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THE CONVERGENCE OF SUMS OF
TRANSITION PROBABILITIES OF
A POSITIVE RECURRENT MARKOV CHAIN

E. NUMMELIN

1. Introduction.

Let X={X,},>o be an aperiodic, positive recurrent Harris chain on a
general measurable state space (E,&). We shall follow throughout this paper
Revuz’ [8] and Nummelin’s [6] notation and terminology.

In Nummelin [6] (cf. also Cogburn [2] and Griffeath [3]) it was proved
that, if A and u are regular probability measures on (E, &), then the sum
> (AP,—puP,) converges absolutely in total variation norm:

(L.1) 2 AP, —pP,|| < o0
0

Recall that 4 is called regular, provided that
E;S; <o foral Aeé&”.

Here S,=inf{n>0:X,€ A}, §*={A € & : m(A)>0} and m denotes the
invariant probability measure of the chain.
Recall from Cogburn [2] the definition of a strongly uniform set: F € & is

called strongly uniform, provided that

supE, S, < oo, forall Aeé&*.

xeF
Cogburn [2, Theorem 5.1] proved that a set F € & is strongly uniform, if and
only if

(1.2) sup
x,yeF, N1

N
; (Pn(x, ')_Pn(y’ ))

< 0.

The main purpose of the present paper is to strengthen these results in the
following way: we show that a weaker convergence than (1.1) (respectively
(1.2)) is sufficient for A to be regular (respectively F to be strongly uniform), and
conversely, that the regularity of A and u (respectively the strong uniformity of
F) implies a stronger convergence than (1.1) (respectively (1.2)). As an
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application we prove a convergence result for renewal processes. We shall also
state some characterization results for regular measures and strongly uniform
sets. In particular, in the case when E is a topological space a sufficient
condition is given for compact sets to be strongly uniform (cf. Section 4 of
Cogburn [2]).

We shall assume throughout this paper that the Minorization Assumption
(M) of Nummelin [6] holds: for some k=1, he b&, with m(h)>0 and a
probability measure v on (E, &),

M) P, 2 h®v.

Note that, if & is countably generated, then by Orey’s C-set theorem (see Revuz
[8, p. 160]) (M) is satisfied for suitable k, h and v.

A basic method in the proofs of our results will be the Splitting Technique
introduced in Nummelin [4]. Suppose for a while that (M) holds with k=1, i.e.

P =2 h®v.

Let {Y,},>o be a sequence of random variables taking values zero or one.
Suppose that X, has initial distribution A. The probability law governing the
evolution of the bivariate process {X ,‘,"}d=°f{(X,‘, Y,)} is determined by the
conditions

(13a) Py{X,. €4, Y,=1|Xo..., X, Yor.. ., Yo_i} = h(Xv(A),
(13b) PX,.,€ A4, Y,=0|Xo,.... X Yo...,Ys_y}
= P(X,, A)—h(X )v(A).

Clearly {X}} is also a Markov chain. From (1.3a) we see that the conditional
distribution of X},, given X,=x and Y,=1 equals v, in particular it is
independent of x. This means that the set B=E x {1} is an atom for {X}}. If
{X,} is recurrent in the sense of Harris, then Y,=1 infinitely often with
probability one, i.e. the atom B is recurrent. This allows the use of renewal
theory in the analysis of general state space Markov chains, a tool, which has
turned out to be powerful in the analysis of Markov chains on a countable
state space. The reader is referred to Section 2 of Nummelin [6] for a detailed
study of the splitting method.

We shall use the notation Pp (respectively Ep) for the probability law
(respectively expectation operator) corresponding to the initial condition
Y,=1. Note that the law Py does not depend on the initial distribution of X|,.
For n=1 we write

Sg = inf{n21:Y,=1}, a.(n) = P{Sg=n}, y,(n) = Eg[g(X,); Sp=n},
u(n) = Pg{Y,=1} = vP,_;h, u(0) =1.
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The sequence {u(n)},», is the renewal sequence corresponding to the
successive visits of {X}} to the atom B. The following first-entrance-last-exit
decomposition is of basic importance: For any n=1, x € E, ge &,

(14 Pg(x) = E[g(X,); Spzn]+a,xuxy,(n).
We denote
00 k-1
G= Y (P,—h®VW, G=GY P;.
n=0 i=0
By Theorem 3 of Nummelin [6], vG = (m(h))”'m. Note that, if k=1, then
G=G=7Y (P-h®V),
n=0
and G has the following probabilistic interpretation:
& def
Gg(x) = Ex[z g(X,,)], Ty = inf{(n20:Y,=1}.
n=0

The kernels G and Q (cf. Nummelin [6]) are connected to each other by the
relation Q = PG.

