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EMBEDDING C(K) IN B(X)

RICHARD EVANS

Summary.

We establish a one-to-one correspondence between the embeddings of a
space C(K) of continuous functions on a compact Hausdorff space in the space
B(X) of bounded operators on a Banach space X and a class of mappings of
the elements of X into the lattice of closed subsets of K.

1. Introduction.

Many characteristic sub-algebras of B(X), the Banach algebra of bounded
operators on a Banach space X, can be shown to be (isometrically) isomorphic
to a C(K), i.e. to the Banach algebra of continuous functions on a suitably
chosen compact Hausdorff space with the supremum norm. If this is shown by
means of an abstract representation theorem, then it is often not clear what K
looks like. However in certain concrete cases (e.g. the centre of a C*-algebra,
the centraliser of a Banach space) it has been shown that K can be constructed
from certain subspaces of X equipped with the Jacobson topology. In honour
of a now classic theorem [4] these are usually called theorems of Dauns—
Hofmann type. Elliott has proved a quite general theorem of this type [5] and
in this paper we shall use basically his methods to establish a correspondence
which holds for all continuous homomorphic embeddings of a C(K) in a B(X).

2. Capacities and support representations.

In order to present a unified treatment we first show the equivalence of three
different ways of looking at the problem of connecting a Banach space X with
a compact Hausdorff space K.

Norte. Throughout this paper X is a fixed Banach space and K a compact
Hausdorff topological space. The letters F and H (with or without suffixes) are
reserved for closed sets while the letter G always denotes open sets. Unless
explicitly stated, the scalars can be either real or complex.
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DEerFINITION 1. A mapping J: F — J(F) which maps each closed subset F of
K onto a closed subspace J(F) of X in such a manner that:

i) J(@)={0}, J(K)=X,
ii) J(NFY)=NJ(F, for arbitrary collections,
iiiy FEFUFS = J(F)<J(F,)+J(F,) where ° denotes the interior

is called a capacity (on K taking values in X).
It is called a co-capacity if instead:

1) J(@)=X, J(K)={0},

2) J(FyNF)=J(F )+ J(F,),

3) J(F)=sup{J(F,) : F;2F} in the lattice of closed subspaces of X,
4) FSFJUFS = J(F)NJ(F,) S J(F).

Note that iii) and 4) can be extended to arbitrary finite collections by
induction, since if FEFJU...UFS we, can find H,,...,H,_, satisfying
FcF{UHS, Hyc FSUHS and so on.

A capacity or co-capacity is said to be bounded if there is a constant M such
that every decomposition x = x, + x, implied by iii) or 2) can be performed so
that |lx, |, lx,]| =M|x]|.

ExaMmpLEs. The map F +— J(F):={f:fe C(K), f=0 on F} is clearly a
bounded (with M = 1) co-capacity on K taking values in C(K). More generally
let X be a function module on K (see [3] for definitions). Then the map

F— J(F):= {x:xeX, x(k)=0 all kin F}

is a bounded co-capacity on K taking values in X.

Let T be a decomposable operator on X (see [2] for definitions), then
F — X (F) is a capacity on ¢(T) taking values in X, though not in general
bounded. That iii) holds has been shown by Radjabalipour [7].

It can be seen already from these examples that iii) and 3) do not generally
hold if we replace ‘Fc F{UF$ by ‘FcF,UF,.

DEFINITION 2. A map x — supp x which maps each element x of X onto a
closed subset supp x of K is said to be a support representation (of X on K) if
and only if:

I) suppx= <« x=0,
IT) supp Ax=supp x all scalars A0,
III) supp (¥ x,)<[Usuppx,]~ for all convergent series 3 x, in X
IV) supp x< G, U G, implies that x can be written as x, + x, with supp x; =G,
and supp x, £ G, (remember— G’s are open sets!).
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A support representation is said to be bounded if there is a constant M such
that in IV) x,,x, can always be chosen with |x,]||, ||x,|| £ M]|x]|.

ExampLEs. As the name suggests the map f+ supp f (here the normal
support of a function) is a (bounded with M =1) support representation of
C(K) on K for any K.

The usual support is also a support representation of C*[0,1] on [0,1] but
not a bounded one.

If T is a decomposable operator on X then x — o(x; T) (the local spectrum
of x) is a support representation of X on ¢(T) though not necessarily bounded.

ProrosiTion 1. a) If J is a bounded capacity then

suppx := () {F : x € J(F)}

defines a bounded support representation.
b) If J is a bounded co-capacity then

suppx := [ {K\F°: x e J(F)}

defines a bounded support representation.
¢) If supp is a bounded support representation then

J(F) := {x:suppxcF} and J(F):= {x:suppxNF=F}"

define a bounded capacity and co-capacity respectively.
d) These constructions establish a one-to-one correspondence between
bounded capacities, co-capacities and support representations for given K and X.

