Ty— T A)(x; — xo) +inf F(x,) = T(x, — Axy) = y .
Letting y, and y, be the respective infima in (4.12) we see that
(4.13) To—TA €0, F(x,), TAe A, F,(Ax,).

The converse is straight forward.

(b) and (c) follow easily.

Norte. The abuse of notation involved in writing A7 above is justified by the
scalar case. In general the operator A'S is just SA.

The scalar version of Theorem 4.1(c) may essentially be found in [10]. The
existence of subgradients for y<F(x,) and x, in LC (F) is a special case of
(4.8) in which Gr F| ={(x,,0)}. This is in turn just a rephrasing of Proposi-
tion 2.4.

The Fenchel Theorem is an easy consequence of the last result, or of course
of the Lagrange multiplier result itself.

THeoreM 4.2. (Fenchel Duality) Suppose that F, F,, A are as in Theorem 4.1.
Then

(4.14) § = inf (F, + F,A)(x) = max— F*(ATT)—F¥(-T)

whenever the left-hand side exists.

Proor. By definition

4.15) 0€ed,(F,+F,A)0).

The previous result shows that for some u, +u, 2
(4.16) 0=A"T,+T,

and

(4.17) T,ed,F,0), T,ed,F,0).

Now (4.6) shows that

(4.18) FHT)+FHT) £ —m—my S —pt.

In conjunction with (4.16), (4.18) shows that the maximum in (4.14) exceeds p.
The converse inequality follows from (4.2).
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Note that by allowing subgradients with u not in F(x,) we have established
the Fenchel Theorem from the subgradient result, which usually needs
attainment, rather than vice versa.

Theorem 4.2, may be extended to the case where A is an arbitrary convex
relation. This allows one to recover simultaneously the formula (4.14) and the
formula for the subgradient or conjugate of fG where G is an S-convex
mapping and f is an S-increasing convex mapping. Indeed,

infH Hg(x) = fG(x) and (fG)* = (HHg)*

and one proceeds as in (4.11).

The special case of Fenchel’s original result with A=1I is indeed easily
obtainable directly from the Sandwich Theorem. We may then assume (i) and
(ii) of that theorem rather than (4.7).

We finish with a vector geometric duality theorem [19] and a result on
affine minorants.

THEOREM 4.3. (Geometric Duality) Let F: X — Y and H: X — X, given by
H(x)=x+K, satisfy Theorem 3.1(b). Let K be a convex cone. Then

(4.19) inf{F(x) | x € K} = max{—F*(T)| Te K*}

whenever the left-hand side exists.

Proor: This follows directly from the Lagrange multiplier theorem and the
definitions of K* and F*. Assuming that F is lower semi-continuous at some

point of K, it is also a consequence of the Fenchel Theorem with F=F, and F,
with Gr F,= (K, 0).

The Fenchel Theorem follows from (4.19) with K=Gr A4 and F(x)=F,(x,)
+ Fy(x,).

A particularly nice applicatoon of the Sandwich Theorem is the following
form of Pshenichnii’s characterization of constrained convex optimality
without his assumption of infimal attainment.

THEOREM 4.4. Let f: X — YU {+ 00} be an S-convex function and C< X a
convex set such that either
4200 (a) intCNdomf+ &,

or

4.21) (b) CNcontf+ .



A LAGRANGE MULTIPLIER THEOREM ... 203

Then the following are equivalent:

422) (1) psinf{f(0)] xeC},
(2) There exists Te B[X,Y] and p € Y such that

(4.23) T(x)—p = f(x)—u,
and

(4.24) p < inf{T(x)| xeC}.

Proor. Apply the Sandwich Theorem to f—u and —i(- | C) (the indicator
function of C).

If fis real valued and C is given by H ~'(0) where H is a polyhedrally convex
relation, Theorem 4.4 and the Farkas lemma combine to show that

(4.25) H™'(0)Ncont f + &

is a constraint qualification for the associated convex program.

This in turn can be used to develop convex quadratic duality theory without
assuming or first showing primal attainment. Indeed this comes out for
nothing along the way.

5. Conclusion.

Many other separation and duality results can be formulated in this vein.
The main contention of this author is that armed with Theorems 3.1 and 3.2 in
their present state of generality it is generally very easy to establish any
particular result that one wishes to. One advantage of Theorem 3.1 over an
equivalent, perturbational development ([22]) is that our Lagrange multiplier
theorem retains the intuition of its functional progenitor and has considerable
suggestive value. Moreover, many manipulations are simplified by using
topologized relations as the proofs of section three indicate. Indeed certain
unifying notions such as openness of constraint sets really only make sense in
this generality.
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