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NIELSEN METHODS IN GROUPS
WITH A LENGTH FUNCTION

A. H. M. HOARE

Many theorems have been proved using cancellation arguments in groups
for which a normal form theorem holds. Here we prove a general theorem on
groups with an integer valued length function satisfying three of the axioms
given by Lyndon ([2]) and show that a large number of cancellation theorems
are special cases or immediate corollaries of this theorem.

In section 1 we give definitions and preliminary lemmas. In section 2 we
prove the main theorem and two corollaries and in section 3 we give some
applications. Further applications will appear in a later paper.

Let G be a group, with identity e, which has a normalized integer valued
length function, that is a function x +— |x| satisfying

Al’. |e|=0,
A2 |xl=|x"1,
and

A4, d(x,y)>d(y,z) implies d(x,z)=d(y,z),
where
2d(x,y) = |x|+lyl—=Ixy~ 1.

[Intuitively d(x,y) is the length of: the largest common terminal segment of x
and y.]
As observed by Lyndon ([2, p. 210]) A4 is equivalent to

d(x,y) = min{d(y,z),d(x,z)}
and to

d(y,z),d(x,z)

m  implies d(x,y) = m .

[\
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It can also be shown easily that Al’, A2, and A4 imply
IX| 2 d(x,y) = d(x,y) 2 0.

Let X! be a subset of G. A word in X*! is a sequence x; ...x, n=0,
with x; in X*!. A reduced word is one in which x;,,+x;!. A subword is a
subsequence, proper or not, of consecutive elements of the sequence. The
inverse of x, ...x, is x, 'x,; ... x;!. We do not distinguish in notation
between a word and the group element given by the corresponding product.

DEeFINITION. A reduced word xox, ...Xx,,, is a sink if

[X0X1 . Xpl > |XoX1 « - Xpayl

and no proper subword or its inverse satisfies the corresponding inequality. A
reduced word is sink-free if no subword or its inverse is a sink.

The following extends the Lemma in [1].

LemMma 1. If every proper subword of the reduced word w=xoX; ... X, is
sink free and if

wl < max {|xol, Ixyl,. . ., 1%, 4]}

then

IXiXisq - le = max {IxiL D 7P IR ','|}

for all proper subwords xx;.,...x; If strict inéquality holds then
[Xol Z x1ls- - oy 1Xnl S 1xp 44

ProoOF. Let p;=xyx;...x; and ¢;=x;4,...X,4, for i=0,1,...,n Since
every proper subword is sink free we have, for i=1,2,...,n,

lpil 2 max{|P1-1|, |xi|} s
1)

|g: -4l 2 max{lqil’!xi’} s

and by induction

(2) lpl| g max {|x0|7 'x1|a~ ey ‘xil} 5
|qi—ll g max{lxil’ |xi+1|,' . '7‘xn+l‘} B
If
3) Pl +1qi- 11 > [Pi— 1]+ gl

for some k=1,2,...,n then
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2d(poxi) = 1Pl +1xid = 1Py
> 1qul + 1 = g - 1
= 2d(q; ', x)) .
Therefore, by A4, 2d(p,,q; )=2d(q; !, x,) that is, since W=Dy
(4) Il +lael = 1wl = 1qul +1x,] = lqs- 4] -

Suppose that one of the inequalities in (1) is strict for some k, then (3) and
hence (4) holds for that k, and moreover

[Pl +1gx - 11 = Ixil > max {Ipy |, [x/} +max {|g,l, x|} — x| .

[\

1Pi— 1l lquls 1%l
so by (2) and (4)

|W| > max {,xol,lxll»- . ‘,Ixn+1,}

contradicting the hypothesis. Therefore equalities hold in (1) and hence in (2)
for i=1,2,...,n. Thus we have proved the first part of the lemma for the
proper subwords p; and g;,_,. However this means that the words gq;_,
=XX;j+1 .- Xy41, i= 1, also satisfy the hypotheses of the lemma and applying
the corresponding equalities in (2) to these words we get

|X,~XH_1 PPN le = max {|x,-|,. . .,lel}

for 1<i<j<n, which together with the result for p; and g;_, proves the first
part of the lemma for all i<j.