Proor. a) By ii) of Definition 1 we have x € J(supp x) for all x. Thus I) of
definition 2 follows immediately from i) of Definition 1. II) is trivial and III) is a
direct consequence of the fact that J([Usupp x,]7) is a closed subspace of X.
Finally IV), including boundedness, follows from iii) by setting F =supp x and
choosing closed sets F; and F, with F,<G,, F,£G, and FSF,UF3.

b) Note that when F Nsuppx=f we have a finite number of closed sets
Fy,...,F, with FN() (K\ F$)= & and x € J(F,) for each i. But then FcU F¢
and x € (1 J(F). By 4) x lies in J(F). I) is now trivial as is II). For III) note that
any point k in the complement of [U supp x,]~ can be separated from it by a
closed set F with k € F°. But then suppx,NF=J for each n and thus
x, € J(F). Since J(F) is closed > x, also lies in it and therefore
supp (¥ x,) €K\ F° so k ¢ supp (X x,). IV) follows immediately from 2) with
the same bound.

c) That J is a bounded capacity is immediate. Also 1) is trivial for J,. For 2)
note that
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Jeo(Fy N Fy) 2 Jo(Fy)+Jo(F,)

is immediate from the definition. Now, if x € J,(F, N F,), let 3 x, be a series
converging to x with

suppx, N (F,NF,) = & foralln and Y |x,l < 2|x| .

By IV) with G, =K\ F,; and G,=K\ F, we can write each x, as y,+z, with
Vo € Joo(Fy) and z, € Jo(F,). Then 3"y, and Y z, converge to y and z in J o (F,)
and J_,(F,) respectively. Now

Iyl < 2 lyal < M-Y lIx,ll < 2M x|

and similarly for z where M is the bound for supp. Thus 2) is satisfied with the
bound 2M. 3) is immediate from the definition since supp x N F = implies
supp x N F,= ¥ for some F, with F2F. 4) follows by noting that x € J,(F)
implies supp x < K\ F° by virtue of IIL

d) That the correspondence supp « J for capacities is one-to-one is a
simple consequence of the definition. The correspondence for co-capacities is
somewhat more tricky. Suppose J is a bounded co-capacity and J, is the
bounded co-capacity constructed by c) from supp which is itself constructed by
b) from J. We must show that J(F)=J_(F) for all F. The inclusion
Jo(F) S J(F) was already shown in the proof of b). Now take x in J(F). Then,
by 3) x=1im x, where x, € J(F,) with F; 2 F for each n. But suppx,= K\ F;
and therefore also in K\ F for each n. Thus x, € J,(F) snd, since J,(F) is
closed, so also is x. It is interesting to note that this is the only point at which
the property 3) is used.

Suppose on the other hand we start with a bounded support representation
supp and construct J, as in ¢) and then supp’ from J, as in b). Then for each x
we have

supp’'x := [} {K\F°: x=limx,, suppx,<K\ F for all n} .

Then supp’ x Ssupp x is immediate and supp’ x 2supp x follows from the fact
that supp x,< K\ F for all n implies suppx< K\ F <K\ F° by III).

In view of this proposition we can restrict our attention in future to one of
these three concepts and for technical reasons we choose to use support
representations in the proofs of the main theorems.

The following definition will be used to characterise those operators
commuting with a given embedding of C(K) in B(X). Hence the choice of the
word “commute”.



EMBEDDING C(K) IN B(X) 123

DEerFINITION 3. An operator T in B(X) is said to commute with the support
representation supp of X on K if and only if

suppTx < suppx forall xin X .

Clearly this is a form of invariance and we have the following simple lemma,
whose proof is straightforward and left to the reader.

LEMMA. Let supp be a bounded support representation of X on K and T an
operator in B(X). The following are equivalent:

a) T commutes with supp,

b) J(F) is invariant under T for every closed subset F of K,

¢) J(F)is invariant under T for all closed subsets F of K where J and J ., are
the capacity and co-capacity of Proposition 2.

3. The main results.

In view of the length of the proof of the main theorem we state it in this
section without proof and delay its proof till the end of the paper.