Note that, by recurrence, Gh(x)=P,{Tg<oo}=1. Since the Harris
recurrence is preserved when turning from the original Markov chain {X,} to
the k-step Markov chain {X,,}, Gh=1 also in the general case k=1 (cf. Lemma
2.1 of Nummelin [6].

Lemma 1.1. (i) I+GP=G+1®v.
(i) 361 P+ P,G=G+k(m(h) *h®@m.

Proor. We have

1+GP

I

k
1+G ) P
i=1

1

k—1
1+G[ Y Pi+(P,‘—h®v)+h®v]
i=1

k—1

I+G Y P+ Y (P,—h®v+1®v
i n=1

i=1

Il

G+1®v,

which proves (i). The proof of (ii) is similar.

LemMma 1.2. Let u={u(n)},»o be an aperiodic positive recurrent (i.e., there
exists limu(n)=u(00)>0) zero delay renewal sequence and let v=bxu be a
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delayed renewal sequence with delay distribution b={b(n)},»,. Denote by f the
mean of the delay,

B =) nb(n).
1
There is a finite constant y, depending only on the sequence u, such that

(1.5) glv(n)—u(n)l = 9B.

Proor. Pitman [7] proved that, if § is finite, then the left hand side of (1.5) is
finite. He did not explicitely state that even (1.5) holds, although the same
proof yields also this result. In the following we shall only write the basic
inequalities, which lead to (1.5). The reader is referred to Pitman’s paper for
details omitted here.

We denote by t the first simultaneous renewal epoch of a zero delay renewal
process and of an independent, delayed (with delay distribution b) renewal
process. We write f for the expectation of 7 and define

N

Fy =Y (un-v(m),

1
N
Gy = 21: (u(n)* —u(ny(n)) .

Then by Lemma 6.11 of Pitman limy_, ., Gy =u?(c0)f — 1 and |Fy| <  for all N,
whence

u(00)?B—1 = sup|Gyl
N

i

N-1 ‘

sup Fyu(N)+ Y, F,(u(n)—u(n+1)
1

A

(1 +§ u(n) —u(n+ 1)|>ﬂ .

The final assertion (1.5) now follows from the coupling inequality

lv(n)—u(n)| < 2P{r>n}.

2. The total variation and .#'-convergence of the sum Y (P,f(x)— P,f ()

The following definition of g-regular measures generalizes the concept of a
regular measure defined in Section 1.
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DerFiNITION 2.1. Let g € £ (m) be arbitrary. A probability measure A is
called g-regular, provided that g is A-integrable and

Sa
AUug =E; Y g(X,) <oo forall Ae&t .
1

Hence, A is g-tegular, if and only if E, >54g(X,) is finite for all A € &*. Note
that in Definition 3.1 of Nummelin [6] the Z-integrability of g was not
demanded. Note also that 1-regular means the same as regular. We shall
henceforth use the notation R, for the set of g-regular probability measures.
We define the norms |- ||, g € &, in the usual way: for a signed measure ¢
such that g € Z (|¢]),

€l = Sup 1NN = 1I(g) -

Note that ||-|| = |- ||;. In the space of A-integrable measurable functions #*(A)
we have the usual norm defined by | f|| ;= A(|f]). We shall denote by £ the set
of signed transition kernels on (E, &) and define for any probability measure A
and any ge &,

Ji”u:{Ne.%’: sup |€Nf|<oo},

TNV EY
and for any N € A" ;

INllsg = sup [ENf| = sup [Nf]; = sup [[EN], .
Iflsg lElsa

lEl=4.1r1=¢

Then (X, .|l I2,,) clearly becomes a normed space.