Now by symmetry we may assume |x,|=|x, | Then strict inequality in the
hypothesis gives

lwl < max{l-xO" 'xlls' . -9|xn+1|}

max {|xol, |x4l,. . ., x|}
= |p,l, by the first part .

Let k be the greatest integer, if any, such that either |p,|>|p,_,| or |g,_,I
>|q,), then (3) and hence (4) holds for that k and moreover

|W' < 'pnl = Ipn—ll =... = ka‘
SO
0 < Ipd—=Iwl = Ixil=la-4] by (4).

But |g,_|2|x, from (1), therefore |pj=1Ip;_,| and |g,_,/=lq for all i
=1,2,...,n. Thus using the first part
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IXol = Ipol = Ipal = max {Ixol, |xyl,. .., Ix,l}

and

|xn+l| = |qn| = |q0' = max{lxll" . '7|xn+1'} .
We now introduce Lyndon’s abstract lexicographic ordering on ideals in G.
DEFINITION. An ideal is a non-empty subset I' of G such that for any x and y
in I', z is in I’ whenever
d(x,2) 2 d(x,)) .
For any x in G and any integer i, 0<i<|x|, we put
[(x) = {yeG: 2d(xyzi},
and we abbreviate I'|,(x) to I'(x). Each I'/(x) is an ideal and we have a chain
G=Tx)2T(x)2 ... 24Hx) =TX).
[Intuitively I';(x) represents the terminal segment of x of length i/2 and I'(x)
the “right half” of x (where |x| may be even or odd).]
Given an arbitrary well-ordering of all the ideals of G, we have an induced

lexicographic partial well-ordering on the ideals I'(x) defined as follows. If |x|
=|x'| =1 then put

I'x) > rx)
whenever, in the chains
G=Ilyx)2Tx2=2... 2N x =T
G=T(x)2 MK 2 ... 2 () =TKX),
I';(x) is greater than I';(x") (in the given well-order of all the ideals of G) for
the first i for which they are not equal.
RemaARrk. I'(x)=T'(x") if and only if

2d(x,x') 2 |x| = |x].

Moreover if 2d(x, x') <|x|=|x'| then we must have

I'x) <TI'(x) or TI(x)>TI(X).

Suppose that |x|=|y| and 2d(x,y)=|y]. If r<y then by A4
2d(x,z) =2 r if and only if 2d(y,z) = r.
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That is
I'.(x) =T, for all r<Jy| .

Thus we have the following.

LexicoGrAPHIC PrROPERTY. If |x|=|x'|2|y|=|y'| and if
2d(x,y) 2 | and  2d(x,y) 2 V],
then I'(x)< I (x") whenever I'(y)<I (y').

[Intuitively this says that if the right halves of y and y’' are segments of the
right halves of x and x’ respectively, then the right half of x is before the right
half of x" whenever the right half of y is before the right half of y'.]

We now use this lexicographic partial well-order to define a partial well-

order on the elements of G as follows.
Put x<y if

@) Ix|<lyl, or
(i) xI=ly] and {Fx),F(x""} < {re.reh);

where the partial order of pairs is defined by
{Fre),rx™h < {rep),re=H
if F(x)ST'(y" and I'(x™ %)< (y~") for some ¢ n=+1.

LemMA 2. If |xy|=|x|=|y| and T'(y~Y)>TI(y) then x>xy and x+y*!.

ProOF.
) 2d(x,y™") = Ix|+yl=lxyl = Iyl
and
2d(xy,y) = lxyl+yl—Ixl = Iyl .

