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SPREADING BASIC SEQUENCES
AND SUBSPACES OF
JAMES’ QUASI-REFLEXIVE SPACE

ALFRED ANDREW!
Abstract.

We prove that every sequence from J having no nonzero weak cluster point
has a subsequence equivalent to either the unit vector basis of I, or to a
spreading basis for J. This implies that J embeds isomorphically in each of its
non-reflexive subspaces, and that the only spreading models of J with basic
fundamental sequence are J and [,.

1. Introduction.

We discuss the existence and number of spreading basic sequences in James’
quasi-reflexive Banach space J, and make applications of this study to
spreading models of J and subspaces of J.

In section 2 we show that in one sense, J has many spreading basic
sequences, yet only two, up to equivalence. Namely, any seminormalized
sequence with no weak cluster point has a subsequence which is a spreading
basic sequence. Moreover, the subsequence can be chosen to have
complemented span and to be equivalent either to the unit vector basis of [, or
to a certain basis for J. This latter result implies that J has, up to equivalence,
precisely two spreading basic sequences. Since J is primary [4], it possesses
exactly two spreading basic sequences in an essential manner, in that it is not
the direct sum of two spaces each having a unique spreading basic sequence.

In section 3 we use the results of section 2 to study subspaces of J, and show
that every non-reflexive subspace of J contains a complemented isomorph of J.
This extends results of Casazza [4].

In section 4 we show that J has precisely two spreading models, itself and [,.
Here we assume that the fundamental sequence defined in [2] is a Schauder
basis.

We thank Professor Casazza for several helpful suggestions.
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We use the standard notation of Banach space theory. If (z,) = Z, we denote
the closed linear span of (z,) by [(z,)], and say (z,) is seminormalized if there
exists a constant M such that M~ <|z,|| £ M for all n.

Recall that sequences (y,) and (z,) in Banach spaces Y and Z are equivalent if
there exists a constant K such that for any scalar sequence (a,),

K Zawl = IXazl £ KIXaw.l -

A basic sequence (y,) in a Banach space Y is said to be spreading if (y,) is
equivalent to each of its subsequences. If, in addition, (y,) is unconditional, it is
said to be subsymmetric.

The notion of spreading model is due to Brunel and Sucheston [3]. They
showed that if (y,) is a bounded sequence from a Banach space Y, then there
exists a subsequence (y,) such that for every scalar sequence (a,)!-,, and every
choice of integers {k, < ... <k,}, the limit

n

Y ayi,

i=1

(1) L((a)) = lim

ky—o00

exists. In the event that (y,) has no Cauchy subsequences, formula (1) defines a
norm || on the space S of all finite real sequences by

n

Z a;f;

i=1

@ = L((a)i-,) -

The sequence of unit vectors (f;) is clearly spreading. The completion of S
under this norm is called the spreading model of Y with fundamental sequence
(f,) based on (y,).

James’ space J [8], [9], [10], is the Banach space of all null sequences of
scalars for which the squared-variation norm

00 n k]
Z ae| = sup [ Z |aPi - am-1|2:|
i=1 n i=1

Po<...<p

(©)]

is finite, and the second conjugate J** is the space of all sequences for which
the squared-variation norm is finite [7]. Notice that |3 a;e;|| <oo implies
lim,, , a; exists. We shall reserve the notation (e;) for the unit vector basis in
James’ space, (ef*) for the biorthogonal sequence, and P, for the natural
projections associated with (e;). We will regard e and P, as defined on J and
also on J**.

The sequence (x,);%; = J defined by x,=3"7., ¢, is known to be a basis for J,
and the norm may be computed as

z:r

@) I baxall = sup [Z

i=1

pi—1

L b

J=pi-1

Po<...<pa
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From either (3) or (4) it follows that (x,) is a spreading sequence. We shall
reserve the notation (x,) for this spreading basis of J.

The following lemma is obtained easily from (3) and (4). Proofs may be
found in [4], [5].

Lemma 1.1. a) For any scalar sequence (b,),

1Y baxall = [ 1ba1*

(b) If w,=3"rae, |w,|=1 for all n, and r,_, +1<gq,<r, for all n, then for
any scalar sequence (b,),

[Y 621 < Y bawall < V23 B21*.