LEMMA 2.1. (i) Write g=Y&"! P,g. A probability measure A is g-regular, if and
only if it is g-regular with respect to the k-step chain {X .}, 0.

(ii) 4 is g-regular, if and only if AGg is finite.

(iii) If A is g-regular, then A is P,g-regular for all n. Hence, in particular, AP,g
is finite for all n.

Proor. (i) Use Lemma 3.2 of Nummelin [6].

(i) By (i) there is no loss of generality in assuming that k= 1. Suppose first
that AGg=E, Y I2g(X,) is finite. Let A € &* be arbitrary. By Lemma 3.4 of
Nummelin [6] there is x, € E such that h(x,)>0 and U 4g(x,) < 0o. Now the
finiteness of E, 354g(X,) follows from the inequalities

Sa S4
h(xo)Eg ; g(X,) = Exo[ Zl g(X,) ; Yo=1] < U4g(x0)
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and
Sa Ts Sa
E). Z g(Xn) § El Z g(Xn)+EB Z g(Xn)'
n=0 n=0 n=1

Conversely, suppose that E; Zg‘ g(X,) is finite for all 4 € &*. Since vGg=m(g)
is finite, there is A, € &* such that Gg(x)=E,Yf#g(X,) is bounded on A,.
The assertion now follows from the inequality

T Sa, Ts
E, Y gX)=E; Y g(X)+sup E; ¥ g(x,).
n=0 n=0 x€ A, n=0

(iii) Use part (ii) and Lemma 1.1 (i).

RemaArk. Note that in the proof of Lemma 2.1 the assumption of positive
recurrence was not needed (cf. Section 4).

Recall from Revuz [8] the definition of special functions; a function
g € ¥ (m) is called special, provided that

Sa
supEx[Z g(X,,)] <oo forallAed&™,
xeE 1

(cf. also Lemma 5.6 of Nummelin [4]). Note that, g is bounded and special, if
and only if every probability measure 4 on (E, &) is g-regular. Hence, as is seen
by Lemma 2.1 (ii), g is bounded and special, if and only if the function Gg is
bounded.

The following theorem is one of our main results. It strengthens the earlier
results (see Nummelin [6, Theorem 5]) in two ways. The convergence is uni-
form over a larger class of functions and we have #'-convergence with respect
to the initial probability measures.

THEOREM 1. For any m-integrable non-negative g, any g v 1-regular A and p,

@ > sup ﬂ } @IS ()~ P, SO < 0.
n=0 =g

In particular, if A and y are regular, then

22 ZO sup Hi(dx)u(d)’)lpnf x)=P,fO < 0.

Proor. First of all, note that by Lemma 2.1 (iii) the integrand is well defined
and finite for A-almost all x and p-almost all y. Without loss of generality we
can replace gv1 by g and assume g=1. Suppose first that k=1 in (M).
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According to the first-entrance-last-exit decomposition (1.4) we have, for any

Ifl=g,
[P f(x)— ¥ xun)| = E,[g(X,); SgZn]+la, xu—ulxy,(n),

whence

o o]

Sp
Y. sup J'l(dx)lpnf(x)—l/,f*u(n)l = E;[Z g(X..)]
0

o Iflseg
+Jl(dX) Y lagxu(n)—u(n)m(g)/m(h) .
n=1

By Lemma 2.1 (ii) the first term on the right hand side is finite. By Lemma 1.2
the second term is majorized by y [ A(dx)E,Sp, v a finite constant. Since by
Lemmas 1.1(ii) and 2.1(ii) E;S5=APG1 £AG1 + (m(h)) ! <00, the second term
is finite. Similar calculations for u and the triangle inequality lead to (2.1).

Let now k in (M) be arbitrary. By Lemma 2.1 (i), for any 0<i<k, 4 and p are
P,g-regular with respect to {X,,}. We can now apply (2.1) to the k-step chain
{X,,k} with g replaced by P;g (note that |f|<g implies |P;f|< P;g):

sup ﬂ (@x)u(dy)|P s if (X) = Py i f O

n= 0|f| g

o0

<2 swp f f Mdx)u(dy)| P f (x)= P f 9)] < 00
n=0 |f|§PiE

The final assertion is obtained from this inequality by summing i from 0 to
k—1.

