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ON h-BASES FOR n

OYSTEIN J. RODSETH

1. Introduction.

The sum A + B of two non-empty integer sequences A, B is defined to be the
sequence of all distinct integers of the form

a+b, aeA beB.

The sum of more than two sequences is defined similarly. In particular, for a
positive integer h, we write hA for the h-fold sum A+A4A+ ...+ A.
We shall be concerned with finite integer sequences
B,: 0=0by<b < ... <b,
and their duals
Bf: 0=0>bF <b¥ < ... <bf,
where
b¥ = b,—b,_;, i=0,1,... k.
Note that gcd B, =gcd Bf (k=1).
If an integer M has an integral representation

M = bx,+byx,+...+bx, x,20,

3

we shall say that M is dependent on B,. If gcd B, =1, it is well known that every
sufficiently large integer is dependent on B,. In this case we denote the largest
integer not dependent on B,, the Frobenius number of B,, by g(B,) or by
g(by, by,. .., by
For integers a,b we use [a,b] to denote the set of integers in the interval
a<x<b. We also use [x] to denete the integral part of a real number x.
An integer sequence

(1.1) A, 0=ay <1 =a; <a < ... <aq

is called an h-basis for a non-negative integer n if [0,n] = hA, (Rohrbach [15]).
In this paper we consider the h-range n(h, A;) of A, (“die Reichweite von A4,
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166 OYSTEIN J. RODSETH

beziiglich h”), which is the largest n for which A, is an h-basis. Thus 4, is an
h-basis for n if and only if 0<n=<n(h, A)).

In the literature, the h-range has been considered from two different points
of view, named the local and the global case by Selmer [18]. In the local case, h
and A, are considered as given, and the problem consists in determining
n(h, Ay). In the global case, h and k are considered as given, and the problem
consists in determining the extremal h-range

n(h, k) = maxn(h, 4,) ,
Ay
and also the corresponding extremal bases, i.e. the bases A, for which n(h, k)

=n(h, Ay). In this paper we shall mainly be concerned with the local problem.
Given the sequence (1.1), k=1, we write A,_, for the sequence

Ay 1 0=gy < ay < ... < a_, .
We define hy=hy(A,) to be the smallest positive h for which
a, < n(h, A),
or, equivalently, as the smallest positive h for which
a, < nh, A )+1.

Putting n(0, 4,)=0, we then have n(h, 4,))=n(h, A,_,) if 0Zh<h,.
We trivially have n(h, 4,)=h. Thus h,(A,)=a,— 1. Stohr [20] showed that

(1.2) n(h,A,) = a,(h+3—ay)—2, h = hy—1,
from which it also follows that

as
(1.3) hy(A3) = a2+|:—:|—2 .

a,

Meures [11] was the first to discover that there is a connection between the
h-range and the Frobenius number: Given A,, if h is sufficiently large, then
(14) n(h,4) = ah—g(A4¥)—1.

Let h; =h,(A,) be the smallest h= h, — 1 for which (1.4) is valid. Then (1.4) is
true for all hzh;. (For details, see Section 2.) In particular we have h,(4,)
=hy(4,)—1=0, and since

g(4) = a3—3a,+1,

we also have, by (1.2), that h,(4,)=hy(A4,)—1.
Hofmeister [5] introduced a special type of h-range called regular. An
integral representation
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(1.5) M = ajyri+ayr,+ ... +ar, 120,

l

is regular if
j
Yoar; < ajyy, j=12,00 k=1,
i=1

Thus, to represent M regularly, g, is used a maximal number of times, then
a,_, is used a maximal number of times, and so on.

Now, the regular h-range of A, is defined as the largest n for which all
integers M, 0= M <n, have a regular representation (1.5) with r, +r,+ ... +r,
<h. The regular h-range of A, was completely determined by Hofmeister [5,
Satz 1].

For each positive integer M, let A (M) denote the least number of elements of
A, with sum M. Also, put A(0)=0. Then M € hA, if and only if A(M)<h.

If, for each M =0, we have

A(M) = i i

where the r; are those appearing in the regular representation (1.5) of M, then
the basis A, is called pleasant (“angenehm”).

