SPREADING BASIC SEQUENCES AND SUBSPACES OF JAMES' OUASI-REFLEXIVE SPACE

ALFRED ANDREW¹

Abstract.

We prove that every sequence from J having no nonzero weak cluster point has a subsequence equivalent to either the unit vector basis of l_2 or to a spreading basis for J. This implies that J embeds isomorphically in each of its non-reflexive subspaces, and that the only spreading models of J with basic fundamental sequence are J and l_2 .

1. Introduction.

We discuss the existence and number of spreading basic sequences in James' quasi-reflexive Banach space J, and make applications of this study to spreading models of J and subspaces of J.

In section 2 we show that in one sense, J has many spreading basic sequences, yet only two, up to equivalence. Namely, any seminormalized sequence with no weak cluster point has a subsequence which is a spreading basic sequence. Moreover, the subsequence can be chosen to have complemented span and to be equivalent either to the unit vector basis of l_2 or to a certain basis for J. This latter result implies that J has, up to equivalence, precisely two spreading basic sequences. Since J is primary [4], it possesses exactly two spreading basic sequences in an essential manner, in that it is not the direct sum of two spaces each having a unique spreading basic sequence.

In section 3 we use the results of section 2 to study subspaces of J, and show that every non-reflexive subspace of J contains a complemented isomorph of J. This extends results of Casazza [4].

In section 4 we show that J has precisely two spreading models, itself and l_2 . Here we assume that the fundamental sequence defined in [2] is a Schauder basis.

We thank Professor Casazza for several helpful suggestions.

¹ Supported in part by National Science Foundation grant MCS 78-03564. Received May 5, 1980.

We use the standard notation of Banach space theory. If $(z_n) \subset Z$, we denote the closed linear span of (z_n) by $[(z_n)]$, and say (z_n) is seminormalized if there exists a constant M such that $M^{-1} \le ||z_n|| \le M$ for all n.

Recall that sequences (y_n) and (z_n) in Banach spaces Y and Z are equivalent if there exists a constant K such that for any scalar sequence (a_n) .

$$K^{-1}\|\sum a_n y_n\| \le \|\sum a_n z_n\| \le K\|\sum a_n y_n\|$$
.

A basic sequence (y_n) in a Banach space Y is said to be *spreading* if (y_n) is equivalent to each of its subsequences. If, in addition, (y_n) is unconditional, it is said to be *subsymmetric*.

The notion of spreading model is due to Brunel and Sucheston [3]. They showed that if (y_n) is a bounded sequence from a Banach space Y, then there exists a subsequence (y'_n) such that for every scalar sequence $(a_i)_{i=1}^n$, and every choice of integers $\{k_1 < \ldots < k_n\}$, the limit

$$L((a_i)) = \lim_{k_1 \to \infty} \left\| \sum_{i=1}^n a_i y'_{k_i} \right\|$$

exists. In the event that (y_n) has no Cauchy subsequences, formula (1) defines a norm $|\cdot|$ on the space S of all finite real sequences by

(2)
$$\left|\sum_{i=1}^n a_i f_i\right| = L((a_i)_{i=1}^n).$$

The sequence of unit vectors (f_i) is clearly spreading. The completion of S under this norm is called the *spreading model of Y with fundamental sequence* (f_n) based on (y'_n) .

James' space J [8], [9], [10], is the Banach space of all null sequences of scalars for which the squared-variation norm

(3)
$$\left\| \sum_{i=1}^{\infty} a_i e_i \right\| = \sup_{\substack{p_0 \leq \dots \leq p_n \\ p_0 \leq \dots \leq p_n}} \left[\sum_{i=1}^n |a_{p_i} - a_{p_{i-1}}|^2 \right]^{\frac{1}{2}}$$

is finite, and the second conjugate J^{**} is the space of all sequences for which the squared-variation norm is finite [7]. Notice that $\|\sum a_i e_i\| < \infty$ implies $\lim_{i \to \infty} a_i$ exists. We shall reserve the notation (e_i) for the unit vector basis in James' space, (e_i^*) for the biorthogonal sequence, and P_n for the natural projections associated with (e_i) . We will regard e_i^* and P_n as defined on J and also on J^{**} .

The sequence $(x_n)_{n=1}^{\infty} \subset J$ defined by $x_n = \sum_{i=1}^n e_i$ is known to be a basis for J, and the norm may be computed as

(4)
$$\|\sum b_n x_n\| = \sup_{p_0 \le \dots \le p_n} \left[\sum_{i=1}^n \left| \sum_{j=p_{i-1}}^{p_i-1} b_j \right|^2 \right]^{\frac{1}{2}}.$$

From either (3) or (4) it follows that (x_n) is a spreading sequence. We shall reserve the notation (x_n) for this spreading basis of J.