CoROLLARY 2.2. For any g€ £, (m), A and pe R,

00

1P, —1®uP,l;, = Y. sup Ji(dx)anf(x)—ﬂPnfl < 005

n=0 |flsg

ine

n

in particular,
Y AP, ~pP,|l; < 00
n=0
By Proposition 3.5 of Nummelin [6], for any g € £ (m), m-almost all x € E,

the measure ¢, assigning unit mass to the pojnt x is g-regular and Gg(x) is finite
(cf. Lemma 2.1(ii)). This gives us the following corollary.

CoROLLARY 2.3. For any g € £ (m), m-almost all x,y € E,

; IPy(x, ") = Py, ), < 00 .
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Next we shall apply the preceding results to an interesting subclass of
positive recurrent Markov chains. We call the Markov chain X ={X,} ergodic
of degree 2 provided that for some strongly uniform 4 € &*

(2.3) j m(dx)E[S%] < o0.
4

Cogburn [2] proved that, if X is ergodic of degree 2, then (2.3) holds for all
A € &% and the invariant probability measure m is regular, and conversely, if m
is regular then the chain is ergodic of degree 2. Moreover, Cogburn [2,
Theorem 5.3] proved that, if X is ergodic of degree 2, then the series

%: (P,—1®m)f(x)

converges uniformly over fe % ={|f| <1} for each regular x and it converges
in #!(m) uniformly over f e %. Note that by Lemma 2.1(ii)) and Cogburn’s
results quoted above, X is ergodic of degree 2, if and only if vG?1 =mGl is
finite. From our Theorem 1 we obtain the following corollary strengthening
Cogburn’s Theorem 5.3 cited above.

COROLLARY 2.4. Assume that X is ergodic of degree 2. Let i be a regular
probability measure and g € ¥ (m) be such that i and m are g-regular. Then

% 1P, —1®@m];,, < 00,

and

% [P, —1®AP,|l,,, < 00.

In Arjas, Nummelin, and Tweedie [1, Theorem 6] the total variation
convergence result (1.1) was used when proving a total variation convergence
result for renewal processes on the real line. Similarly, the strengthened version
of (1.1), that is (2.2), can be used to obtain the following result. Note that this
result could also be derived from Stone’s [9] decomposition results for re-
newal measures.

CoROLLARY 2.5. Assume that F is a distribution on R =[0,00) with finite
mean and such that, for some n=1, the n-th convolution F** has an absolutely
continuous component with respect to Lebesgue measure. Denote U =33 F"*,
Let G be an arbitrary distribution on R, with finite mean. Then we have

j J G@n\U(dv—t)—U(dv)] < oo .
R, JR,
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Proor. Similar to the proof of Theorem 6 of Arjas, Nummelin and Tweedie

[1].

The following theorem identifies the limit of the sum Y (AP,f—uP,f). The
proof of Theorem 2 is the same as that of Theorem 6(i) of Nummelin [6], and
is therefore omitted. Theorem 6(i) of Nummelin [6] is a special case (g=1) of
Theorem 2.

THEOREM 2. For any g € £\ (m), A,ue Ry,

N
Y (P,—1®pP,) >(I—-1@uG(I—1®m) in |||, qnorm as N — o0;

0

in particular,

(2.4) Y (AP,g—uP,g) = iGg+m(guG1l — (uGg+m(g)iG1).

(]

By using Proposition 3.5 of Nummelin [6] we obtain the following corollary.

COROLLARY 2.6. For any g € £ (m), m-almost all x,y,

N
Z [P,(x, )= P,(», )] = [GU—1®m)(x, ) - G(I —1®@m)(y, )]

in ||-||;-norm as N — oo .

If X is ergodic of degree 2, then by Theorem 2 and Corollary 2.4, and since
(P—1®m)"=P,—1®m for n=1, we have for any g € # (m), any regular 1
such that 2 and m are g-regular:

N
Y (P—1®@m)-Z

0

=0,

Ag

(2.5) lim

N- oo

where Z € X', , is defined by
Z =1@m+(I-1@mG(I-1®m).