Therfore by the lexicographic property, I'(y~')>T'(y) implies I'(x)> T (xy).
Moreover

2d(x71 (xy) 71 = Ix[+Ixyl =yl 2 Ixyl = [x]
and so by the Remark above
rx=) = r(ey™).

Thus by condition (ii) of the definition we have x> xy.
If x=y~!, then |xy|=0=|x|=|y| and I'(y)=To(y)=G =TI (y~!) contradicting
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the hypotheses. If x=y, then |x|=|y| and from (5) and the Remark above,
ry Y=r(x). So I'(y~Y)=TI(y) again contradicting the hypotheses.

For a group with length function we now define a subset, denoted M, which
plays a central role in what follows.

DEFINITION.
= {xyeG: dx,y ) +dy,x ) >|x|=|yl}

[Lyndon ([2, p. 213-214]) showed that a free product with the usual length
function satisfies his axiom AS, that is M = {e}. More generally if G is a free
product of G, and G, with amalgamated subgroup A, endowed with the usual
length function, then M consists of all conjugates of 4 in G (see section 3).]

If X is a subset of G and w=xyX, ... X,,; is a word in X*! we define a
Nielsen transformation of X attached to w to be a replacement of an element of
X occurring in w, say x,, by x;x;,; ... x; where 0Si<k<j<n+1 and xiE!
FXj,. ., Xg—1, X415+ - -, Xjp leaving all other elements of X fixed. We denote
this by

X B XiXphg oo X

Clearly the resulting set generates the same subgroup as X. If x, >x;x; ;... x
then we say that the Nielsen transformation reduces x,.

THEOREM. Let X be a subset of G which is minimal under Nielsen
transformattons attached to a word w=xyX, ... X,4+1, X; € XEL. Suppose w
satisfies the hypotheses of Lemma 1, and is not xx™*, for x € X*!, then

@) Ixi—yl>Ixl= ... =Ix|<Ix;4 | implies
rx7)=rx)=... =rx" =r).
(ii) |xol=Ix{]=...=|x,4,| implies
IF(xg!) 2 T'(xo) = T'(x;") = T'(x,) = = T'(x;¢) S T'(Xpe1)

and, if |w|<|xol|, then w € M and either xy=x,},, or both I'(xy')=T(x,) and
Fx; ) =T (X, ).

(ii) |xo%; . .. X,4 gl <max {|xol, Ixy),. . .,|X,+4]} implies |xo|=|X,,,l, Xo=xF
for some i=1,2,...,n+1, and x,,,=xft' for some j=0,1,...,n

1
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V) I ql>1xils 1xi 41l - oo Ixj1 <IXj4 1| implies x;x;. ... x; is in M, and

2d(xi~1,xj+1) 2 min{lxi~—1|»|xj+1”'

Proor. Let n=0 and |w|<max {|xo,|x|}, then x,=x{!, for otherwise
X, > XoX, is an attached Nielsen transformation reducing x, for k=0 or 1. By
assumption x,# x; }, so x, = x, and both (ii) and (iii) hold. Conclusions (i) and
(iv) do not apply in this case. It remains to consider the cases n>0, and n=0
with w=max {|x|, |x,|}.

Suppose |x,_;|=|x,| then, using Lemma 1 in the case n>0, we have

(6) -1 X = Ixe—q] 2 |xil

If I'(x;')>TI(x,), then by Lemma 2, x,_,>x,_,x, and x,_,+xt! so
Xx-1 M X, _1X, is an attached Nielsen transformation reducing x,_,, which
contradicts minimality. Thus |x,_,|=|x,| implies I'(x, !)<I'(x,). Similarly, if
X %44l then T'(x;YH=TI(x,). Moreover if |x,_,|=|x,/, then we have
equality in (6), and hence by the Remark in section 1, I'(x,_,)=1I(x;").
These three facts prove (i) and the first part of (ii).