Suppose we have a Banach space X and a bounded support representation
supp of X on some compact Hausdorff space K. Let f be a continuous function
on K (complex-valued if X is a complex space). We wish to associate an
embedding of C(K) in B(X) with supp. Thus we need to define an operator T,
corresponding to the function f. Since supp x is supposed, in some sense, to be
the “support” of the element X, it is clear that T,x should only depend on the
values of f on suppx, that is f=g on suppx must imply T x=T,x if the
correspondence between the embedding and supp is to make any sense. Since
the constant functions map onto multiples of the identity it follows that when f
has the constant value 4 on supp x then T,x must be ix. If however fis not
constant on supp x there is no obvious way of defining what T,x should be.
Nevertheless there is an unique embedding of C(K) in B(K) satisfying this
simple property. This is the content of our central result which we now state
without proof.

THEOREM 1. Let X be a real or complex Banach space and supp a bounded
support representation of X on a compact Hausdorff space K. There is an unique
continuous homomorphism of unital Banach algebras from C(K) into B(X),
S T, satisfying T x=T,x whenever f=g on supp x. Moreover this mapping
actually satisfies T,x=T,x if and only if f=g on supp x.

An operator A in B(X) commutes with the support representation supp if and
only if it commutes with every operator T,.
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ProoOF. See section 5.

Although the proof of this result is difficult and lengthy, the following
converse is quite easy.

THEOREM 2. Let f+> T, be a continuous homomorphism of unital Banach
algebras from C(K) into B(X). Then there is an unique bounded support
representation supp of X on K satisfying T x = T,x if and only if f=g on supp x.

PRrooF. Set
suppx := () {f~'(0) : T,x=0} for all xin X .

Then clearly T,x=0 implies f=0 on supp x. On the other hand suppose that f
=0 on supp x. For any natural number n we can choose a function g, in C(K)
with |g,—f| < 1/n and supp g, Nsupp x = & (here supp denotes also the normal
support of a function). Then by the definition of supp x and compactness there
are function fi,. .., f, with T,x=0 all i and

suppg, Nf7'O)N ... Nf1 0 = .
Then there is a function h in C(K) with

h(filP+ ...+ = g, -

Since Tj2 x=0 all i follows from |f}|*=ff; and T;x=0, we have T, x=0 and
thus by continuity T x =0. This shows that supp satisfies T,;x =0 if and only if
S=0 on supp x which is obviously equivalent to T,x= T,x if and only if f=g on
suppx. It remains to show that supp is indeed a bounded support
representation.

I) suppx= < 1=0on suppx < x=T;x=Tox=0.
II) Is trivial.
III) If f=0 on [Usuppx,]~ then f=0 on every supp x,, that is T,x,=0 for
all x,. By continuity T,(X x,)=0. Thus supp (¥ x,)<[Usuppx,]~.
IV) If suppxsG,UG,, let f;,f, be in C(K) with |f|,|foll£1, with
supp f; £G,, supp f, G, and f; +f,=1 on supp x. Then

x=T;,;x =T;x+T;x and suppT,;x < suppf; € G,

and similarly for f,. Moreover | T, x| < M| f|l-llx| £M|x| where M is the
norm of the map f+> T,.

Thus supp is a bounded support representation of X on K with the desired
property. Clearly this property determines supp uniquely.

Putting these two theorems together with Proposition 1 we obtain:
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THEOREM 3. Let K be a compact Hausdorff space and X a real or complex
Banach space. There is a 1 —1 correspondence between the following:

i) the bounded capacities on K taking values in X,
i) the bounded co-capacities on K taking values in X,
iii) the bounded support representations of X on K,
iv) the continuous homomorphisms of C(K) into B(X) which map the function
1 onto I.
Furthermore, for an operator A in B(X) the following are equivalent:

i) A commutes with every operator Ty,
i) J(F) is invariant under A for all F,
iil) Jo(F) is invariant under A for all F,
iv) A commutes with supp where f+ T, J, J., and supp correspond.

4. Miscellaneous results.

In this section we prove some simple technical results and more importantly
a result on duality. We assume throughout that supp, J, J, and - T, are
given and correspond as in Theorem 3.

ProrosiTION 4. For a closed subset F of K the following are equivalent:

i) suppxcF for all x,
i) J(F)=X,
1ii) ']CO(F)={O}9
iv) f€ F* (that is f=0 on F) implies T;=0.

Further f+ T, is 11 precisely when K is the only closed subset with these
properties.

PROOF. 1) <> ii) is trivial.

i) = iii) since J,(F)={x : suppxNF=f}".

iii) = i) If F, is any closed set with F;2F then we have x=x; +x, with
suppx; < F, and suppx,< K\ F. But then suppx, NF=J so x, € J(F)
={0}. Thus x=x, € J(F,). Since F, was arbitrary with F{2F we have
suppxcF.

i) = iv) fe F* implies f=0 on suppx all x and therefore T,x=0 for all x,
that is, 7,=0.

iv) = i) For all fwith f=1 on F we have T,=1I and T;x=x for all x. Thus
supp x csupp f (Lemma 8) and since f was arbitrary suppxcF.

