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THE CROSSING NUMBERS OF SOME GENERALIZED
PETERSEN GRAPHS

GEOFFREY EXOO, FRANK HARARY and JERALD KABELL

Abstract.

The generalized Petersen graphs P(2n+1,2) are shown to have crossing
number 3 when n=3.

1. Introduction.

The generalized Petersen graphs P(m, k) were first studied by Coxeter [3],
and Bannai [1]. Their line chromatic number y' was investigated twice:
Watkins conjectured in [ 7], and Castagna and Prins proved in [2] that of these
only the Petersen graph P itself is in class 2, that is, Y’ =4+ 1=4. All other
P(m, k) are in class 1 so that y'=3. Thus this gives still another characterization
of P; see [6].

We write uAv to indicate that points u and v are adjacent in a graph. For
m=3 and 1 £k<m we define the generalized Petersen graph P(m, k) as follows:
its point set is U U W where U={uy,...,u,}, W={wy,...,w,}; its lines are
given by (1) u;Aw;, (2) w;Au;.y, and (3) wiAw; ., all for i e [1,m]={1,...,m},
with addition of subscripts modulo m.

It will be useful to call the subgraph induced by U the u-cycle, and that
induced by W the w-cycle. We also refer to u-lines, w-lines and uw-lines, with
the expected meanings. Let the line uu;, , be denoted by ¢, ww,,, by f;, and
uw; by g, Otherwise the notation and terminology of [5] is used.

Our object is to determine the crossing numbers for the subfamily P(m, 2) of
these graphs.

2. Crossing numbers.

As the graphs P(m, 1) are prisms C,, x K,, they are planar. One can easily
verify that for even m=2n, P(2n,2) is also planar for each n. It is well known
that the graph P(3,2)=K;x K, is planar, and that the Petersen graph
P=P(5,2) has crossing number v=2. Thus we can concentrate on the graphs
P(2n+1,2), n=3.
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As usual for crossing numbers we obtain an upper bound by producing a
drawing in the plane. Figure 1 shows P(7,2) with three crossings, a
construction which clearly generalizes to P(2n+1,2).

Fig. 1. v(P(2n+1,2))<3.

LemMA 1. Every generalized Petersen graph P(2n+1,2) has crossing number
v=3.

A second result is obtained by noticing that for n=3, P(2n+1,2) contains a
subdivision of P(7,2) as a subgraph.

Lemma 2. Every generalized Petersen graph (P(2n+1,2) has crossing number
vzv(P(7,2)).

We can now prove the main result. Recall that a good drawing of a graph G
is one with precisely v(G) crossings.

THEOREM. The crossing number of the generalized Petersen graph P(m,2) is

0 when m=3 or m is even,
2 for m=5, and
3 ifmis odd and m=7 .

Proor. In view of the lemmas, all that remains to be shown is that
v=v(P(7,2))=3. Of course v=2 since P(7,2) contains a subdivision of the
Petersen graph. So we assume that P(7,2) can be drawn with just two
crossings.

Clearly any uw-line can be removed from P(7,2) leaving a graph containing
a subdivision of the Petersen graph, and thereby one with v=2. It follows that
no uw-line is involved in a crossing if v=2.

We next show that no line can be in two crossings. As the automorphism
group of P(7,2) is transitive on u-lines, on w-lines, and on uw-lines, it will
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suffice to show that we can remove at least one line of each type and leave a
nonplanar graph. In Figure 2 this is shown. The same figure shows that two
consecutive u-lines are not in crossings if v=_2. Hence if-v =2 the u-cycle does
not cross itself twice.

Fig. 2. A subdivision of Kj .

One can also remove three consective w-lines and leave a graph containg a
subdivision of K3 3, as shown in Figure 3. Thus no more than two w-lines are
in crossings, and if two w-lines are in crossings, then they are at distance 3 in
the line graph L(P(7,2)).

Fig. 3. A different subdivision of K; .

There are now two possibilities: (1) both the u-cycle and the w-cycle cross
themselves, or (2) the u-cycle crosses the w-cycle.

Case 1. Let P’ be the planar graph obtained from P(7,2) by including the
crossing points. Then P’ has 25 lines and 16 points, and is 2-connected. Euler’s
formula tells us that P’ divides the plane into 11 regions. There are four regions
bounded exclusively by u-lines or exclusively by w-lines. These four regions are
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bounded by a total of 18 lines. Every other region has at least 5 lines on its
boundary since the girth of P(7,2) is 5. We now count the pairs (e, R), where e
is a line on the boundary of region R. Let C be the number of such pairs. Then
each line of P’ bounds two regions so C=25 x 2= 150. But there are seven other
regions since there are a total of 11 so C=18+7 x5=53, from the above
arguments. This contradiction dispenses with Case 1.

Cask 2. In this case we know that the u-cycle crosses the w-cycle and the w-
lines in the crossings are at distance 3. So without loss of generality we can
suppose that there are three w-points exterior to the u-cycle and 4-points in the
interior. And if v=2 we can take the three exterior points to be w,, w, and w,.

Wy

v

Fig. 4.

Thus we must have Figure 4, where we have labeled three regions 4, B and C.
Now f5 must cross the boundary of B U C since wj is in the interior of B U C.
And because wy is interior to A U B, f, must cross its boundary. But as we have
seen, v=_2 implies that no two consecutive u-lines are crossed. So f, must cross
e¢ and f5 must cross e, in order to have v=2. But then f, must cross f5 so v=3.

3. Comments and problems.

Since the graphs P(2n+1,n), P(2n+1,n+1) and P(2n+1,2n—1) are all
isomorphic to P(2n+ 1, 2), the crossing numbers of all are now established as 3
for all n=3. Thus the smallest unknown case is P(8, 3). Beyond this, P(8,4) is
easily seen to be a subdivision of the Mobius ladder Mg, and in fact P(2n,n)is a
subdivision of M,,. Since Guy and Harary [4] have established the crossing
number of all the M&bius ladders to be 1, we also have v(P(2n,n))=1 for n= 3.

The determination of the crossing numbers of the remaining generalized
Petersen graphs remains unsolved.
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