For certain sequences A, the h-range equals the regular h-range. In
particular, this is so if A, is pleasant. In this case we have h,(4,)=hy(4,)—1
(Meures [11]). Some sufficient, but very restrictive, conditions for A4, to be
pleasant have been given by Zollner [23], Hofmeister [ 7], [8], and Djawadi [3].

In particular, put ay=gqa, —s, 0<s<a,. Then A; is pleasant if and only if
s<gq (Djawadi [3]), and Hofmeister’s result on the regular h-range gives us

(1.6) n(h, Ay) = a3(h+1—h0)+a2[3—3]—2, hzhy—1.

2

This result also contains some of the special results on n(hy, 43) given by Salié
[16].

In the case where Djawadi’s condition s < g is not satisfied, and algorithm for
the computation of n(h, A;) has been given by Windecker [22]. From these
results it follows that

nth+1,4;) = az+n(h,A;) for all hzhy,

which is equivalent to h,(A4;)<hg(A4;). Using (1.4) and the result on the
Frobenius number given in [13] (and also by Siering [19]), we get other
algorithms for n(h, A5), which are simpler to apply than that of Windecker.

Unfortunately, in spite of several missing details, Windecker’s proof of his
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algorithm is very long; it is also rather difficult to follow. In this paper we give
a shorter and simpler deduction of the main facts about n(h, 4;).

Most of the previous authors on this subject have been concerned with the
global problem. Apart from some tabulated values of n(h, k) for small h and k
(see Mossige [12] for some results and further references), the exact value of
n(h, k), however, is known only for k=1 (trivial), k=2, k=3, and for h=1
(trivial).

Stohr [20] showed that

2
n(h,2) = [h_%_]

and that the corresponding extremal bases are given by 0, 1, (h+ 3)/2 if h is odd,
and by 0,1, (h+3+1)/2 if h is even. (This is an easy consequence of (1.2).)

Hofmeister [6] solved the global problem for k=3 and h greater than some
effectively computable constant. Hertsch [4] showed that Hofmeister’s results
are valid for all h=500. Recently, Hofmeister [9] showed that his results are
valid for all h=200, and using the Univac 1110 at the University of Bergen,
Mossige [12] showed that Hofmeister’s results are also valid if 23<h <200.

Using Theorem 1’ of this paper, we can show that Hofmeister’s results are
true for all h=96. In our proof, the v defined in Section 3 plays the role of
Hofmeister’s “s-Stelle”. But apart from this difference and some simplifications,
our proof and that of Hofmeister [6], [9] (giving h = 200) are rather similar. In
this paper, therefore we are content with giving a lower bound for n(h, 3), which
is an easy consequence of Theorem 1'.

2. The connection with the Frobenius number.
Let N;=N(h, 4;) be the smallest non-negative integer which is =/ (mod a,)
and does not belong to hA,. Then.

2.1 n(h,A,) = min N,—1,
lelL

where L is some complete residue system modulo g,.

Recalling the definition of A given in Section 1, we have A(N))=h+1. On the
other hand, if N;=a,, then —a,+ N, € hA,, so that A(N)<h+1. If N,<a,,
then h<h,, and A(N)<h,. Thus

(2.2) ANN) = h+1 if h=hy—1.

Let t*=1t,(A¥) be the smallest integer which is =/ (mod a,) and dependent
on A} Then t}* has an integral representation



ON h-BASES FOR n
k-1
)
(2.3) =) af x x=0.
i=1

By a lemma of Brauer and Shockley [2], we also have

(2.4) g(A¥) = —a,+maxt}.
lel

Now, let x; be non-negative integers such that

M=
Rol

k
N, = Z ax;, A(N) =
i=1 i

I

1
Then, using (2.2), we get

k-1

2.5 N, =a(h+1)—= 3 a¥f x, h=hy—1.

i=1

Since

we have, by the definition of ¢,

k-1
Y oakx; = aw+tr, w

i=1

v
=

Hence, by (2.9),
N, = agh+l-w—t*, w
and, by (2.1) and (2.4),

%

0,

(26) nhA) < ah—g(AH)—1, h =z ho—1.