If the map is 1 —1 then iv) and thus all of i)}-iv) can be true only for F=K,
On the other hand if T, =0 for some f+0 then T;x=0 for each x so that f=0



126 RICHARD EVANS

on all sets supp x. Thus f~!(0) is a non-trivial closed subset of K with the
properties i}-iv).

Note that if f+ T, is not 1 —1 then we can factor f+ T, through C(K,)
where

K, = [U{suppx:xe X}]™,

i.e. the smallest closed set satisfying the above conditions. By reducing our
attention now to K, we obtain a 1 —1 mapping C(K,;) — B(X).

ProposiTION 5. For all x in X and fin C(K) we have

Tyx € J(supp x) N Jeo(f 71(0) .

Proor. Let g be a function in C(K) with g=1 on supp x. Then

T;x = T;T,x = T,(T;x) sothat suppT,x < suppg.

Since g was arbitrary with g=1 on suppx we have supp T x Ssupp x.
T;x € Joo(f ~'(0) is Lemma 8 i) (see proof of main theorem).

ProPOSITION 6. supp, J and J ., actually satisfy the following stronger forms of
IV), iii) and 4) of the definitions:

IV) replace “supp x, £ G,” by “supp x, G, Nsupp x” and similarly for x,.

iii) replace “J(F)<J(F,)+J(F,)” by “J(F)=J(FNF,))+J(FNF,)".

4) replace “J oo (F1) NJ o(F2) S o (F)” by “Joo(Fy NF)NJ oo (F, NF)=J o (F)”.

Proor. Let f, f, be functions in C(K) with || fi||=|f:Il=1, supp f, €G,,
supp f,£G, and f, +f, =1 on supp x. Then x= T, x + T,,x and by Proposition
5,

supp T;x < suppx Nsupp f; S G; N suppx .
The stronger forms of iii) and 4) follows straightforwardly from this, though

4) requires a little care.

Note that these stronger forms are not in general true for non-bounded
support representations etc. See, for example [1].

PROPOSITION 7. A map J ., mapping closed subsets of K onto closed subspaces
of X is a bounded co-capacity if and only if the map F v J_(F)° is a bounded
capacity (taking values in X').
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Proor. We write J(F) to mean J,(F)°. Assume J , to be a bounded co-
capacity with decomposition bound say m. i) and ii) of the definition of
bounded capacity are elementary for J. For iii) take y in J(F) and note that
since

JeolF) 2 JeolFy) N Jo(F2)
y is 0 on this intersection. Thus the functional j on
Jeo(FyNFy) = Joo(Fy)+Jeo(F3)

defined by p(x,+x,):=y(x,) where x; € J,(F), is well-defined. Also (|
<m]y|. Let § be an extension of y to all of X with the same norm. Then y=y

+ (y—y) is a decomposition of y of the required form and, since

ly=Jll = (m+Diyll ,

J is a bounded capacity.

Suppose now that J is a bounded capacity. That J, satisfies 1) and 4) of
Definition 1 follows immediately from i) and iii) for J. 3) is an easy consequence
of ii). It remains to prove 2). Let F; and F, be given and set F=F,UF,.
Choose closed sets F3 and F, with F; = F3, F, S F3. Set

X, = J(FNFy) and X, = J(FNF,).

Let x; in X, be such that the norm of [x,] in the quotient X/(X, N X,)is >1.
Then there is an element y in (X, N X,)° with |y}l=1 and y(x,)>1. Now
Proposition 6 shows that (X,NX,°=X{+X9 and y can be written
correspondingly as y, +y, with y; in X{ and |y;|| Sm, where m is the norm of
the algebra homomorphism C(K) — B(X') corresponding to J. But then for
any x, in X, we have

L < y(xy) = 1 +y2)%; = ya(x1) = ya(x1+x3) < mix; +x,] .

Doing the same for X, we see that any element in X, + X, can be written in
the form x, +x, with x, in X,, x, in X, and |{x,], | x,}| £ (m+1)|x; + x,].
Letting F; and F, approach F, and F, and using 3) we obtain 2) with a
decomposition bound = (m+1).

COROLLARY. On a dual space the operators T are all w*-continuous if and only
if the spaces J(F) are w*-closed for each F.

