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THE CENTRAL LIMIT THEOREM FOR
MARKOV CHAINS WITH THE SIMULTANEOUS
TOTAL VARIATION CONVERGENCE OF THE CHAIN

SEPPO NIEMI

1. Introduction.

Let (X),», be an aperiodic positive recurrent Harris chain on a general
measurable state space (E,&) with n-step transition probabilities P"(x, A),
x € E, A € &, and with invariant probability measure n. Let f be a real-valued
n-integrable function with n(f)=[ fdn=0. Write S,=Y"_, f(X).

Orey’s convergence theorem ([4, Ch. I, Theorem 7.1]) states that

(1) P*(x, ) = =n(+)

in total variation norm, as n — oo, for all x € E. Cogburn ([1, Cor. 4.2])
has shown that under suitable conditions

2) S,/)/n — N(0,0?)

in distribution, as n — oo, for certain 0<¢? < 0.

The main aim of this paper is to combine these results to obtain a
simultaneous version of these two convergence results. Moreover, we shall give,
by using the splitting technique introduced in [2], an elementary proof for the
asymptotic normality of S,.

2. The main result.

We assume that the o-field & is countably generated (see Remark 2). We
shall denote by P, the probability measure on the sample space (E%, §*) of the
chain corresponding to the initial distribution u. If u=¢, is the probability
measure assigning unit mass to the point x, we write P,=P, The
corresponding expectation is denoted by E, (E,). We shall write ||-|| for the
total variation of a signed measure on (E, &) and @ for the standard normal
distribution function.

THEOREM. Assume that (2) holds for some o> 0. Then for every real number t
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3) IP{Si/a)/nst; X, € -} —0(n(-)| - 0, asn— co.

PRroOF. Associate to every positive integer n a positive integer 7 < n such that
n—i— 00, fn—1
and
() (S,—Si)/al/n — 0 in P,-probability, as n— 0o .

This is possible due to the convergence in distribution of §,—S,_, for any fixed
k. Define

®,(1,4) = P,{S,/o)/n<t; X, € A},
&,(t,A) = P,{Si/o)/n<t; X, € A},
Am, = {x € E| |P"(x,")—n(")|<e Ym=M} .
Then for n—A=M
18, (t, A)— D(O)m(A)|
= |E[(Px,(X,_s € A)=n(A): Syfo)/n<1]
+1(A)(P,{Si/o)/n<t} — (D)
< e+ P{X;€ A5y ) +IP,{S0)/n<t) —d() .
Hence by (1), (2) and (4)

(5) lim supltb tA—P(On(4)] £ e+nm(Ay,),

noo0 Aeéd
which tends to 0, as first Mtoo and then ¢|0. Thus, for every ¢>0,
lim sup |, (t, A) — P()n(A)|

n—o00 Aeé

e+ lim sup|®,(t, A)— ,(t +¢& A) + B, (t + & A)— D(t +e)n(A)|

nooo A€é

IIA

1A

g+ lim P,{|S,—S;/o)/n>e}+0
=¢ by 4,

which proves (3).

REMARKS. 1. Due to the continuity of the function @ the convergence in (3) is
uniform in t.
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2. We have assumed that the g-field & is countably generated, which
assumption is needed in the proof only to guarantee the measurability of the
set Ay .. This assumption can be replaced by a somewhat milder assumption
“E has a uniform subset A”; then the possibly non-measurable functions
x +— ||P"(x, -)—mn(-)| are bounded above by measurable functions g, <2
converging to zero m-as., see [1, p. 511].

3. A proof for the central limit theorem for Markov chains.

In this section we shall give an elementary proof for (2) and give an
expression for the parameter .

Due to the C-set theorem (see [6, Ch. 6, Lemma 1.1]) there is a function
h: E — [0,1] with n(h)>0, an integer k=1 and a probability measure v on
(E, &) such that

(6) P¥(x, A) = h®v(x,A) = h(x)v(4), x€eE Aeé.

By using the splitting technique (see [2]) we can construct an increasing
sequence of random times 0<N, <N, <... for the chain (X,),»0 such that
the law of the process {X Nio XN+ XNk+2- - .} is P,, independently of
{X0, X1, ., X (v — 1)} Then the sums
Nook—1
Y, = Y f(X) i=12...,
=Nk

n i

form a sequence of identically distributed random variables such that {Y; ;i
<n} and {Y;;i=n+2} are independent for all n. The mean of Y, is

o k-1
E)Y = Y vP—hew" Y P
m=0 n=0
= kn(h) " 'n(f) by [2, Theorem 3],
=0 by assumption .

If the variance «* =E, Y7 is finite, then for any integer /22 the sums
ml—1
Z,= Y Y, m=12...,
i=m-1l+1

are independent identically distributed variables with mean 0 and variance

E,Z% = (I-1)E,Y2+2(1-2)E,Y,Y, & (- )a? +2(1-2)a;; .
The central limit theorem for independent identically distributed random
variables asserts that
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D Z,,,/W — N(0, (I —1)o® +2(I—2)a,,) in distribution, as n — o0 .

m=1

By a standard ergodic theorem argument

$in L max (m | Ny Snikijn "0

almost surely, and hence in probability, as n — 0o. Anscombe’s theorem
(e.g. [5, Ch. VIII, Theorem 7.2]) now implies that

y(n) —
7 X Za)/n— N( "f(h)( , a2+g—(5—2au>>

l

in distribution, as n — oo. Similarly

Yin) 2
(®) Z Ym:/l/ - N( n;(h) l ) in distribution, as n — 00 .

Choosing [ great enough we obtain from (7) and (8) the following proposition.

ProvposiTioN. If o> =E, Y} is finite, then
7!( ) e
S,,/W N{0,—— («*+2a,,) ) in distribution, as n— o0.

In order to derive a more explicit expression for the variance o=
o2 4 2a,,)m(h)/k, we first write
12

= Z j(Xik+n), 1:0, 1,. ce
n=0

m?(x) = E U3,
m(xsy) = Ex(UOle=y) ’

k—1

Glx,*) = X (P*—h®v) Z P'(x, ).

i=0

Then

. N, -1 N,-1
©9) a+2a,, = E [Z U242 Z u, ¥ U]

j=it+1

N,=2  Ny—1 N,—1
+2Ev[ Y U U;+Uy,_1 ) Uj]
i=0 j=N, j=N,

Y v(P*—h®@v)m?
i=0
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+2 i ” V(P —h@v)'(dx)(P* — h@V)(x, dy)m(x, )G S ()
i=0

o0

+0+2 Z JJ V(P* — h@v) (dx)h(x)v(dy)m(x, )G f ()

i=0

= n(h)~'n(m?)+2n(h)~" ﬂn(dX)P"(x, dy)m(x,y)Gf(y) ,

provided that (9) is finite, when U, and U; are replaced by |U,| and |U},
respectively. This condition is obviously sufficient for the finiteness of 2. Hence
(9) holds with both sides finite, if n(m'®) is finite and the measure
E {Uy; X, € -} is |f|-regular (for the definition see [3, Def. 2.1]); especially if
n(m®) is finite and the function |f] is special (for the definition see [6, Ch. 6.
Def. 4.1]). In these cases

0% = k in(m®)+ 2k ! ﬂ‘n(dx)P"(x,dy)m(x,y)Gf(y).
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