On the other hand, for some integer u we have
N, = qu—t*,
so that, by (2.3),

k-1
ax{™h.
1

k-1
N, = ak<u— 5 xs—'>>+
i=1

i=

Hence, if
k-1
-1
N, = Z aixi‘ ',
i=1

then

169
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h+1 = AN) = u,
and
N, Z2 ap(h+1)—1*,.
By (2.1), (2.4), and (2.6), we now get

LeMMA 1. Given A, and h=hy— 1. For each non-negative integer M, satisfying

k-1
M < —a+ ) axi™™,
i=1

suppose that M € hA,. Then
@27 n(h, Ay) = ah—g(4¥)—1.

The x{~™ depend only on the residue of M modulo g, Hence, if h is
sufficiently large, then Meure’s formula (2.7) is valid. Thus there is a smallest

h=hy—1 for which (2.7) is true. We denote this smallest h by h, =h,(4,).
By (2.2), we have

Ny(h+i,4) 2 ai+Ny(h, Ay), =0, h = hy—1.
Hence, by (2.1),
(2.8) nh+i,4) 2 ai+nh,A), =20, h=hy—1.
Now, if h=h, +i, i=0, then
n(h,4) 2 ai+n(hy, A) = aqh—g(45H—1.

In combination with (2.6) this gives us
ProposiTion 1 (Meures [11]). Given A,, then (2.7) is valid for all h=h,.

As mentioned in the Introduction, if k=3, then h, <h,. However, by an
example we now show that if k>3, then the situation is rather different.
We may alternatively describe h, as the smallest h=h,—1 for which

[0,ath—g(AF)—1] € hA, .

Since M € hA, if and only if gqth—M € hA}¥ (Meures [11]), we may dually
characterize h, as the smallest h=h,—1 for which

[g(AH)+1,aqh] < hAY .
In particular, if af =1, then g(4})= —1, so that
(2.9) hy

v

a¥—1=a,—a,_,—1 ifhy = 2.
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Now, given hy=2, k=3, take 4, to be the sequence
0,1,2,.. ., k=2, (k—2hy+1, (k—2)hy+2 .
Then hy=hy(A,), and by (2.9),
hy—hy = (k=3)(hy—1).

(This relation is, in fact, valid with equality.)

Hence, for each k24 there exist sequences A, for which the difference h, —h,,
is greater than any given integer.

We shall, however, give some upper bounds for h, in terms of h, and A4,.
For this purpose, we require the lemma below.

LEMMA 2. Given A, and W' Zhy— 1. Then the following three statements are
equivalent

(i) nth+1,A)=a,+nh,A,) forall h=zh;
(i) A(ag+nh,A)+1) = h+2  forall hzh';
(i) W =h,.
Proor. Since
A(nth+1,4)+1) = h+2,
(i) implies (ii).
Assuming (ii), we get
ai+nh,A4) = n(h'+i,A) forall iz0.
Hence, if i is sufficiently large, then, by Lemma 1,
ad+nh,4,) =z a (' +i)—g(4¥)—1,
and, by (2.6), (2.7) is satisfied for h=~H". Thus (iii) is true.
Finally, (i) is an obvious consequence of (iii).
In particular, if 4, is pleasant, then
Alg+M) = 1+A(M) for all M20.

Hence the statement (ii) of Lemma 2 is satisfied for ' =h,—1. Thus h; =hy,—1,
as mentioned in the Introduction.
Since A4, is always pleasant, this gives us

n(h,Ay) = ay(h+1—=ho)+n(hg—1,4,), h2hy—1;

that is (1.2). (It is, of course, possible to give a much simpler direct proof of

(1.2))
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Next, suppose that hy— 1 =h<h,. By (2.6) and the definition of h,, we have
(2.10) ag+nthy—1,4A)+1 e h 4, .
Since n(h, —1,4,)+ 1 ¢ (h, —1)A,, the left hand side of (2.10) does, in fact,
belong to h,A,_,, so that
ag+nh, ~1,A)+1 = a,_1h, .

Now, using (2.8), we get
alhy—m+n(h,A)+1 £ a,_hy,

so that
nh,A4) = a_y(h+1)—a—1.

Thus we have, as discovered independently by Selmer [18],

ProrposiTION 2. Given Ay; if h=hy—1, and
n(h’Ah) = ak'l(h+1)—ak )

then h=h,.
Putting ng=n(h,—1,A4,_,), we have the

CoroLLARY 1 (Meures [11]). Given A,, then hy =hy,—1, or

b < [ak(ho—-l)—no—l:l
) £ .