By using (2.5) and noting that A is Pg-regular whenever A is g-regular (use
Lemma 1.1()) and Lemma 2.1(ii)) we can conclude that Z is the inverse
operator of I —P+1®m in the following sense: for any regular 4 and any
fe £ (m) such that A and m are |f|-regular '

AM(I-P+1@m)f = AI-P+1@m)Zf = A(f).

The following theorem states that the equation (2.4) holds even in the case
when the right hand side is infinite provided only that it is well defined.
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THEOREM 3. For any g € ¥ (m), regular A and g-regular p the formula (2.4)
holds. Both sides of (2.4) are finite, provided that in addition 4 is g-regular and p
is regular; if A is not g-regular or p is not regular, then both sides of (2.4) are
equal to + 0o0.

Remark. Of course, by symmetry, a similar statement is valid for g-regular 4
and regular pu.

ProoF. (i) Assume first that 1 € #, and p € #,\ #,. By (1.4), if k=1 in (M),
then for any N>1,

N N ASp NASp
(2.6) ;(lP,.g—ﬂP..g) = Ez[ ; g(X..)}—E,‘[ ) g(X..)]

0
N
+; (a,—a)x Y xu(n).

The first term on the right hand side is non-negative. The second terms tends
to the limit — E "[23" g(X )], which is finite by the g-regularity of u. Since E,;Sg
<oo and E, Sg=o00, we have by Lemma 3.11 of Pitman [7]:

; (a,—a,) * Y xu(n) = oo .

Hence Y (AP,g—uP,g) = o0.
0

The case of general k follows by using Lemma 2.1(i).

(ii) Assume now that A e #,\ #, and that u e #,. With these assumptions
the first term on the right hand side of (2.6) converges to + oo, whereas the
second term tends to a finite limit. The third term tends to a finite limit or to
+ 00 according as u is regular or non-regular (use Pitman’s Theorem 6.11 and
Lemma 3.11).

(iii) The rest follows from Lemma 2.1(ii) and Theorem 2.

As stated in Theorem 1, if the probability measures A and u are regular, then
the sum 3 (P,—1®uP,) converges absolutely in |- ||; ,-norm. Theorem 3 gives
an answer to the following converse problem: What kind of convergence of the
transition probabilities is sufficient for regularity of the initial probability
measure 4?7 Combining Theorem 1 and 3 we also get a solidarity result for the
convergence of sums of transition probabilities.

CoROLLARY 2.7. Let A and p be two probability measures on (E,&). Assume
that u is regular. If for some g € £, (m) such that 1 is g-regular (in particular,
for some bounded special function g € £ (m))
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lim sup Z (AP,g—puP,g) > —o0,

N- oo

then 4 is regular and p is g-regular, whence

0o |flsg

SUP Hi(dxw(dy NP, f(x)=P,f () < 0.

Theorem 3 yields the following criterion for X to be ergodic of degree 2.

CoROLLARY 2.8. If for some regular probability measure A, some g e L, (m)
such that 2 and m are g-regular (in particular, some bounded special g) we have

hmmfZ (AP,g—m(g) <
N-oo

then the chain is ergodic of degree 2.

3. Uniform convergence of the sum > (P,f(x)— P,f ()

The following theorem strengthens Cogburn’s [2, Theorem 5.1] mentioned
in Section 1. We shall assume throughout this section that 1 is a fixed regular
probability measure on (E,&). Note that by (1.1) when studying the uniform
convergence (over x and y) of the sum Y (P,f(x)—P,f (), f€ bé&, it is
equivalent to consider the uniform convergence (over x) of the sum Y (P, f(x)

—AP,f).
THEOREM 4. Let F € &* be arbitrary. The following three conditions are
equivalent

(i) F is strongly uniform;

(i) sup Z [Py(x, )= AP,|l < 005
xeF

(i) lim sup[mf Y (P,g(x)—AiP,g)] > —o0

N—-oo xeF

Jor some special g € b&, such that m(g)>0.

When proving the theorem we shall need the following lemma, the proof of
which is similar to that of Lemma 2.1 (ii).