2. Spreading basic sequences in J.

In [5], Casazza, Lin, and Lohman proved that every subsymmetric basic
sequence in J is equivalent to the unit vector basis of /,. One consequence of
the main result of this section is that any spreading basic sequence in J is
equivalent either to the unit vectors in I, or to the spreading basis (x,) of J.

The main result is

THEOREM 2.1. Let (z,) be a seminormalized sequence from J having no non-zero
weak cluster point. Then

a. if (z,) has a weakly null subsequence, then there is a subsequence (z,)
equivalent to the unit vectors in I, with [(z,)] complemented in J or

b. if (z,) has no weak cluster point, then there is a subsequence (z,) equivalent
to (x;) with [(z,)] complemented in J.

We present the proof in a sequence of propositions, and will use the
following standard perturbation argument [11].

ProrosiTiON 2.2. Let (y,) be a basic sequence in a Banach space Y having basis
constant M, and assume [(y,)] is complemented by a projection P. If (z,)= Y
satisfies

X 1
n zn < S3rTeT ?
&, nmal < gy
then (z,) is a basic sequence equivalent to (y,) and [(z,)] is complemented in Y.

In the case that (z,) has a weakly null subsequence, the result follows from
the argument of [5].

ProposiTiON 2.3. If (z,) = J is a seminormalized sequence having a weakly null
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subsequence, then there is a subsequence (z,,) having span complemented in J and
equivalent to the unit vector basis of 1,.

ProoF. Assume | z,|| =1 for all n and z, — 0 weakly. Let (¢,) be a sequence of
positive real numbers such that 3 ¢, <27 and choose an increasing sequence
of integers (n,) such that with z, = (P, — P, _)z,, we have

Szl £2
and
lZn,— Znll < & -

Then by Lemma 1.1b, (z,,) is 4[/§-equivalent to the unit vectors in [,, and is
hence a spreading basic sequence with basis constant at most 4]/5. By
Theorem 10 of [5], [(z,,)] is complemented in J by a projection P of norm at
most 2]/2. Since

1

i <27 < ,
Z ”Znu an,‘" < Z 8k SMHPH

it follows from Proposition 2.2 that (z,,) is equivalent to the unit vectors in I,
and has complemented span.

REMARK 2.4. Suppose now that (z,) has no weakly null subsequence. By
regarding (z,) as a sequence in J** and passing to a subsequence, (z,) has a
weak* limit z in J**. Since (z,)=J has no weak limit, z ¢ J. The proof of
Theorem 2.1b. is based on regarding the sequence (z,) as arising from its weak *
limit in J**.

We begin with a simple yet important case.

PROPOSITION 2.5. Suppose y € J** —J and (n,)=N is an increasing sequence.
Let y,=P,y, and suppose (n,) is such that y,+y,., for any k. Then

a. (y,) is a spreading basic sequence equivalent to (x,). The constant of this
eqttivalence has bound depending on y but not on (n,).

b. [(y,)] is complemented in J by a projection P, and | P| < B, where B depends
on y but not on (n).

Proor. The proof is simplest in the case where ef(y)+0 for all j, and we
present this case first. Let T: J — J be the operator defined by

T(Z ae) = Z er(Vae; .

That is, T is coordinatewise multiplication by y € J**. Since J** is the
multiplier algebra of J [1], T is bounded.
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Moreover, Tx, =y,, so that for any scalar sequence (a,),

1Y ayall < ITIIY ax,
= ||T| ”Z a X,
< 2yl el

Since y € J**—J and e}(y)#0 for any j, we have that
limef(y) # 0 and max[le}(y)™ '] < o0.
j j
It follows that the sequence
y = (ef0» )eJ** and |y £ max[lefo) Pyl -
J

Thus multiplication by y’, which is T ™!, is a bounded operator on J, and hence

"Z ax |l £ 1T “z ail

for all scalar sequences (a,). Thus (x,) is equivalent to (y,) and the constant of
the equivalence is

ITHIT™! = 4lyl* max (lef () %) -

Casazza [4] has proved that for any sequence (n), (x,) is complemented by a
contractive projection P. But then TPT ™! is a projection from J onto [(y,)]
with norm independent of (n,).