Proor. If the operators T, are all w*-continuous then T,=S for some
operator S, on the pre-dual Y. f+— S is a continuous algebra homomorphism
of C(K) into B(Y). Let J_, be the corresponding bounded co-capacity. It is easy
to check that J(F)=J(F)° for all F. The other implication goes by setting
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Jo(F)="°J(F), constructing a map f +— S, and again checking that T,=S’, for
all f.

5. Proof of the main theorem.

The rest of the paper is devoted to a step-by-step proof of Theorem 1 of
section 3. Until the final step everything is assumed to be real. We shall need
the following concepts:

DEFINITION 4. An optimal covering of a compact subset D of the real line is a
finite number I,,. . ., I, of open intervals which cover D and for which we have:

1) NI, =& foralli.
i) NI =& ifli—jl>1.

Let x be some element of the Banach space X, supp the given bounded
support representation of X on K, G,,...,G, an open covering of K and M a

positive constant. The elements x,,. . ., x, are said to form a {G,}-decomposition
of x if

) x=x,+...+x,
ii) suppx;=G; for each i.

This decomposition is said to be M-bounded if in addition
iii) |2 4;x;| £M-max |4 for all real co-efficients A,

Note that an optimal covering covers co D and that if G,,. . ., G, is any open
covering of co D then there is an optimal covering I,,. . ., I,, subordinate to it,
i.e. each I, is contained in some G;.

LeEMMA 1. Let G be openin K and G=G, U ... UG, for a finite collection of
disjoint open sets G;. Then every element x in X with supp x < G has an unique
{G,}-decomposition.

Proor. That x has at least one such decomposition follows by induction
from iv) of the definition of support representation. Let x, + ... +x, and y,

+...+y, be two such decompositions. Then, for each i,

Xi—Yi = <x‘ > xj>—<x—2 yj) =Y V=X
Jj*i J¥i Jj¥Fi
By iii) of the definition of support representation we have

supp (Z yj—xj) c U G;
jxi

Jj*Fi
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and on the other hand supp (x;—y) G, Since G;N(U;,;G;)= we have
supp (x;—y;)=J and thus, by i) of the definition x;=y,.

LEMMA 2. Let m be a decomposition bound for supp and f,,. . ., f, be functions
in C(K). For every x in X and every optimal covering I,,...,Iy of
[E)U ..U fo(K) there is a 2m)"* | x|-bounded decomposition {x; __;} of x
(iys- - -»i, € {1,...,N}) with

fisuppx; )<, foralliy,. .. i, and all j .
In particular, with one function f every x has a (2m)*|x||-bounded { { ~'(I -

decomposition for every optimal covering I,,...,Ixn of f(K).

Proor. For reasons of readability we demonstrate explicitly only the case
with one function f.
Set

G,i=U{f7'): iodd}, G,:=U{f7'U): ieven}.

Since K G,UG,, we can write x as x,+x, with suppx,=G, and similarly
suppx, =G, and | x,ll, x| Sm|x]|. As I,...,Iy is an optimal covering, the
f7'U)s in G, and in G, are pairwise disjoint. Thus, by Lemma 1, there are
unique decompositions of x, and x, as x; +x;+ x5+ ... and X, +x,+ X6+ . . .
respectively with f(supp x;) <1, for all i.

Consider now an element of the form Y a;x; where o;= %1 for all i. Then

Yoax; =Y {x;: iodd, q;=1}+) {x; : ieven, ¢;=1}—
=Y {x;: iodd, ¢;=—1}=) {x; : ieven, o;=—1}
=y1ty2—V3—Va
where y,, y,, y; and y, are the values of the four sums. Then

1% el < Nyl + w2l + lysll + el -

But y, +y;=x, and y, +y,=x,. Moreover, these decompositions of x, and x,
are, by Lemma 1, unique. Thus they satisfy

Iyl lysh € mix,l and |y, Il yall £ mix,|
since we know that decompositions with these properties exist. It follows that
I il < 2m(lx |+ lIxl) < @m)* x| .
Now the points (+1, +1,..., +1) are the extreme points of the unit ball of RN

with the maximum norm. It follows that the mapping R¥ — X defined by

Math, Scand. 48 — 9
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(Ag- - -»4,) = X A:x;|| has norm < (2m)?||x|, when R¥ carries the maximum
‘\ norm. This is the required resuit.
In the case of n functions we must decompose x first into 2" .elements
corresponding to the choices of odd and even for eachiin 1,...,n,e.g. forn=3
we have such elements as x with

Supp (X,,e,0) € f1(G) N f21(G) N f51(G,) .

The proof goes through exactly as before though the indices make it
unreadable. For each odd-even choice we have a factor of 2m and also finally
for the choice a;=+1 or —1. This gives (2™"*!|x| as the appropriate
constant.