LEMMA 3.1. A set F € & is strongly uniform, if and only if G1(x) is bounded on
F.
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Proor oF THEOREM 4. (i) = (ii): By Lemma 2.1(iii), Corollary 2.2 and since
v is regular, it suffices to show that

sug Y NPusi(x, )= VP, < 00.
xeF o

Assume first that k=1 in (M). Note that vP,_, f=Egf(X,)=uxy(n) (cf.
Section 1). By (1.4) we have for any f e b& such that |f|<1 and any x € E,

00

%: IPos i f(X)=VP,f| = 3 IELS (X)) i5p2 ]+ axsusief (n)—usip  (n)]

1

A

E[S5]+Im(] ™" Y ay xu(m) —u(n)
1

since
m(E) 1

Wyl < ¢,(n) and ;%(n) =y = i

If F is strongly uniform, then
supE[Sg] = sup ) na,(n) < oo .
xeF xeF

The final assertion now follows by Lemma 1.2.

The case of general k can be treated in a manner analogous to the proof of
Theorem 1.

(ii) => (iii): Trivial.

(iii) = (i): We have

N
—00 < lim sup[mf Y (P,g(x)— AP, ng)]

N-00 xeF

IA

inf lim sup Z P,g(x)—AP,g)

xeF N—oo

= inf [Gg(x)—m(g)G1(x)—AGg+m(g)iG1] by Theorem 3,
xeF

IIA

sup Gg(x)—m(g)sup G1(x)+m(g)AG1 .

xeF xeF

The function Gg is bounded, since g is bounded and special, and 41G1 is finite
by the regularity of A. Hence

sup G1(x) < o0,
xeF

which by Lemma 3.1 implies that F is strongly uniform.
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REMARK. The results of this section could easily be generalized by replacing
the total variation norm |- || with the more general norms || {,, g € & L (m). In
this case one needs the concept of a g-strongly uniform set introduced in
Nummelin [4]. A set F € & is called g-strongly uniform, provided that

S4
3.1 sup Ex[z g(X,,)] <oo forall4eé&*.
xeF 1

We state without proof the following result, the proof of which is similar to
that of Theorem 4.

THEOREM 5. For any ge £ (m), 4 € R, .15 any g v 1-strongly uniform set
Feé,

sug 2 [P, (x, ") —AP,f, < 00.
xe 1

We shall end this section by considering the special case when the whole
state space E is strongly uniform, that is when

(3.2) supE. S, < oo forall Aeé&t,
xeE

or equivalently, when the function 1 (and hence any bounded function) is
special. By Lemma 3.1 this is equivalent to saying that the function G1 is
bounded.

Let us call the Markov chain X uniformly ergodic, provided that the iterates
of P converge to the limit operator 1 ®m in the operator norm, that is

lim sup [|P,(x,")—m| = 0.

n—oo xeE

It is well known (see e.g. Revuz [8, Proposition 6.4.9]) that X is uniformly
ergodic, if and only if (3.2) holds.

Our Theorem 4 applied with F =E yields the following criterion for uniform
ergodicity:

CoroOLLARY 3.2. If for some regular probability measure A, some special
g € b& . satisfying m(g)>0,

N
lim sup [inf Y (P,,g(x)—/lP,,g)] > —00,
N-o xeE ¢
then the chain is uniformly ergodic.

Recalling the fact that m-almost every y € E is regular we obtain
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CoROLLARY 3.3. If for some Ae &, for all y € A there exists a special
function g € b& , with m(g)>0, such that

lim sup [inf % (P,,g(x)——P,,g(y))] > —00,
xeE ¢

n—+o0o

then the chain is uniformly ergodic.

Note that in the other direction we can not strengthen the existing results,
since the operator norm convergence of P,—1®m is known to be
exponentially fast, and therefore also the sum Y (P,—1®m) automatically
converges absolutely in operator norm.

4. Criteria for regular measures, strongly uniform sets and special functions.

From the preceding sections one observes that the concepts of regularity,
strong uniformity and speciality play a central role when studying the
convergence of the sums of transition probabilities. Criteria for these, in terms
of the kernel G, are given in Lemma 2.1 and Lemma 3.1. In fact, however, it is
not necessary to calculate explicitely the kernel G but only estimate it from
above. For these purposes it turns out to be sufficient to consider suitable
Poisson-type equations and inequalities (cf. (4.1) and (4.2) below). We shall
drop the assumption of positive recurrence of the chain and assume only the
Harris recurrence and aperiodicity. We shall also assume throughout this section
that the Minorization Assumption (M) holds with k=1. The case of general k
can be handled by considering either the k-step Markov chain {X,,} or the
Markov chain {X®} induced by the transition probability function P®
=¥Pa(l —a)"P, (x € (0.1) fixed), and using results like Lemma 2.1(i) telling us
how a certain concept is inherited by the chains {X,,} and {X®}. The reader is
referred to Nummelin [5] for a study of the latter chain.

