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SPLIT FACES AND IDEAL STRUCTURE
OF OPERATOR ALGEBRAS

HARALD HANCHE-OLSEN

1. Introduction and notation.

The study of facial vs. ideal structure in operator algebras was initiated in
1963 by the independent works of Effros [10] and Prosser [14]. They found a
one-to-one correspondence between norm closed left ideals in a C*-algebra,
norm closed faces in its positive cone, and weak *-closed faces of its state space.
In this correspondence, two-sided ideals correspond to invariant faces.

However, Effros and Prosser failed to characterize the invariant faces in a
purely geometric way. In [16; Thm. 3.2] Stermer proved that these were
exactly the Archimedean faces, while Alfsen and Andersen introduced the
concept of a split face and noted that invariant faces are split [2; Prop. 7.1].

In section 2 we generalized to JB-algebras the correspondence between two-
sided ideals and split faces. (For the theory of JB-algebras and their ideals, see
[7], [13], [15], [3;§ 2], [8], and [9]). At the same time, and equally important,
we get new and more direct proofs of known results for C*-algebras. The
reader primarily interested in C*-algebras may substitute C*-algebras and
two-sided ideals for JB-algebras and Jordan ideals in section 2. By trivial
modifications in the proofs, she can then make them valid for the C*-algebra
case.

It should be mentioned here that all the results of section 2 are due to E. M.
Alfsen and F. W. Shultz (unpublished). We would like to thank Alfsen and
Shultz for their kind permission to include this material.

Section 3 contains the main new result of this paper. We define the structure
space Prim (K) for an arbitrary compact convex set K, and give necessary and
sufficient conditions for the canonical surjection d,K — Prim (K) to be open.

In section 4 we apply Theorem 3.1 together with the results of section 2 to
generalize to JB-algebras Glimm’s result [12], that the canonical mapping
0,K — Prim (/) is open when o/ is a C*-algebra with state space K. The
proof is rather different from Glimm’s original proof, because of the lack of
inner automorphisms.

By a Jordan ideal in a JB-algebra A we shall mean a subspace J such that,
whenever a € A and b € J, then aob € J. Jordan ideals correspond to two-
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sided ideals in the following strict sense: A norm closed self-adjoint complex
subspace .# of a C*-algebra .o/ is a two-sided ideal iff its self-adjoint part .#, is
a Jordan ideal of &/ ,. This can be seen either by considering the weak *-closure
in .&/** of # and using [8; Thm. 2.3}, or by appealing to [11; Thm. 2].

If a is an element of a JB-algebra A and g is a linear functional on A4, we
denote by {a,g) the value of the functional g at the element a. Note that any
JBW.-algebra is canonically order- and norm-isomorphic to the space 4°(K) of
bounded affine functions on its normal state space K.

We define the annihilators of a subset J of a JB-algebra 4 and a subset F of
its state space K by

Jt = {0eK: {a)=0 forallaelJ}
F,={aeA: {a)=0 forallgeF}.

Similarly, we define the annihilator J, of a subset J of the JBW-algebra M and
the annihilator F° of a subset F of its normal state space K.

If a,b are elements of a JB-algebra A we define their Jordan triple product
{aba} by

{aba} = 2ac(acb)—a’ob .
If ¢ is a functional on A4, we define functionals aog and {aga} by the formulas,
{b,acg) = <aob,0),
(b, {aga}y = ({aba},o0) .
Note that if ¢ is positive, then {aga} is positive.

AckNOWLEDGEMENT. We would like to thank E. M. Alfsen for many fruitful
discussions.

2. Split faces.

Let K be a convex set. A face F of K is called a split face [1; § I11.6] if there
exists a face F’ such that K is a direct convex sum of F and F’ in the following
sense: Any ¢ € K can be written as

(2.1) ¢ = Ao+ (1-2)d,

where 4 € [0,1] is unique, and ¢ € F (respectively ¢’ € F’) is unique (except for
the case A=0 (respectively i=1)).