In the case that there do exist j with ef(y)=0, since y € J**—J it follows
that {j: e¥(y)=0} is finite, say {j, <j,<...<j,}. The permutation t of N
defined by t(j)=i if j=ji, 1(j)=j for j >}, and the requirement that t preserves
order in the remaining cases induces an automorphism U of J [1]. Denoting
by S the operator on J defined by Se,=e,,,, the sequence (y,) is equivalent to

the sequence Uy, which has no nonzero coordinates when regarded as a
" sequence in the space SJ, which is isometric to J. By the preceding arguments,
(Uy,) is equivalent to (x,) and complemented in SJ. It follows that (y,) is
equivalent to (x,) and is complemented in J. The constant of the equivalence
and norm of the projection now depend on U, but U is determined by y and is
independent of (n,).

We shall use the following lemma.

LeEmMa 2.6. Let (q;), (r;) be sequences of natural numbers such that for all i, q;
<r;<r;+1<gq;,,, and define a projection Q on J** by

e () qsjisn
ety otherwise .

e (Qy) = {

Then |Q|l=1 and Qy € J if and only if y € J.

Math. Scand. 48 — 8
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Proor. Any estimate by (3) of ||Qy|| is also an estimate of ||y|. Hence | Qy||
S|yl foranyy e J. For y € J**, ||y| =lim, | Py| ;, so Q has norm one on J**
also.

Since lim; e} (Qy)=lim;e}(y), it follows that Qy € J if and only if y € J. The
proof of Theorem 2.1 is now completed by

ProposITION 2.7. Let (z,) be a seminormalized sequence from J having no weak
cluster point. Then (z,) has a subsequence (z,) equivalent to (x,) and such that
[(z,)] is complemented in J.

ProoOF. Assume M ! < ||z,|| £ M for all n. Regarding (z,) as a sequence from
J** and passing to a subsequence we may assume, by Remark 2.4, that (z,)
"has a weak* limit y € J** —J. Let (g,) be a sequence of reals decreasing to zero,
and choose a subseqhence, also denoted by (z;), and an increasing sequence of
integers (n,) such that

1Puzi—zd < &
and

M7 S Pl s M.

Let z, = P, z,. The sequence (z}) = J** converges in the weak* topology to y, so
we may select an increasing sequence of natural numbers (m,) such that

1P, +2(Zm =) < &.

Define
= (Po, vV U= Py, 12)(zm)

= yh+wk .

We may write
e .
w, = Z bjej’ W]th
J=a

(5) qr = nmh—|+3’ and

rk = nmg ’

so that the sequences (g;) and (r;) satisfy the hypotheses of Lemmas 1.1.b and
2.6. Since ||w,|| £2M for all k, it follows from Lemma 1.1 that

1Y awell < ZM[Y la,*]*

for all scalar sequences (a,). Hence for any sequence (a,)
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I1X @zl = 12 awid + 1Y awl
2IyI 1Y @il +2MTY |a*1*
20yl + MY, awxdl

by Proposition 2.5 and Lemma 1.1.
Let Q be the projection defined in Lemma 2.6 using sequences (r;) and (gq;)
defined in (5). Let y'=Qy € J**—J, and let y,=(P, _ .,)y. Since

IA

(6)

IIA

IIA

ef i w) =0
for all i and k, it follows that

(7 Qz = (P, +20) = yi-
Thus for any scalar sequence (a,),

12 azill 2 12 Y azil
1% awil
z AlY axl

for some A>0 which depends on y'. It follows from (6) and (8) that (z}) is
equivalent to (x,). The basis constant of (z;) is the constant A; of this
equivalence. We also have that for some constant A4,, (z;) is A,-equivalent to
(%), so that from (7) we see that Q|r(,y; is an isomorphism from [(z;)] onto
[(]. By Proposition 2.5 there is a constant A5 such that any subsequence of
(vi) has span complemented by a projection P with |P||<A,. Thus any
subsequence of (zy) is complemented by a projection QI[(zm“PQ of norm
smaller than A,4;. Now

Y

®

h

’"

Iz = zm |l & N2 =2z, | + 2, — Zm, ]
S P, +2m =+ 120, = 2,
< g +E, < 2g,
so that if k; is chosen so that

1

it follows from Proposition 2.2 that (zm,) is equivalent to (x;) and has
complemented span. This completes the proof of Proposition 2.7 and Theorem
2.1.