The following lemma is obtained easily from (3) and (4). Proofs may be found in [4], [5].

LEMMA 1.1. a) For any scalar sequence (b_n) ,

$$\|\sum b_n x_n\| \ge [\sum |b_n|^2]^{\frac{1}{2}}$$
.

(b) If $w_n = \sum_{q_n}^{r_n} a_i e_i$, $||w_n|| = 1$ for all n, and $r_{n-1} + 1 < q_n \le r_n$ for all n, then for any scalar sequence (b_n) ,

$$\left[\sum b_n^2\right]^{\frac{1}{2}} \leq \left\|\sum b_n w_n\right\| \leq \sqrt{2} \left[\sum b_n^2\right]^{\frac{1}{2}}.$$

2. Spreading basic sequences in J.

In [5], Casazza, Lin, and Lohman proved that every subsymmetric basic sequence in J is equivalent to the unit vector basis of l_2 . One consequence of the main result of this section is that any spreading basic sequence in J is equivalent either to the unit vectors in l_2 or to the spreading basis (x_n) of J.

The main result is

Theorem 2.1. Let (z_k) be a seminormalized sequence from J having no non-zero weak cluster point. Then

a. if (z_k) has a weakly null subsequence, then there is a subsequence (z_{n_k}) equivalent to the unit vectors in l_2 with $[(z_n)]$ complemented in J or

b. if (z_n) has no weak cluster point, then there is a subsequence (z_{n_k}) equivalent to (x_k) with $[(z_{n_k})]$ complemented in J.

We present the proof in a sequence of propositions, and will use the following standard perturbation argument [11].

PROPOSITION 2.2. Let (y_n) be a basic sequence in a Banach space Y having basis constant M, and assume $[(y_n)]$ is complemented by a projection P. If $(z_n) \subset Y$ satisfies

$$\sum_{n=1}^{\infty} \|y_n - z_n\| < \frac{1}{8M\|P\|},$$

then (z_n) is a basic sequence equivalent to (y_n) and $[(z_n)]$ is complemented in Y.

In the case that (z_n) has a weakly null subsequence, the result follows from the argument of [5].

Proposition 2.3. If $(z_n) \subset J$ is a seminormalized sequence having a weakly null

subsequence, then there is a subsequence (z_{n_k}) having span complemented in J and equivalent to the unit vector basis of l_2 .

PROOF. Assume $||z_n|| = 1$ for all n and $z_n \to 0$ weakly. Let (ε_k) be a sequence of positive real numbers such that $\sum \varepsilon_k < 2^{-7}$ and choose an increasing sequence of integers (n_k) such that with $z'_{n_k} = (P_{n_k} - P_{n_{k-1}})z_{n_k}$, we have

$$\frac{1}{2} \leq \|z_{n_k}'\| \leq 2$$

and

$$||z_{n_k}-z'_{n_k}|| < \varepsilon_k$$
.

Then by Lemma 1.1b, (z'_{n_2k}) is $4\sqrt{2}$ -equivalent to the unit vectors in l_2 , and is hence a spreading basic sequence with basis constant at most $4\sqrt{2}$. By Theorem 10 of [5], $[(z'_{n_2k})]$ is complemented in J by a projection P of norm at most $2\sqrt{2}$. Since

$$\sum \|z'_{n_{2k}} - z_{n_{2k}}\| < \sum \varepsilon_k < 2^{-7} < \frac{1}{8M\|P\|},$$

it follows from Proposition 2.2 that $(z_{n_{2k}})$ is equivalent to the unit vectors in l_2 and has complemented span.

REMARK 2.4. Suppose now that (z_n) has no weakly null subsequence. By regarding (z_n) as a sequence in J^{**} and passing to a subsequence, (z_n) has a weak* limit z in J^{**} . Since $(z_n) \subset J$ has no weak limit, $z \notin J$. The proof of Theorem 2.1b. is based on regarding the sequence (z_n) as arising from its weak* limit in J^{**} .

We begin with a simple yet important case.

PROPOSITION 2.5. Suppose $y \in J^{**} - J$ and $(n_k) \subset \mathbb{N}$ is an increasing sequence. Let $y_k = P_n y$, and suppose (n_k) is such that $y_k \neq y_{k+1}$ for any k. Then

a. (y_k) is a spreading basic sequence equivalent to (x_k) . The constant of this equivalence has bound depending on y but not on (n_k) .

b. $[(y_k)]$ is complemented in J by a projection P, and ||P|| < B, where B depends on y but not on (n_k) .