Note that the face F’ is uniquely determined by F. It is called the complement
of F. Also, the mapping ¢ — A, where 4 is determined by (2.1), is a bounded
affine function in K which has F as its peak set. In our applications K will be
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the base in a base-norm space (E, K) [1; p. 77]. Then the above affine function
on K extends to a bounded linear functional on E. Hence, split faces are norm
exposed and, in particular, norm closed.

The following result is included in [4; Thm. 11.5], but the present proof
makes no use of the machinery of [4].

THEOREM 2.1. Let M be a JBW-algebra and K its normal state space. There is

a one-to-one correspondence between split faces F of K and central projections e
in M, given by:

() F={ge | <e@)=0}
(ii) e is the unique affine function in K which is identically 0 on F and 1 on F'.

Proor. Let F be a split face of K. Define e to be the affine function ¢ —
1 — 4, where A is the scalar occuring in (2.1). It is easily seen that e is an extreme
point in the positive unit ball of M, and hence a projection. We have to show
that e is central.

To this end consider an arbitrary element a € A. If ¢ € F we find, using the
Cauchy-Schwarz inequality, that

IKeoa,@))* < <e,@){a*,0) = 0.

Thus the affine function eoa vanishes on F. Similarly, (1 —e)oa vanishes on F’,
so eoa coincides with a on F'. Repeating the argument, we find that the same
holds for {eae} =2eo(eca)—eoa. Since an affine function on K is determined by
its restrictions to F and F’, we conclude that eoa={eae}. Thus e is central by
[7; Lemma 2.11].

The proof that, conversely, a central projection e determines a split face by
(i) is left to the reader.

Combining Theorem 2.1 with [8; Thm. 2.3] we immediately obtain

COROLLARY 2.2. There is a one-to-one correspondence between weak*-closed
Jordan ideals J of M and split faces F of K, given by F=J, and J=F°.

Indeed, when the central projection e corresponds to the split face F, we have
J={eMe}.
Passing to the duality of a JB-algebra and its dual, we have:

THEOREM 2.3. Let A be a JB-algebra and K its state space. There is a one-to-
one correspondence between norm closed Jordan ideals J of A and weak*-closed
split faces F of K, given by F=J* and J=F,,.
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Proor. If J is a norm closed Jordan ideal of 4, then J* is a split face and J
=(J'),. This is a trivial consequence of Cor. 2.2 and the Hahn-Banach
separation theorem. (Consider the weak*-closed ideal J in A**).

Conversely, that F,=F°N A is a Jordan ideal when F is a split face also
follows trivially from Cor. 2.2. That F = (F,)* follows, for example, from [1;
Thm. 11.6.15]. A more elementary proof is the following: Note that the unit
ball of lin F is co (F U — F). By the Krein—-Smulian theorem it follows that lin F
is weak*-closed. If ¢ € K—F, we can then separate ¢ from lin F with some
ae A. Then ae F,, and so g ¢ (F,)*. This completes the proof.

Our next is a generalization of [10; Cor. 6.2].

THEOREM 2.4. Let F be a split face of the state space K of a IJB-algebra A.
Then its weak*-closure F is also a split face of K.

Proor. By Cor. 2.2, F,=F°N A is a Jordan ideal of 4, and hence G = (F,)" is
a weak*-closed split face of K. We shall prove that F=G.

Let e be the central projection in 4** such that F°=(1—e)oA**. Since G,
=F°N A, the mapping a — eoa induces an injective, and hence isometric,
homomorphism A/G, — eoA**,

Let a € A. As in the proof of Theorem 2.1, we note that eoa is the unique
affine function on K coinciding with a on F and vanishing on F'. Therefore,

lecall = sup{[<a,@>|: @€ F}.
On the other hand, the quotient norm of a+ G, in A/G, satisfies
la+G,ll z sup{lKa,@>|:¢€ G}.

Since |la+G,||=|ecall, an application of the Hahn-Banach separation
theorem yields GS F.

Finally, we mention a geometric property of Jordan homomorphisms:

ProrosiTioN 2.5. Let M, and M, be JBW-algebras with normal state spaces
K,, K, respectively. If ¢: M, > M, is a weak*-continuous Jordan
homomorphism, then the predual map @, maps split faces of K, onto split faces of
K;.