LeMMA 3. Let f be a function in C(K) and 1,,...,1, an optimal covering of
f(K). Let x,+...+x, be an M,-bounded and y, + ...+y, an M,-bounded
{f ~'(I,)}-decomposition of x. Then for any set of scalars A, i=1,...,n we have

”Z A=yl = 2m- (M +M,) max|i;,, — 4|

where m is, of course, a decomposition bound for supp.

PROOF. Set z;:=x;—y; and u;:=3"%_, z; for each i, further let uy:=0. Then
Z Ailx;—y) = Z Aizp = Z Ai(ui—u;_y) .
1 1 1

On the other hand
n n n—1 n—1
Zli(ui‘ui-—l) = Z Au;— Z Aipty = Z (Ai—Ais Dy
1 1 0 1

since u,=31z;=>1x;—21y;=x—x=0.
. — l' — n . _
Now, for each i, u;=3} z;= — 37, z; since 3} z;=0. Thus

supp u; < (U supp zj> n (U supp Z,~>
1 i+1

= f_l<Ll.J Ij) nf_l<igjl Ij) = f7' N1y, .

Set Gi:=I;N1I;,, for each i=1,...,n—1. Then the G/s are disjoint intervals.
Consider the element u:=Y (—1)u;. Then

suppu & U suppy; < /(U G).

By Lemma 1, u=3Y (— 1)y, is the only {f ~!(G;)}-decomposition of u and an
argument as in the proof of the previous lemma shows that it is a 2m|u|-
bounded one.
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Thus

n

Z ;ti(xi_yi)H

1

il

Z (Ai—Ais Ou;
1

21: (- l)i('li"lw (= l)i“i

IIA

2m- ||lul -max|d; 4, — 4 -
On the other hand
lull = 11} {z; : j evenj|
S Y {xj:jeven}+1) {y;:jeven}| £ M;+M,.
This completes the proof.

LemMa 4. Let f be a function in C(K) and I,. . .,1,and J,,...,Jy two optimal
coverings of f(K). Further let x,+...+x, be an M-bounded {f~'(I)}-

decomposition and y, + . .. +yy an My-bounded { f ~*(J;)}-decomposition of an
element x. Then

N
L AX— Y Y
1

1

< 5-4m(M, + M, + (8m? +2m)| x|))

where 0 is the length of the largest interval amongst the Is and Jjs, m is any
decomposition bound for supp and {4}, {u;} are sets of scalars with A, €I,
u; € J; for all i, j.

Proor. The intersections of pairs I;NJ; is a collection of open intervals
covering co f(K). Let G,,r=1,...,s be an optimal covering subordinate to this
covering and z, +. .. +z, a (2m)*||x||-bounded {f ~*(G,)}-decomposition of x
as in Lemma 2. Each G, is contained in at least one intersection I; N J; so that
we can find two maps ¢: {1,...,s} — {1,...,n} and y: {1,...,s} - {1,...,N}
such that G,=1,, NJy,, for all r. Set

=3 {z,: (=i} and J;:=) {z,: ¥(r)=j} for eachi,j.

Clearly the %’s and ;s are (2m)?|x|-bounded {f~'(I)}- and { f~'(J)}-
decompositions of x respectively.
Then

5 i)

A

+

n s s s N
; lixi-; ApryZe 21: Aoty = Hy(r)2, +I|; ”W(r)zr"zl: HiYj

"Z Ai(xi_)ei)" + "Z (j‘(p(r)—”W(r))Zr" + “Z ﬂj(ﬁj“')’j)" .
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Set o,:=A,4)— Uy if 2,#0, and a,:=0 if z,=0. Then the middle term is

s

xR

1

< (2m)*|x||- max o] .

But o, +0 implies z,+0 which implies that I, NJ,,,+ < and thus that

o(r

| 4o — Myw| = lengthl,,, +lengthJ,, < 26.

Thus the middle term is <J-8m?| x||. Applying Lemma 3 to the outer terms we
obtain the required result, Note that

|4;+1—4 < lengthl;,, +lengthl; < 26

and similarly for the Js.

LEMMA 5. Let f be a function in C(K) and x an element in X. Then there is an
unique element in X, which we denote by x, with the property:

Whenever 1,,...,1, is an optimal covering of f(K), x,+...+x, an M-
bounded {f ~'(I,)}-decomposition of x and {A;} a set of scalars with A, € I, for
each i, then

Xp—Y Ax;

1

< 6-4m(M + (12m* 4 2m)||x]))

where 0 is the maximal length of the I.’s and m any decomposition bound for supp.