PROOF. The proof is simplest in the case where $e_j^*(y) \neq 0$ for all j, and we present this case first. Let $T: J \to J$ be the operator defined by

$$T(\sum a_i e_i) = \sum e_i^*(y) a_i e_i.$$

That is, T is coordinatewise multiplication by $y \in J^{**}$. Since J^{**} is the multiplier algebra of J [1], T is bounded.

Moreover, $Tx_n = y_k$, so that for any scalar sequence (a_n) ,

$$\begin{aligned} \| \sum a_{n} y_{n} \| & \leq \| T \| \| \sum a_{k} x_{n_{k}} \| \\ & = \| T \| \| \sum a_{k} x_{k} \| \\ & \leq 2 \| y \| \| \sum a_{k} x_{k} \| . \end{aligned}$$

Since $y \in J^{**} - J$ and $e_i^*(y) \neq 0$ for any j, we have that

$$\lim_{j} e_{j}^{*}(y) \neq 0 \quad \text{and} \quad \max_{j} \left[|e_{j}^{*}(y)|^{-1} \right] < \infty.$$

It follows that the sequence

$$y' = (e_j^*(y)^{-1}) \in J^{**}$$
 and $||y'|| \le \max_j [|e_j^*(y)|^{-1}]^2 ||y||$.

Thus multiplication by y', which is T^{-1} , is a bounded operator on J, and hence

$$\|\sum a_k x_k\| \le \|T^{-1}\| \|\sum a_k y_k\|$$

for all scalar sequences (a_k) . Thus (x_k) is equivalent to (y_k) and the constant of the equivalence is

$$||T|| ||T^{-1}|| \le 4||y||^2 \max(|e_i^*(y)|^{-2}).$$

Casazza [4] has proved that for any sequence (n_k) , (x_{n_k}) is complemented by a contractive projection P. But then TPT^{-1} is a projection from J onto $[(y_k)]$ with norm independent of (n_k) .

In the case that there do exist j with $e_j^*(y) = 0$, since $y \in J^{**} - J$ it follows that $\{j : e_j^*(y) = 0\}$ is finite, say $\{j_1 < j_2 < \ldots < j_l\}$. The permutation τ of \mathbb{N} defined by $\tau(j) = i$ if $j = j_i$, $\tau(j) = j$ for $j > j_l$, and the requirement that τ preserves order in the remaining cases induces an automorphism U of J [1]. Denoting by S the operator on J defined by $Se_n = e_{n+l}$, the sequence (y_k) is equivalent to the sequence Uy_k which has no nonzero coordinates when regarded as a sequence in the space SJ, which is isometric to J. By the preceding arguments, (Uy_k) is equivalent to (x_k) and complemented in SJ. It follows that (y_k) is equivalent to (x_k) and is complemented in J. The constant of the equivalence and norm of the projection now depend on U, but U is determined by y and is independent of (n_k) .

We shall use the following lemma.

LEMMA 2.6. Let (q_i) , (r_i) be sequences of natural numbers such that for all i, $q_i < r_i < r_i + 1 < q_{i+1}$, and define a projection Q on J^{**} by

$$e_j^*(Qy) = \begin{cases} e_{r_i+1}^*(y) & q_i \leq j \leq r_i \\ e_j^*(y) & otherwise \ . \end{cases}$$

Then ||Q|| = 1 and $Qy \in J$ if and only if $y \in J$.

PROOF. Any estimate by (3) of ||Qy|| is also an estimate of ||y||. Hence $||Qy|| \le ||y||$ for any $y \in J$. For $y \in J^{**}$, $||y|| = \lim_k ||P_k y||_J$, so Q has norm one on J^{**} also.

Since $\lim_j e_j^*(Qy) = \lim_j e_j^*(y)$, it follows that $Qy \in J$ if and only if $y \in J$. The proof of Theorem 2.1 is now completed by

PROPOSITION 2.7. Let (z_n) be a seminormalized sequence from J having no weak cluster point. Then (z_n) has a subsequence (z_{n_k}) equivalent to (x_k) and such that $[(z_n)]$ is complemented in J.