A —dy -y

Proor. If h=h,—1, then, by (2.8),
n(h,A,) = alh—ho+1)+n, .
Hence, if
(2.11) ayh—ho+1)+ny, 2 a,_(h+1)—a,,

then, by Proposition 2, we have h=h,.

Since, (2.11) is equivalent to
I:ak(ho— 1)—ny— 1]
Ay — a4 ’

Using the trivial bound ny2 hy,—1, Corollary 1 gives us

h

v

the result follows.
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h1 < max{ho_l’l:(ak—1)(h0—1)—]:|}_
a,—a,

It is easily seen that the second argument dominates for h,>2, k>3. Hence

—1)(h,—1) -1
2.12) h, < [(“" ko —1) ] he22, k=3 .
Ay — g
From the trivial bound
(2.13) ho £ max {a;,,—aqa;}, k=2,
15i<k

it follows that hy<a,—k+ 1. Thus, by (2.12), we also have
h, < |:(ak“ D) (a,—k) -1

A —ag—y

], ay>k>2.

This bound is usually far too large. However, it does not depend on any
h-range, neither directly (the n, above) nor indirectly (through h).
Next, put

d; = ged(a;,...,a), i=12,... k-1;
de = a, dyyy = 0;

k d;’
B = ‘_; ai< df‘—l).

Then, if M > B,, we have by the theorem of Weidner [21],

and let

Ala+M) = 1+ A(M).

Hence, by Lemma 2, we have the
PrOPOSITION 3. Given A,; if h=hy—1 and n(h, A)2 B, then h=h,.

Since g(A4,)< B, (Brauer [1]), we have —1=f,, so that
ho—1 < h0+[u], k2.
ax

In combination with (2.8), Proposition 3 thus gives us

COROLLARY 2. Given A,, k=2, then

—h
h, < h0+[§—"——ﬁ].

ay
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Moreover, we have
k-1
B = Z a1 divy—d)—a, = a_a,—a,_—a
i=1
(with equality if d,_, =1), so that Corollary 2 gives us
CoROLLARY 3. Given A,, k=2, then hy<hy,+a,_,—2.
Finally, in addition to the trivial bound (2.13), we now prove the

ProrosITION 4. Given A,, k=2, we have

=2
(2.18) he < 1+ max [L]

1gi<k i

Proor. Let a,(M) denote the number of positive integers in hA, not
exceeding M. Then
oM)y=i ifasM<a,, i=12,..,k-1.
Denote the right hand side of (2.14) by h'. Then
Hoay(M)zM for M=1,2,...,a,—1,

and as an easy consequence of “the counting number form” of the (x+ f§)-
theorem of H. B. Mann (or, directly from Dyson’s theorem; see Mann [10,
Chap. 3]), it follows that o, (a,—1)=a,—1; that is [0,a,—1]< k' 4,. Hence
hoZHh.

REMARK. Some of the results given in this section may also be extended to
sequences 4, : 0=ay,<a, <...<a, where a, is an arbitrary positive integer,
and ged 4, =1.

In this case we assume h to be so large that g(4,)+ 1 € hA4,. We then define
n(h, 4,) as the largest n for which

[g(4)+1,n]  hA, .

If h is sufficiently large, then (2.7) is valid also in this case. It is also possible
to prove that

lhA,| = n(A4)+n(A¥), h large,

where |;174_,:| denotes the number of integers in the relative complement of
hAy in [0,a,h], and n(A4,) (not to be confused with the h-range of A4,) is the
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number of non-negative integers not dependent on A,. (For some results on
n(A4,) and further references, see Selmer [17] and Rodseth [13], [14].)
In particular, it is a simple matter to show that

IhA| = n(4;)+n(43) = 3~ Da=2), hza,-2,
where the abscence of a; is easily explained by considering the mapping
a\x+a,y = x+a,y, 0x<a,.

Let us again assume that a, =1, and let h, =h,(A4,) be the smallest h=>h,—1
satisfying

(2.15) lhA,| = n(A¥) .

Then (2.15) is true for all h=h,. We have h, > h,. However, Propositions 2 and
3 with their consequences remain valid when h, is replaced by h,. It is also
possible to prove, using the results of the following two sections, that h,(A4;)
<hy(A,). (For the value of n(A¥), see Rodseth [13, Th. 2].)