Proor. By Lemma 2 we can find an appropriate (2m)?|x|-bounded
decomposition of x however fine we choose an optimal covering of f(K). By
Lemma 4, the distance between the sums for two such decompositions is at
most §-4m(16m? +2m)| x|, where & is the interval length, so that, taking finer
and finer decompositions, the sums converge to an element in X which we call
x ;. The above inequality is merely the limit form of that in Lemma 4 with M,
=M and M, = (2m)?| /x|, the latter sums converging to x . Clearly x s 1s unique.

LEmMMA 6. For every f in C(K), the mapping x v x, is a bounded linear
operator on X which we denote by T,. Also we have |T,| < Cm)?| f |l -

Proor. If I,,. . ., I, is an optimal covering of f(K) and x; + ... +x,, y;+ ...
+y, are M-bounded {f~!(I;)}-decompositions of elements x and y
respectively, then (ax, +By,)+ ... + (ax,+ By,) is an {f ~*(I,)}-decomposition
of ax+ By for all scalars o and B, since

supp (ax; +By) < suppx; Usuppy; < f~'(I) foralli.

Further
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n

Y adx;

1

< M(lof +|Bl) max |4;] .

IIA

+

; Aiox; +B,Vi)‘

Z l%iyiH < M (max a4, + max |B4,])
1

Thus this decomposition is an M (ja| + |f])-bounded one. In particular, taking
limits with (2m)?|x|-bounded decompositions of x and y, Lemma 5 implies
that

Z Ai(ax; + By;) — (ax+By),

so that (ax+ By),=ax,+ By, i.c. the mapping is linear.

Now for each x, x , is the limit of sums 3 4,x; for any sequence of (2m)?||x]-
bounded {f ~*(I;)}-decompositions where the maximal interval length in the
optimal coverings tends to zero. We can clearly choose the optimal coverings

{I;} so that I;,Nco (f(K))+ & all i and thus choose the 4’s in co (f(K)). But
then

I Axill £ 2m)? (x|l -max|4] < Cm)* x| | £l
and this inequality carries over to the limit x .. This shows the mapping to be

bounded with the given norm.

LemMa 7. The map fw T, from C(K) into B(X) is a continuous
homomorphism of unital Banach algebras with norm < (2m)2.

Proor. That T,,= AT, for any scalar 4 is trivial.

Let f and g be two functions in C(K) and x an element in X. Suppose
given and take an optimal covering I,...,1I, of f(K)Ug(K)U (f+g)(K) with
maximal interval length less than 6. By Lemma 2 we can find a (2m)*|x|-
bounded decomposition {x;;} of x with

Sf(suppx;p) € I, g(suppx;) € I;,
(f+gGuppx;) € I, forallijk.
Set
u; 1= kai,-k, v i= Y X Wei= 3 Xy for all i jk .
i ik ij

Then u, + ... +u, is a (2m)*|x||-bounded {f ~*(I;)}-decomposition of x and
similarly for v; and w,.
Choose scalars 4; € I, for each i. Then

T+ TYx =Ty x|l = lxp+xg=xp4,l < lx,—3 Angill +
+ "xg“‘z Al + "xj‘+g_z Aewill + HZ isu:+2 ljv,-—Z Acwill
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By Lemma 5 the first three terms are each smaller than &-4m(16m*+ 12m?
+2m)|x|. The fourth term can be rewritten as [|3; > ;> (4;+4;— A)Xll-
Since x;;, is a (2m)*| x|-bounded decomposition this implies that this term is
smaller than (2m)*||x|| - max Jot;j] Where o =A;+A;— A if x;3, 40 and o;:=0
otherwise. However, when x;;,#+0, we have

) Ng YN (f+e) Uy +D -

Let t be a point in this intersection then

L=fOl <8, =gl <6, (f+&O—4l <9.
Thus |a;;| < 34.
So |(T,+ Tp)x—T,, x| is bounded by a constant times . Since J was
arbitrary we have (T + T)x=T,, x. As x was arbitrary T,;+ T,=T,,,.
An analogous argument with f, g and fg shows that T, T,=T,. Thus the
map is an algebra homomorphism and continuous with norm < (2m)? by
Lemma 6. That T, =1 is trivial.

LemMaA 8. For all fin C(K) and x in X, we have:
1) T,x lies in Jo(f ~*(0)) and thus supp T;x Ssupp f.
i) Tyx=Ax if and only if f=A on supp x, i some scalar.