Suppose |w|<|xo| and I'(xg')>T(xo)=...=I(x;}) then xo+xf!,...,
xtlx, . If xo%x,}, then x,+> x,...x,,, is an attached Nielsen
transformation which reduces the length of x, contradicting minimality, so
Xo=x, ;. Similarly if I'(x,},)<I'(x,+,), then xo=x,},.

In either case, I'(xg')=TI(x,,,), and by the Remark in section 1,
2d(xg Y, x4 1) 2 X0l Put x=x¢x, ... x, and y=x,,,, then w=xy and

2d(x 71 xg 1) = Ixl+xel = Ixg x| Z Ixol
so by A4, 2d(x~!,y)=|x,|. Moreover
2d(x,y™Y) = |x|+yl=Ixyl > Ixol

so w is in M. This completes the proof of (ii).

If Ixoxy ... X, ol <max {|xol,|x{l,- . .,|X,44]}, then by Lemma 1 |x
ZIxyl,. . |X Sxp4 4. Suppose |xo|>|x,44, then Xy xox, ... X, IS a
Nielsen transformation reducing x,, $0 |xo|<|x,+,]- Similarly |x,, | <|xol.
Therefore |xox; ... X, | <IXo|=|x,+,l, and because of the minimality neither
Xo > XXy ... Xp4q NOT X, 44 > XoX; ... X, 4+, can be Nielsen transformations.
The result (iii) follows.

It remains to prove (iv). Let x=x;_,, y=X;X;4 ... X, and z=Xx;,,, then by
Lemma 1, |x|=|xy|>|y|<|yz|=|z| and |xyz| < max {|x|,|z|}. Therefore

() 2d(x71 )7 = Ixl+ eyl =yl > Ix] = Ixyl .
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By the Remark in section 1, I'(x~')=TI((xy)"!), and hence

@®) Ir'(x) = I'ixy),
otherwise x>xy and x;_, — x;_;x;...Xx; is an attached Nielsen transfor-
mation reducing x;_,. Similarly
) re ) s r(ea™).
We can suppose by symmetry that |x|<|z|, so
(10) 2d(xy,z7"Y) = |xyl+lzl=Ixyzl = |x)l,
and

2d(x, y2)™") = Ix|+lyzl—Ixyzl = Ix].

If I'(x)<I(xy) then by the Lexicographic Property, I'((yz)”')<I'(z™?),
contradicting (9). Therefore from (8), I'(x)=1I"(xy), that is by the Remark in
section 1,

2d(x, xy) 2 |x|

i

xyl -
Thus by A4 using (10)

2d(x,z7") 2 Ixyl = Ix|

min {|x],|z|} .

Moreover from (7), 2d(x "%, (xy)~!)>|x| =|xy|, so y=x"'xy is in M.

Following Lyndon [2] we put
N={xeG: I'x)=r(x"1}

and if x and y are in N we put x ~y if 2d(x, y) = |x|=yl. This is easily shown to
be an equivalence relation.

DEerINITION. A subset X of G is minimal if there is no Nielsen transformation
of X reducing one element of X and leaving the others fixed.

CoROLLARY 1. Let X be minimal and let H be the subgroup generated by X. If
HN M ={e} then X\ N is a basis for a free subgroup F of H, and H is the free
product of F and the subgroups generated by equivalent elements of X N N.

ProOF. Suppose w is a reduced word in X*! which gives the identity in G
and which has no proper subword giving the identity. Then either all the letters
in w are of length zero and are thus equivalent elements of N or some subword
or its inverse say xyX; ... X, forms a sink. By Lemma 1 and part (iii) of the
Theorem
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[Xpe1l = Ixol 2 X1l .o, 1x, -
Since H N M =e, part (iv) of the Theorem cannot occur so
IXol = x4l = ... = Ixp44l

and, by part (i) and the definitions of N and I'(x), X, Xy,...,X,4+, are
equivalent elements of N with x,x, ... x,,, =e. Thus every relation between
elements of X is a consequence of relations between equivalent elements of
X N N. The result follows from the definition of a free product.