3. Preliminaries on k=3.

We now consider the sequence A;: 0=a,<1=a, <a, <a;. Puttingay;=s_,,
a,=s,, we shall use the Euclidean algorithm in the form (cf. [13])

S-1 = 4150~ 51, 0=s;<s9
So = (251 —Ss, 0<s, <5,
51 = 435,53, 0=s53<s,

Sm-2 = mSm-1—Sm 058, <Sm-

Sm—1 = qm+15m 0=5S,41<Sp-
We also recursively define integers P, Q;, R, for i=—1,...,m+1, by
(3.1 P,y = ¢ Pi—Pi-y, Po=1LP_ =0
(3.2) Qivy = 4i412i=Qi-1y Qo =00, = —1

Ry, = ¢i+1Ri—Ri—-;, Ry =a,—-1, R, =a3—1.

Now,
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Am+1

where the ith convergent is given by

-1 -1 _ P
G At O
and where ged (P;, Q;)=1, because of the relation

PO —Pi Q=1 i=—1...,m.

In particular, we thus have P, =0a3/Sp Qumi1=02/Sm
For later references, we also list the following easily proved formulae:

q1+ i=1,...,m+1,

(3.3) a;Q; = a,P;—s;
(3.4) azR; = (a3;—1)s;— (a3 —a,)P;
3.5) 5:0i+1—5+1Q; = a, .
Since ¢;=2, we have P,<P;,, 0;<Q;., and R;,; <R; We also have
(3.6) R; = Q;—P;+s;,
and
3.7 —sl(as—al) = R,+1<...<Ry =a,—1.

m

Hence there is a unique integer v =v(A;), 0<v<m, satisfying
(3.8) R,,, S 0<R,.
For —1=Zi<m, we define subsets X, Y; of the fundamental point lattice by
X; = {(xy) | 0=x<s;—541, O=Sy<Pi}
Y, = {(x,y) ' 0<x<s;, O0=Zy<P,,,—P;}.
We shall say that two lattice points (x,y) and (x',)’) are congruent if

x+a,y = x'+a,y (moda,) .
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It is easily seen that X;U Y; contains just a; elements. We continue to show
that these a; elements are incongruent.

Lemma 3. If (x,y) € X;_,UY,;_, 0Si<m, then the lattice point

(39) y) = <x_s,.H, y+p,.[f])
S s;

belongs to X;U Y, and is congruent to (x,y).

Proor. By (3.3), we have

| =

X' +ay = x +a2y+a3Q,-[

wn

Hence (x',)’) is congruent to (x, ).
We now show that (x',)") € X;U Y, Clearly, 0=x"<s;. If (x,y) € X;_,, then

S, —s;—1
y < Pi‘*‘Pi[_—l_sf”‘”:l =P —(Pi—=P_y) < Piyy,

since [(s;-—1)/s]=¢;+,— 1.
If (x,y) € Y;_,, then

=1
y < Pi“Pi~1+Pi|:Sl ;*] =Py

Thus we have
(3.10) 0sx<s and 0=y < P,,.
Let us now assume that x'>s;—s;,, and y 2P;,, — P, If (x,y) € X;_,, then

X X
Pi,y—P = y“ﬁpi[;il < Pi“’"Pi[S_:"

3

so that g;,, —2<[x/s;], which gives us

X
x = x’+si[~] 2 5= Sip1 +5(div1—2) = sioy— S
a contradiction.

If (x,y) € Y,_,, then

X X
Piyy—P; = Y“‘Pi[g'] < Pi—P.-—1+P,.[;],

Math. Scand. 48 — 12
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so that g;,, — 1 <[x/s;], which gives us

, x
X =x +si[—:| Z 8= Siv1 +8i(giv— 1) = 5o,
i
and again we have reached a contradiction.
Hence we have x'<s;—s;,, or y'<P;,,— P, which, in combination with
(3.10), shows that (x',y) e X;UY..
Because of Lemma 3, for each i=0,...,m, we may define a function

Q: Xi“l U Yi—l g XIU Y.'

by putting ¢(x,y)=(x',y"), for (x,y’) given by (3.9).
If (x,y) e X;_,UY,_,, then [x/s;]=[y/P;].- Hence ¢ has an inverse

et X;UY, - X,  UY_,

ey = (sl 2l v—pl 2
on - (efgo-+f)