Theorem 2.1 may be used to extend a result of Casazza, Lin, and Lohman

[5].
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COROLLARY 2.8. If (z,) is a spreading basic sequence in J, then

(a) if z, converges weakly to zero, then (z,) is equivalent to the unit vector basis
of 1,.

(b) If z, b O weakly, then (z,) is equivalent to (x,).

Proor. Since (z,) is a basic sequence, (z,) has no non-zero weak cluster point.
Thus, by Theorem 2.1, if (z,) converges weakly to zero, (z,) has a subsequence
equivalent to the unit vector basis of I,. Since (z,) is spreading, (z,) is itself
equivalent to the I, basis. In the case that (z,) is not weakly null, Theorem 2.1
implies that (z,) has a subsequence equivalent to (x,), from which it follows
that (z,) is equivalent to (x,).

3. Subspaces of J.

In this section we use Theorem 2.1 to obtain results concerning subspaces of
J.

THEOREM 3.1. If X < J, then X is isomorphic to Y ® R where R is reflexive, Y is
complemented in J, and Y is either trivial or isomorphic to J.

Proor. If X is reflexive, we choose Y={0} and R=X.

Otherwise, there exists a sequence (z,)<= X, ||z,| =1 for all n such that (z,)
has no weak cluster point in J. By Theorem 2.1b, there is a subsequence (z,,)
equivalent to (x,) with span complemented in J by a projection P. We take Y
=[(z,)], and R= (I — P)X. Then Y is isomorphic to J, and hence [5], (I — P)J
is reflexive. Since R< (I — P)J, R is also reflexive.

Theorem 3.1 specializes to

COROLLARY 3.2. If X < J is non-reflexive, then there exists a subspace Y< X
such that Y is isomorphic to J and Y is complemented in J.

4. Spreading Models of J.

In this section we show that if a Banach space X is a spreading model of J,
then either X is isomorphic to I, or X is isomorphic to J. In fact, if a basis (f,)
is a fundamental sequence based on (y,)<=J then either (f,) is equivalent to the
unit vectors in I, or (f,) is equivalent to the spreading basis (x,) for J. We
" assume here that the fundamental sequence is Schauder basis.

We shall use a result of Guerre and Lapresté [7],
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THEOREM 4.1. Let (f,) be the fundamental sequence of a spreading model of a
Banach space X, based on a sequence (y,)<=X. Then

a. If f, —» O weakly, then y, — 0 weakly.

b. If (f,) is weakly Cauchy but not weakly convergent, then (y,) is weakly
Cauchy but not weakly convergent.

We have then

THEOREM 4.2. Let a basis (f,) be the fundamental sequence of a spreading
model of J, based on a sequence (y,)<J. Then either (f,) is equivalent to the unit
vectors in l, or (f,) is equivalent to the basis (x,) for J.

Proor. We consider three cases.

1. If (f,) converges weakly to zero, then the same is true of (y,) by Theorem
4.1a. By Theorem 2.1 we may pass to a subsequence (y,) equivalent to the unit
vector basis in /,. But this implies that (f,) is equivalent to the unit vector basis
in [,.

2. If (f,) is weakly Cauchy, yet not weakly convergent, then the same is true
of (y,) by Theorem 4.1b. By Theorem 2.1 there is a subsequence (y, ) equivalent
to the spreading basis (x,) for J. But this implies that (f,) is itself equivalent to
(x)-

3. Since (f,) is assumed to be a basis, the only remaining case is that when
(f,) is not weakly Cauchy. Since (f,) is spreading, it follows from a result of
Rosenthal [12] that (f,) is equivalent to the unit vector basis in /;. Thus it is
sufficient to show that I, is not a spreading model of J.

Now Proposition 1.2 of [2] asserts that a Banach space X not containing /,
has I, as a spreading model if and only if X fails the Banach-Saks—Rosenthal
(BSR) property. Recall that X has BSR if every weakly null sequence has a
subsequence with norm convergent Cesaro means. Now [/, ¢ J, and J has BSR
since every weakly null sequence in J has a subsequence equivalent to the unit
vectors in I,. It follows that J does not have [, as a spreading model.
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