Proor. We only scetch the proof, since this result is not needed in the sequel.
Let F be a split face of K,. We claim

@ (F) = o7 1(F),,

which will complete the proof, by Cor. 2.2.
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The special case

0.(Ky) = Ker (@),

is, in fact, easily proved using the Hahn-Banach extension theorem. This
special case then yields the general case when we consider the composition of ¢
with the canonical map M, — M,/F°.

3. Structure space of an arbitrary compact convex set.

In this section K will be a compact convex set in a locally convex topological
vector space. Given ¢ € 0K there exists a smallest closed split face F,
containing ¢. (See [1; p. 146]. Note that our notation differs from that in [1].
We write F, although in this generality we attach no meaning to the symbol F,.
This is for consistency with the notation of section 4). We call the split face F,
primitive, and denote by Prim (K) the set of all primitive split faces. We endow
Prim (K) with the structure topology, whose closed sets are those of the form

(G e Prim (K) : GSF},

where F is a closed split face of K. This topology exists by virtue of [1; Prop. II.
6.20]; we remark that Stermer’s axiom, as imposed in [1; Lemma 6.25] is not
necessary for this definition.

We consider the map ¢ — F, of K onto Prim (K). This mapping is
continuous, with K given the relative topology. We will characterize those K
for which this map is also open. First, however, we need a definition.

Following [1; p. 146] we say that K satisfies Stormer’s axiom if, whenever
(F,) is a collection of closed split faces of K, the closed convex hull co (U, F,)
is a split face.

The following Theorem is an improvement of [1; Lemma I1.6.29]. Note that
we do not use the concept of sufficiently many inner automorphisms, which
was used in [1] and is also buried in Glimm’s original proof of the
corresponding C*-algebra result [12].

THEOREM 3.1. Let K be a compact convex set in a locally convex topological
vector space. The mapping ¢ — F, is open from the relative topology of 0K to
the structure topology of Prim (K) iff K satisfies Stormer’s axiom and the
following condition:

(*) For any G € Prim (K), the set {¢ € 3,G : F,=G} is dense in 0,G.
Proor. 1. Assume that the map 6K — Prim (K) is open. Let (F,) be a

collection of closed split faces of K, and consider the following (relatively) open
subset of 0, K:
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3.1) V=20dK-UoF,

By assumption the set {F,: ¢ € V'} is open in Prim (K). By definition of the
structure topology, there exists a closed split face F of K such that, whenever
0 €0.K:

(3.2) 0¢F < F,=F, forsomeoceV.

If € 0,F, then F,cF,, and so, by (3.1), F,+F, for all 6 € V. By (3.2), g€F,

" and therefore F,< F. We claim that F=co (U, F,). If not, we find some ¢ € §,F
with ¢ ¢ co (U, F,). By (3.1) ¢ € V, so by (3.2) ¢ ¢ F. This contradiction proves
our claim, and the validity of Stermer’s axiom is proved.

Next, assume that (*) does not hold and choose G € Prim (K) not satisfying
(*). Then there exists an open sct V<= ,K such that VNG+ @ and G*F,,
whenever ¢ € V. As above, there is a closed split face F of K such that (3.2)
holds. If G=F, then, by (3.2), ¢ € F and so GSF. By (3.2) this implies that
GN V=¥, which is a contradiction. Thus (*) is necessary.

2. Assume that K satisfies Stormer’s axiom and the property (*). Let V be a
(relatively) open subset of .K, and let

(33) F=co(U{GePrim(K): GNV=g}).
By Stermer’s axiom, F is a split face. We claim that
(3.4) {F,: eV} ={GePrim(K): G¢&F},

which will complete the proof since the righthand side of (3.4) is an open subset
of Prim (K).

Milman’s theorem implies that the union of all ,G, where G € Prim (K) and
GN V=, is dense in J,F. In particular, since Vis open, VN3, F = . Thus, if
¢ € Vthen F,£F and one inclusion in (3.4) is proved.