Thus ¢ is a bijection, and, by Lemma 3, ¢ also has the property that if
(x,y) € X;_,UY,;_,, then (x,y) and ¢(x,y) are congruent lattice points.

given by

Since
X_,UY_, ={(x0] 0=x<ay},
it follows that X ;U Y; consists of a; incongruent lattice points. Thus the set

{x+ayy | (x,y) e X; U Y}

forms a complete residue system modulo a; for each i=—1,...,m.
Now fix r,0<r <a;. Let (x;,y;) be the unique lattice point in X;U Y; which is
congruent to (r,0), i=—1,...,m. Then
Xi-1 .
@311 Xi+a); = Xy +ayyi-y +a30; ot i20.

Recalling the definition of t}*=t,(A¥) given in Section 2, we now prove

LemMma 4. We have t*,= (a5 —1)x,+ (a3 —a,)y,.

Proor. A more general result is proved in [13]. However, for the
convenience of the reader, we include a proof of this lemma.
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By the definition of t*, there are non-negative integers x,y such that
(3.12) t¥, = (a3 —1)x+(a;—a,)y .

We choose such a pair (x,y) for which y is minimal.
By (3.4), we have

t*,—a3R, = (a3—1)(x—s,)+ (a3 —a,)(y+P,) .

Since R, is a positive integer, and t*, is the smallest integer = —r (mod a;) with
a representation (3.12), we have x <s,.
Similarly,

t*,+a3R, 1 = (a3—D)(x+s,4)+ (a3—a))(y—P,y),

and if R, <0, then y<P,,,. Also in the case R,,, =0, we have y<P
because of the minimality of y.
Finally,

v+1»

t’f,—a3(Rv—R,,+1) = (a3—1)(x—sv+sv+l)+(a3~a2)(y+Pv—Pv+l) s

so that x<s,—s,4, or y<P, ., —P,.
Hence (x,y) € X,UY,. Since x +a,y= —t*,=r (mod a,), we thus have (x, y)
= (Xp Vo)-

For hy=hy(A;) given by (1.3), we now prove the

LEMMA 5. For 1 <i<v, we have
(3.13) Xi-1+Yio1+Qi—1 S hy if PSs;
(3.14) X;+yi+R;—=1 £ hy if P;>s;.

Proor. For m>1, we have s, >0. Hence, by (1.3), hy=a,+q, 3.
Put

vi= max {x+y} = §—s+Piyy -2
(x,y)eX,

5- = max {x+y} = si+Pi+l_Pi_2'
(x,y)eY;

We first prove (3.13) and therefore assume that P;<s,;. Then y;_, <J,_,, and
it is sufficient to show that

(315) 5i—l+Qi_1 §. hO'
By (3.5), we have

ho—6;1—Qi+1 = (Qi=1)s;-y— Q- ;= P;+P,_ —Q;i+q, ,
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and, since s;_; =s;+1,
ho—0;_1—Qi+1 2 (Qi—Qi_y—)s;—P;+P,_;+q,—1.

Using the assumption P;<s;, we further get

i= n

(3.16) ho—0;_1+0Q;+1 =2 (Q;—Q;_,—2)P;+P;_,+q,—1.
If ,—0Q,_,—2=0, we thus have
0i_1+Q;—1 = hy—q, .
IfQ,—Q,_,—2=< -1, theni=1or g,=...=q;=2. Hence
(3.17) Qi =j P;j=(q—-1j+1 for 05j=i,

and the right hand side of (3.16) equals 0. This completes the proof of (3.15).
In the proof of (3.15) we did not explicitly use the assumption i < v. However,
it follows from (3.6) that the conditions i=1 and P;<s; imply i<v.
Next we prove (3.14) and therefore assume that P;>s;. Then y,>;, and
it is sufficient to show that

(3.18) yi+Ri—1 =< hy .

By (3.5) and (3.6), we have

ho=yi=Ri+1 = (Qis1—=2)5; = (Qi—sisy —Pisy — Qi+ Pitqy
and, since s;,; <s;,—1, we get
ho—7i—Ri+1 2 (Qi41—Qi—)si— Py +Pi+q,— 1.
Since i<v, we have R;=1 by (3.7) and (3.8), so that, by (3.6), s;,=21+P,— Q..
Hence, using (3.1) and (3.2), we get
(3.19)  ho=y—Ri+1 2 (¢i+1(Qi=1)—=Qi= Qi) (P;— Q) +
+P_,—Q; 1+q,-2.