Since k=1, the kernel G=G has the form

G=3 (P—h@v.
o

According to Lemma 1.1(ii), for any measurable g € £ (m) the function
f: E — [0,00] defined by f=Gg satisfies the equation
4.1) f+e = Pf+g,

where e= (m(g)/m(h))h is bounded and special.

If now, for example, A is a g-regular probability measure on (E, &), then by
Lemma 2.1(ii) A(f) is finite, and so in this case there is a bounded special
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function e such that equation (4.1) possesses a non-negative, A-integrable
solution f. Similarly, if F is a strongly uniform set, then by using Lemma 3.1 we
can conclude that there is a bounded special function e such that equation (4.1)
possesses a non-negative solution f, which is bounded on F. The following
theorem states that these results hold also conversely. It turns out to be
sufficient to consider the inequalities

4.2) f+e = Pf+g.

THEOREM 6. (i) Let A be an arbitrary probability measure on (E,&) and g an
element of £, (m). A is g-regular, if and only if for some bounded e € £ (m) such
that 4 is e-regular (in particular, for some bounded special e), the inequality (4.2)
has a non-negative, A-integrable solution f.

(ii) A set F is strongly uniform, if and only if for some bounded special e, the
inequality

4.3) ft+e = Pf+1

has a solution f, which is non-negative and bounded on F.
(iii) A function g € b& , is special, if and only if for some bounded special e, the
inequality (4.2) has a bounded solution f.

Proor. We prove only (i) the proofs of (ii) and (iii) being similar. According
to the remarks made above on equation (4.1), if A is g-regular then (4.2)
possesses a solution and even the equality (4.1) holds. So it suffices to prove the
converse statement.

We can assume without any loss of generality that e is non-negative, because e
can always be replaced by e v 0. The inequality (4.2) implies

f+e =2 (P-h®Vv)f+g.

Iteration of this gives
N N N
f+Y (P—h®We 2 Y (P—h®V'g+(P—h@W\''f 2} (P-h@V g .
0 (o] (4]

Letting N — oo we obtain by the monotone convergence theorem
f+Ge = Gg .

The final assertion follows from this by integration with respect to A and by
Lemma 2.1(ii).

CoROLLARY 4.1. If f is non-negative, and if for some bounded special e, f is a
solution of the inequality (4.3), then for any x € E, f(x)<oo implies that x is
regular.
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CoROLLARY 4.2. (cf. Cogburn [2, Section 4]). Assume that E is a topological
space. If for some bounded special e, the inequality (4.3) has non-negative, upper
semicontinuous solution f, then all compact subsets of E are strongly uniform.

CoRrOLLARY 4.3. The chain is uniformly ergodic, if (and only if) for some
bounded special e, the inequality (4.3) possesses a bounded solution f.

By recalling that vG = (m(h))"'m and imitating the proof of Theorem 6(i)
with A=v we obtain the following criterion for g € &, to be m-integrable. In
particular, setting g=1 we obtain a criterion for the positive recurrence of a
Harris recurrent chain.

ProPOSITION 4.4. For any g € & ,, g is m-integrable, if and only if there exist
e € L' (m) and a measurable, non-negative, not identically infinite function f on E
such that the inequality (4.2) is satified.

Proor. We have to show that v(f) is finite. Iteration of (4.2) gives us
N
(44) fZ Pf—e 2 Py, f-Y Pe.
0

Let now y € E and N =0 be such that f(y) <oco and Pyh(y)>0. This is possible
since A(f)<oo, m(h)>0 and the chain is m-irreducible. By using the
Minorization Assumption P=h®v we get from (4.4)

N
00 > f() Z v(/)Pyh() =Y Pee,
0
whence v(f)<o00. The rest of the proof is similar to that of Theorem 6(i).
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