COROLLARY 2. Suppose G can be generated by elements of length zero or one. If

M ={e} then every minimal set of generators of G has elements of length zero or
one only.

PRrOOF. Let X be a minimal set of generators of G. Suppose there is some x in
X of length greater than one. Consider all words in X *! which give elements of
length zero or one in G and which have no subword giving the identity. Since G
is generated by these elements either x is redundant in X or it appears in one of
these words. In the first case there is a Nielsen transformation taking x to the
identity, contradicting the minimality of X, and in the second case we have a
sink x¢x; ... x,;, with no subword giving the identity. By the theorem this is
impossible if M ={e}.

Note that the same proof shows that if M ={e} and if G is generated by
elements of length less than r, then the elements of every minimal set of
generators have length less than r.

Although it is possible to prove general results about the sets M and N and
about the equivalence relation on N, we will here apply the Theorem and
Corollaries only to special cases.

I. Free products with amalgamation.

Suppose G is a free product of groups G,, called the factors, with a common
proper amalgamated subgroup A. Then for every element g of G, not in A4,
there is a smallest integer | such that g is a product of [ elements g,g, ... g
with successive g; from different factors and not in A4 (see [4, section 4.2]). Call
8.8, - .- g a reduced form for g and define |g|=1and |a| =0 for all a € A. Then
X > |x| satisfies the axioms of Section 1. If x, ... x; and y, ... y,, are reduced
forms for x and y respectively, then d(x,y~!)> 0 if and only if x, and y, are from
the same factor. Moreover

Math. Scand. 48 — 11
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(11 Xj—pb1 - -XY1 ...y, €A for r<d(x,y™ 1.

Let a be in 4 and let x be an element of G of length /= 1. Put y=ax"?, then
yx=a, xy=xax_ ' and

0=lyx| = Ixy| < 2I-1.
Hence

de,y H+dy,x™h) z 3+ > 1= x| = Dl

so xax ! and a are in M. Thus every conjugate of an element of 4 is in M.

Conversely suppose
dix,y ) +d,x™") > |x| =yl = 1.

Let s and t be the integer parts of d(x,y~!) and d(y,x~1!), respectively. Since
2d(x,y~!) and 2d(y,x"!) are integers, we have s+t=1 Put r=1—s, then from
(11) we have that x,,, ... xy, ...y, and y,,q ... ¥X, ... X, are in A4, say a
and a, respectively. Since xy=x, .. x,aa’ (x, ... x,) "', every element of M is a
conjugate of an element of A.

Similar methods will show that N consists of conjugates of the factors of G,
each conjugate of each factor being an equivalence class. Thus we have the
following.

H. NeumanN’s THEOReEM ([3]). If G is a free product with amalgamated
subgroup A and if H is a subgroup which intersects all conjugates of A trivially,
then H is a free product of a free group and conjugates of subgroups of the factors
of G.

If A is the identity, that is G is a free product, then this reduces to the
following.

Kuros SusGrour THEOREM. Every subgroup of G is a free product of a free
group and conjugates of subgroups of the free factors.

If G is a free product with factors G, and if g(G,) is the minimum number of
generators of G;, then by Corollary 2 any minimal set X of generators of G
consists of elements of the factors G;. Moreover, in order to generate G,, X
must have at least g(G,) elements in G,.

GRUSHKO-NEUMANN THEOREM. The cardinality of X is not less than ¥, g(G,).
Moreover if Y, g(G,) is finite and ¢ is an epimorphism of a free group F with
finite basis B onto G, then there is an automorphism o of F such that ¢(«(B))
<U,G,.



NIELSEN METHODS IN GROUPS WITH A LENGTH FUNCTION 163

Proor. The first part follows from the immediately preceeding remarks.
Since ¢@(B) is finite it can be minimised in the partial well order by a finite
number of Nielsen transformation. The result follows since each Nielsen
transformation of ¢(B) can be obtained by an automorphism of F.