Thus, if ¢;,,(Q;—1)—Q;—Q;_, =0, then (3.18) is true.

Since P;>s; and v= 1, we have i=2. Hence, if ¢;,,,(Q;—1)—-Q,— Q;_, = — 1,
then q,=...=¢;,,=2. Thus, by (3.17), the right hand side of (3.19) equals 0,
and (3.18) is true also in this case.

4. Determination of n(h, 4,).

We now prove that if k=3 and h= h,, then the hypotheses of Lemma 1 are
satisfied. In the notation of the preceding section, by Lemma 4, we then have to
show that for each r, 0 Sr=<a,, the sequence
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4.1) r<r+4a; <r+2a; < ... < x,+a,y,—d;

is a subsequence of hyA4;.

If v=0, then the sequence (4.1) is empty, and h,=h,—1. We therefore
assume that v>1.

By (3.11), we have
P = Xg+ayy £ x1+ay; £ ... S x,+ayy,.

Given i, 1 £i<v, suppose that x;_, =s;,. We then show that the integer

X;_
M= x;_+ayy,_+azz, 0=z< Q;['Tl],

belongs to hyA;.
Put

z = Q[i]-{%’
~ Sl

By (3.3), we then have M =x'"+a,)’ +a,z', where

’ Z ’ Z ’
X = xi-l_sil:@jl g 0, y = yi‘l+Pi|:@:|’ 0 § z < Qi'

and

x/+y/+z! é x,‘—]+yi*1+(Pi—si)[é]+Qi—l .

If P,<s, then

xl+y(+zl < xi__1+y,'-1+Q,“‘l .

Since z<Q,[x;_,/s;] and (x;,y;)=@(x;-,yi-1), We get, using (3.6),

X+y+z £ xi+y+R—=1 if P>

In both cases we have, by Lemma 5, that x'+y +z' < h,, as required.

THEOREM 1. We have
n(h,A;) = ash—g(A¥) -1  for all hzh,,
where h is given by (1.3).

By (2.4) and Lemma 4, this theorem may be given the more explicit form:
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THEOREM 1'. In the notation of Section 3, we have
n(h, A;) = az(h+1)—(a;—1)(s,—1)— (a3 —a,)(P, . —1)
+min {(a;—1)s,4(, (a3 —a,)P,} —1

for h=hy, where v is determined by (3.8).

More briefly, Theorem 1 states that h,(4;)<hy(A;). If v=0, that is if
Djawadi’s condition s, < g, is satisfied, then we know that h,(4;)=hy(4;5)—1,
and Theorem 1’ coincides with (1.6). If v = 1, it is not difficult to see that h, (A45)
+hy(A3)—1. Thus hy(A43)=hy(4;) if v=1.

For relatively prime positive integers a, b, ¢, an algorithmic formula for the
Frobenius number g(a,b,c) was given in [13]. Using Th. 1 in [13], we
then get Theorem 1’ from Theorem 1, by putting a=a,, b=a;—1, c=a;—a,.
Similar algorithmic formulae for n(h, A,) arise by pairing a,, a; — 1, a; —a, with
a, b, ¢, in other ways. (See Selmer [18].)

Suppose that h =2, and let ,y be integers satisfying 2<y<f, 28 <h+2. Put

a, = 2f—y+1, a3 = a,y—f.

Then q,=y, s,=p, =2, s=y—1, Ry=1-y+f21, R,=2-y=0, so that
v=1, and Theorem 1’ gives us

(4.2) n(h,A3) = ay(h+5-B—7)-2(f—7+2),

which shows that Hilfssatz 1 of Hofmeister [6] is valid with equality.
Hofmeister (Satz 2) made the following choice:

_ [4h+1) 2k
ﬂ—[ 5 ]+2,V—[9]+2.

Now, for h=18, (4.2) gives us

n(h,A;) = §&h>+3h* +eh+e, ,

where the coefficients ¢,, &, depend on the residue of A modulo 9.
It is now known (cf. Section 1) that this choice of A, gives us the unique
extremal basis for each h=23.
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