PROOF. i) Tyx=x;=limit of sums of the form 3 Ax; If suppx; intersects
S 1(0) for some i then, since f (supp x;) S I;, we have 0 € I,. Thus we can choose
4;=0. This shows that x, is the limit of sums which can, without loss of
generality, be assumed to have their supports disjoint from f~!(0). By the
definition of J,, we have x, € J,(f ™' (0)).

i) If f=4 on suppx and I,,...,I, is an optimal covering of f(K) then 4 lies
in some I, Then setting x;=x and all others =0 we have a |x||-bounded
{f~'(I)}-decomposition of x. Choosing 4; =21 and the others arbitrarily we see
that x,=Ax.

On the other hand, suppose that T x=Ax. Let g be a function in C(K) with g
=1 on a neighbourhood of f ~!(A). Then there is a function h in C(K) with g
—1=h(f—4). This means T,_;x=T,T,_,x=0 so that T,x =x. But then by i)
we have

suppx = supp T,x < suppg .

Since g was arbitrary we have suppx<f ~!(4) or in other words f=4 on
supp x.

LEMMA 9. An operator A in B(X) commutes with every operator T, f inC (K),
if and only if supp AxSsupp x for all x in X.
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Proor. For any M-bounded {G,}-decomposition x, + . . . +x,, of an element
x we have

1Y Adxl = A 2l £ 1AL 1Y Aol < I14]- M -max |4

and supp Ax;Ssuppx;=G; for each i. Thus Ax,+...+Ax, is a |A| M-
bounded {G,}-decomposition of Ax. Choosing suitable sums ¥ 4,x; converging
to x, we see that A(X 4,x;)=3 4;4x; converges to (Ax), and thus (4x),=Ax,
that is T Ax=AT,x.

On the other hand suppose that A commutes with all T,. For each x in X
and k ¢ supp x there is a function fin C(K) with f=1 on supp x but k ¢ supp f.
Then by Lemma 8§

supp Ax = supp AT;x = supp T;Ax < supp f.
Thus k ¢ supp 4x.

PrOOF OF THEOREM 1. The real case. Lemma 7 shows the existence of the
desired homomorphism and Lemma 9 and part ii) of Lemma 8 show it has the
claimed properties. It remains to show that this is the only continuous
homomorphism of unital Banach algebras C(K) — B(X) for which Tyx=T,x
whenever f=g on supp x.

Suppose f+— S, were a second such homomorphism. Let f be a function in
C(K) and x an element in X. For given >0, let I,,...,I, be an optimal
covering of f(K) with maximal interval length less than 6. Let x, + ... +x, bea
(2m)?||x||-bounded { f ~*(I;)}-decomposition of x constructed as in the proof of
Lemma 2. Let 4; € I; be chosen scalars and f,, f, functions in C(K) with || f,
~floo 1fo—=fllo<9 and f,(k)=4; for k in suppx;, i odd, f,(k)=4; for k in
supp x;, i even. Such functions exist since |4;—f (k)] <d for k in supp x;. Then

Sfx = Sfxe+Sfx0 = szxe+Sfoxo+Sf_fexe+Sf_faxo

where x, and x, are as in Lemma 2. Now since f, and f, are constant on supp x;
for i odd and even, respectively and since the homomorphism f+ S also has
the property that S;y=S,y if f=g on suppy, we have

S, X, +Spx, = ; Aix; .
If M is the norm of the map f+ S, then the remaining terms can be estimated
by means of
I1S;-pxell = MIlf=felloo" Xl = M-6-m]x]|
and similarly for S,_, x,. Thus

1Sx=Y, dxill < 2M-8-mx] .
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Taking suitable limits we obtain S ;x=x, and thus S ;x= T x which completes
the proof.

The complex case. Consider X as a real Banach space of twice the dimension.
By the theorem for the real case we obtain a map Cg(K) — B(Xpg). By setting
T;:=Tge s+ iTiym ;s We can extend this to all of C(K). It remains only to show
that the operators T, are in fact complex linear. However in X the fact that an
operator is complex linear is equivalent to the fact that it commutes with the
operator x + ix. By Lemma 9 this is equivalent to the fact that
supp ix = supp x for all x. Since ii) of the definition of support representation
gives suppix=supp x for all x we have the theorem in the complex case.

6. Conclusion.

In this paper we have shown how to construct an operator T, from a
function f basically by ‘integrating’ f over a sort of measure whose values are
closed subspaces, namely the capacity J. This is a generalisation of, for
example, the construction of a continuous functional calculus for spectral
operators of scalar type by integrating over a spectral measure. This allows one
to extend results on spectral operators to suitable classes of decomposable
operators and this is done in a separate paper of the author [6]. However
because of its general nature it is to be hoped that this result will also have
applications in many other fields.
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