PROOF. Assume $M^{-1} \le ||z_n|| \le M$ for all n. Regarding (z_n) as a sequence from J^{**} , and passing to a subsequence we may assume, by Remark 2.4, that (z_n) has a weak* limit $y \in J^{**} - J$. Let (ε_k) be a sequence of reals decreasing to zero, and choose a subsequence, also denoted by (z_k) , and an increasing sequence of integers (n_k) such that

$$||P_n z_k - z_k|| < \varepsilon_k$$

and

$$\frac{1}{2}M^{-1} \leq \|P_n z_k\| \leq M.$$

Let $z'_k = P_{n_k} z_k$. The sequence $(z'_k) \subset J^{**}$ converges in the weak * topology to y, so we may select an increasing sequence of natural numbers (m_k) such that

$$\|P_{n_{m_k}+2}(z'_{m_k}-y)\|<\varepsilon_k.$$

Define

$$z''_{k} = (P_{n_{m_{k-1}}+2})y + (I - P_{n_{m_{k-1}}+2})(z'_{m_{k}})$$
$$= y_{k} + w_{k}.$$

We may write

$$w_k = \sum_{j=q_k}^{r_k} b_j e_j, \quad \text{with}$$

$$q_k = n_{m_{k-1}} + 3, \quad \text{and}$$

$$r_k = n_{m_k},$$

so that the sequences (q_i) and (r_i) satisfy the hypotheses of Lemmas 1.1.b and 2.6. Since $||w_k|| \le 2M$ for all k, it follows from Lemma 1.1 that

$$\|\sum a_k w_k\| \leq 2M[\sum |a_k|^2]^{\frac{1}{2}}$$

for all scalar sequences (a_k) . Hence for any sequence (a_k)

(6)
$$\begin{split} \|\sum a_k z_k''\| &\leq \|\sum a_k y_k\| + \|\sum a_k w_k\| \\ &\leq 2\|y\| \|\sum a_k x_k\| + 2M[\sum |a_k|^2]^{\frac{1}{2}} \\ &\leq 2[\|y\| + M] \|\sum a_k x_k\| , \end{split}$$

by Proposition 2.5 and Lemma 1.1.

Let Q be the projection defined in Lemma 2.6 using sequences (r_i) and (q_i) defined in (5). Let $y' = Qy \in J^{**} - J$, and let $y'_k = (P_{n-k+2})y$. Since

$$e_{r_i+1}^*(w_k) = 0$$

for all i and k, it follows that

(7)
$$Qz''_{k} = (P_{n_{min}+2})(y') = y'_{k}.$$

Thus for any scalar sequence (a_k) ,

for some A>0 which depends on y'. It follows from (6) and (8) that (z_k'') is equivalent to (x_k) . The basis constant of (z_k'') is the constant A_1 of this equivalence. We also have that for some constant A_2 , (z_k'') is A_2 -equivalent to (y_k') , so that from (7) we see that $Q|_{[(z_k'')]}$ is an isomorphism from $[(z_k'')]$ onto $[(y_k')]$. By Proposition 2.5 there is a constant A_3 such that any subsequence of (y_k') has span complemented by a projection P with $||P|| \le A_3$. Thus any subsequence of (z_k'') is complemented by a projection $Q|_{[(z_k'')]}^{-1}PQ$ of norm smaller than A_2A_3 . Now

$$\begin{split} \|z_{k}'' - z_{m_{k}}\| & \leq \|z_{k}'' - z_{m_{k}}'\| + \|z_{m_{k}}' - z_{m_{k}}\| \\ & \leq \|P_{n_{m_{k-1}} + 2}(z_{m_{k}}' - y)\| + \|z_{m_{k}}' - z_{m_{k}}\| \\ & < \varepsilon_{k} + \varepsilon_{m_{k}} < 2\varepsilon_{k} \;, \end{split}$$

so that if k_1 is chosen so that

$$\sum \varepsilon_{\mathbf{k}_l} < \frac{1}{16A_1A_2A_3},$$

it follows from Proposition 2.2 that (z_{m_k}) is equivalent to (x_l) and has complemented span. This completes the proof of Proposition 2.7 and Theorem 2.1.

Theorem 2.1 may be used to extend a result of Casazza, Lin, and Lohman [5].

COROLLARY 2.8. If (z_n) is a spreading basic sequence in J, then

- (a) if z_n converges weakly to zero, then (z_n) is equivalent to the unit vector basis of l_2 .
 - (b) If $z_n \to 0$ weakly, then (z_n) is equivalent to (x_n) .

PROOF. Since (z_n) is a basic sequence, (z_n) has no non-zero weak cluster point. Thus, by Theorem 2.1, if (z_n) converges weakly to zero, (z_n) has a subsequence equivalent to the unit vector basis of l_2 . Since (z_n) is spreading, (z_n) is itself equivalent to the l_2 basis. In the case that (z_n) is not weakly null, Theorem 2.1 implies that (z_n) has a subsequence equivalent to (x_n) , from which it follows that (z_n) is equivalent to (x_n) .

3. Subspaces of J.

In this section we use Theorem 2.1 to obtain results concerning subspaces of J.