We now show that Theorem 1 of Zieschang ([6, p. 11]) is a special case of
the Theorem above. Let G be the free product of G, with amalgamated
subgroup A, and with the length function described above. Let X be a minimal
set in G. Suppose that w=x,x; ... X,4, X; € X!, is a sink, with no subword
equal to the identity. Then by Lemma 1 and part (iii) of the Theorem, |x,]
=|xp+1lZx31,. . ., Ix,l. Let I=min {|x,],...,|x,|} and let x; ... x; be a maximal
subword of w such that |x;|=...=|x;=0lil [=1, and |x},...,|x| <1 if I=0.
Then exactly one of the following holds:

(@ 1=0, Ixi=...=Ix=0 and |x,_,} Ix;+,|22,

(b) I=0 and |xj,...,|x;| are all zero or one, with at least one of each;
moreover |x;_,|, |x;+,/22, unless i=0 and j=n+1.

(©) Ixi=...=|x|=1=1; moreover |x;_,|, |x;,;| > unless i=0and j=n+1.

Ifi+0and j+n+1,let £,&, ... ¢, and #, ... n,, be reduced forms for x;_,
and x;, , respectively.

In case (a), x;,...,x; are all in 4 and m,n=2. Moreover by part (iv) of the
Theorem, 2d(x;_y,x;}}y)Zmin {m,n} 22, and by Lemma 1, |x;_;x; ... x;xX; |
<max {m,n}, that is 2d(x;_,a,x;y)2min{m,n}=2, where efa=x;...
x; € A. Therefore, by (11), we have &n, and (&,@)n, in A. Thus &g, !
=¢&,anny LE- ! € A, where &, lies in one of the factors and not in A4, so (2.3)
of Ziechang’s theorem ([6, p. 11]) is satisfied.

In case (b), x;,. .., x; all lie in the same factor and have length <1. At least
one of these has length 1, i.e. does not lie in 4. If i=0 and j=n+1, then
XoXy ... Xn4q 18 in A and satisfies (2.4) of [6]. If i+0and j+n+1, then x; ... x;
=g lies in one of the factors but not in 4 and, as in case (a), £,a¢, ! lies in A4;
moreover ¢, and « lie in the same factor, and again (2.4) of [6] is satisfied.

In case (c),if i=0and j=n+ 1, then xq, xy,. . ., X, + are all of the same length
and by part (ii) of the theorem either x, Xy,. . ., X, 4+, are equivalent elements of
N (i.e. lie in a conjugate of one of the factors) and xox, ... x,,, isin M (ie. is
conjugate to a non-identity element of A), or xo=x,; and x,,...,x, lie a
conjugate of one of the factors and x¢x, ... x,,;, and hence x, ... x,, is
conjugate to a non-identity element of A. If i%0 snd j#+n+1, then x;,. . ., x; lie
in a conjugate of one of the factors and x; . .. x; is conjugate to a non-identity
element of A. Thus in every case (2.4) of [6] is satisfied. We have thus
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completed the proof that Theorem 1 of [6] is a special case of the Theorem
above.

II. H.N.N. extensions.

Suppose that G is an H.N.N. group with base B and associated pair K,,K _,,
then equivalent elements of N lie in the same conjugate of the base and
elements of M are conjugates of the associated subgroups. Therefore Corollary
1 gives

H. NEUMANN’s THEOREM ([3]). If G is an H.N.N. group and H is a subgroup of
G which intersects all conjugates of the associated pair trivially then H is a free
product of a free group and conjugates of subgroups of the base of G.

If X is a minimal subset and xox; ... X, X; € X*! is a sink with no
subword equal to the identity, then by applying the arguments above we get
that there is a subword x; . . . x; such that x;,. . ., x; all lie in the same conjugate
of the base B and x; . .. x; is conjugate to an element of K, or K_,. Thus we
have the main result of Peczynski and Reiwer [5].
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