On the other hand, if G € Prim K and G&F then (3.3) implies that GNV
+ (¥. By the property (*), G=F, for some ¢ € GN V. Now the second inclusion
in (3.4) follows, and the proof is complete.

Remark. If K is a Choquet simplex, any extreme point of K is a split face,
and so the property (*) is trivial. However, K does not satisfy Stermer’s axiom
unless 0K is closed [1; Thm. I1.7.19]. Thus (*) does not imply Stermer’s
axiom.

To see that, conversely, Stermer’s axiom is not sufficient in the above
Theorem, we consider a compact convex set K which contains only one non-
trivial closed split face F. Then Stermer’s axiom is trivially satisfied. If F
contains an extreme point ¢ which is isolated in J,K, then {g} is an open subset
of K whose image {F} in Prim (K) is not open.
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We briefly indicate how such a set can be constructed. Let K, be a compact
convex set containing only one non-trivial closed split face {s,}, e.g., the state
space of the algebra of compact operators on an infinite dimensional Hilbert
space, with the unit adjoined. Let K, be a square. In the direct convex sum of
K, and K,, identify ¢, with a corner o, of K,. More precisely, K is the state
space of the order unit space

A= {(apaz) e A(K)®BAK),) : <al’01>=<‘12,02>} .

Then the only non-trivial closed split face of K is (the image of) K,, and any
corner of K, other than ¢, is isolated in 7K.

4. The primitive ideal space of a JB-algebra.

In this section A will be a JB-algebra with a unit 1, and K its state space.

We define the primitive ideal space of 4 to be Prim (4)={ker ¢, : ¢ € 0K},
where ¢,: A — A, is the dense representation associated with g. (See [3; § 2]).
Note that @ maps the normal state space of 4, bijectively onto the smallest
split face F, of K containing ¢. By Theorem 2.4, F,, is a split face, and indeed by
the proof of that theorem, F,= (ker ¢,)*. Thus ker ¢, — F, is a bijection of
Prim (A) and Prim (K). Defining the Jacobson topology on Prim (4) in
analogy with the C*-algebra case, we see (using Theorem 2.3) that Prim (A4)
and Prim (K) are homeomorphic.

THEOREM 4.1. Let A be a JB-algebra with state space K. The mapping

¢ — ker ¢, is a continuous and open map from 0,K with weak*-topology onto
Prim (A).

Proor. We shall prove that K satisfies the requirements of Theorem 3.1.

We start with Stermer’s axiom. If F, is a closed split face of K, the Krein—
Milman theorem implies that F, is the closed convex hull of the union of all
F, where g€ d,F, Thus, we need only assume given a subset C of
K={F,: ¢ € 0,K}, and we have to prove that coUg.cF is a split face.

In [6; Cor. 5.8] it is proved that the o-convex hull of J,K, defined as

g—co (0,K) = {Z Agj s 420, A;=1,¢;€ 6eK}
i=1

is a split face of K. We claim that ¢ —co (0K) is a direct o-convex sum of the
split faces G € K. By this we mean that any ¢ € ¢ —co (9.K) is uniquely
representable in the form

4.1) e = 2 AFQF »
FeR

where 120, Y Ap=1, and g € F. We omit the trivial proof. (At one stage one
has to use that F’ is norm closed, so that (1—1g) ! Y c.rigeg € F).
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Returning to our subset C of K, we find at once from the decomposition (4.1)
that ¢—co (U{F : F € C}) is a split face of o —co (3,K), and hence of K. By
Theorem 2.4, its closure co (U {F : F € C}) is also a split face, so the validity
of Stermer’s axiom is proved.

Next, if ¢ € K then F,=¢—co (0,F,), and so F,=co (¢.F,). By Milman’s
theorem, 0,F, is dense in 0 F, However, if ¢ € ,F, then F,=F,, so F,=F,
From this the condition (*) of Theorem 3.1 follows, and the proof is complete.

CoroLLARY 4.2. If A is a JB-algebra then Prim (A) is a Baire space in the
Jacobson topology.

Proor. By [1; Cor. 1.5.14] 0K is a Baire space in the weak *-topology. The
Corollary now follows from Theorem 4.1.
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