THEOREM 3.1. If $X \subset J$, then X is isomorphic to $Y \oplus R$ where R is reflexive, Y is complemented in J, and Y is either trivial or isomorphic to J.

PROOF. If X is reflexive, we choose $Y = \{0\}$ and R = X.

Otherwise, there exists a sequence $(z_n) \subset X$, $||z_n|| = 1$ for all n such that (z_n) has no weak cluster point in J. By Theorem 2.1b, there is a subsequence (z_{n_k}) equivalent to (x_k) with span complemented in J by a projection P. We take $Y = [(z_{n_k})]$, and R = (I - P)X. Then Y is isomorphic to J, and hence [5], (I - P)J is reflexive. Since $R \subset (I - P)J$, R is also reflexive.

Theorem 3.1 specializes to

COROLLARY 3.2. If $X \subset J$ is non-reflexive, then there exists a subspace $Y \subset X$ such that Y is isomorphic to J and Y is complemented in J.

4. Spreading Models of J.

In this section we show that if a Banach space X is a spreading model of J, then either X is isomorphic to l_2 or X is isomorphic to J. In fact, if a basis (f_n) is a fundamental sequence based on $(y_n) \subset J$ then either (f_n) is equivalent to the unit vectors in l_2 or (f_n) is equivalent to the spreading basis (x_n) for J. We assume here that the fundamental sequence is Schauder basis.

We shall use a result of Guerre and Lapresté [7],

THEOREM 4.1. Let (f_n) be the fundamental sequence of a spreading model of a Banach space X, based on a sequence $(y_n) \subset X$. Then

- a. If $f_n \to 0$ weakly, then $y_n \to 0$ weakly.
- b. If (f_n) is weakly Cauchy but not weakly convergent, then (y_n) is weakly Cauchy but not weakly convergent.

We have then

THEOREM 4.2. Let a basis (f_n) be the fundamental sequence of a spreading model of J, based on a sequence $(y_n) \subset J$. Then either (f_n) is equivalent to the unit vectors in l_2 or (f_n) is equivalent to the basis (x_n) for J.

Proof. We consider three cases.

- 1. If (f_n) converges weakly to zero, then the same is true of (y_n) by Theorem 4.1a. By Theorem 2.1 we may pass to a subsequence (y_{nk}) equivalent to the unit vector basis in l_2 . But this implies that (f_n) is equivalent to the unit vector basis in l_2 .
- 2. If (f_n) is weakly Cauchy, yet not weakly convergent, then the same is true of (y_n) by Theorem 4.1b. By Theorem 2.1 there is a subsequence (y_{n_k}) equivalent to the spreading basis (x_n) for J. But this implies that (f_n) is itself equivalent to (x_n) .
- 3. Since (f_n) is assumed to be a basis, the only remaining case is that when (f_n) is not weakly Cauchy. Since (f_n) is spreading, it follows from a result of Rosenthal [12] that (f_n) is equivalent to the unit vector basis in l_1 . Thus it is sufficient to show that l_1 is not a spreading model of J.

Now Proposition I.2 of [2] asserts that a Banach space X not containing l_1 has l_1 as a spreading model if and only if X fails the Banach-Saks-Rosenthal (BSR) property. Recall that X has BSR if every weakly null sequence has a subsequence with norm convergent Cesaro means. Now $l_1 \not\in J$, and J has BSR since every weakly null sequence in J has a subsequence equivalent to the unit vectors in l_2 . It follows that J does not have l_1 as a spreading model.

REFERENCES

- A. D. Andrew and W. L. Green, On James' quasi-reflexive Banach space as a Banach algebra, to appear in Canad. J. Math.
- 2. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357-384.
- A. Brunel and L. Sucheston, On B-Convex Banach spaces, Math. Systems Theory 7 (1974), 294-299.
- 4. P. G. Casazza, James' quasi-reflexive space is primary, Israel J. Math. 26 (1977), 294-305.
- P. G. Casazza, B. L. Lin, and R. H. Lohman, On James' quasi-reflexive Banach space, Proc. Amer. Math. Soc. 67 (1977), 265-271.

- 6. P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911.
- 7. S. Guerre and J. T. Lapresté, Quelques propriétés des modeles étales sur les espace de Banach, preprint.
- 8. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1951), 518-527.
- 9. R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
- 10. R. C. James, Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177.
- 11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I (Ergebnisse der Mathematik und Ihrer Grenzgebiete 92), Springer-Verlag, Berlin Heidelberg New York, 1977.
- H. P. Rosenthal, A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.

SCHOOL OF MATHEMATICS GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GEORGIA 30332, U.S.A.