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UNIQUE SOLUTIONS OF SOME
VOLTERRA INTEGRAL EQUATIONS

GUSTAF GRIPENBERG

1. Introduction and statement of results.

The purpose of this paper is to study the uniqueness of the trivial solution
x(t)=0 of the integral inequality

t

(1.1) 0 x(t) £ f k(t,s,x(s))ds, t=0.

0
This inequality arises if one considers the equations

t

yi(t) =f(t)+f gt s,yi(s)ds, 120, i=1,2

0

in some Banach space and takes x(t)=|ly, (t)—y,(t)| and assumes that

lgt,s,u)—g(t,s,u)| = k(t,s, uy —uy]) -

But the uniqueness of the trivial solution of (1.1) is also crucial in some other
cases, e.g. in certain studies concerning the existence of solutions of abstract
nonlinear Volterra equations, see [5].

One well-known approach to be uniqueness problem for (1.1) is to assume
that the function k is Lipschitz-continuous in its third argument, for details see
[3, Chap. I1]. Here we will not make assumptions concerning Lipschitz-
continuity, but the main idea still remains that the trivial solution is unique if
and only if the function k is small enough in some sense. For another approach
to the uniqueness of solutions of Volterra integral equations that relies on
monotonicity methods, see e.g. [1, 2]. If the function k in (1.1) does not depend
on t, then (1.1) is just an integrated form of a differential inequality, see [6] for
this case.

The following well-known comparison theorem is, of course, very important
since it allows us to replace (1.1) by another equation that may be easier to
study. A proof of this theorem can be found in [3, Chap. II], (see also [4]).
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CoMPARISON THEOREM. Assume that T>0 and that
(1.2) k;(t,s,u) is nonnegative and measurable on [0, T]x [0, T] xR,
i=12,
(1.3) ki(t,s,uy =0 ifs>toru=s0 i=12,

(1.4) for every fixed (t,s) € [0, T] x [0, T], k;(t,s,u) is a continuous function
ofu, i=1,2,

(1.5) for every M >0 there exists a measurable function m(t,s) on [0,T]
x [0, T] so that k,(t,s,u)<m(t,s) if us M, (t,s) € [0, T] x[0,T] and
SUP;epo, 1 fgm(t, 5)ds < 00,

(16) limr—uo,te[O, T3 sup {501 |k2(t’ S, )’(S))”kz(tm S,y(S))l ds ‘y € C([O’ T], R);
y(EM, t € [0,T]}=0 for all M>0 and t, € [0,T],

(1.7) there exists My>0 such that k,(t,s,u)<k,(t,s,u,) if (t,s) € [0,T]
x [0, T] and u, Su, <M,,

(1.8) the function x e C([0,T]; R) satisfies x(t)<[yky(t,s,x(s))ds,

te[0,T)
Then there exists a number T, € (0, T] and a function y € C([0, T,]; R) such that
t
(1.9) y) = j ka(t,s,y(s)ds, te[0,T]
0
and
(1.10) x() < y@), tel0,T,].

Observe that this theorem can be used in two different ways. If it is known
that the equation (1.9) has only the trivial solution y(t)=0 then it follows that
x(t)=<0on [0, T,]. If on the other hand it is known that x(t)>0 when t € (0, T]
then equation (1.9) must have a nontrivial solution.

The next theorem gives a large class of equations that can be used for
comparison purposes, since it is possible to give precise information about the
uniqueness of the trivial solution for these equations.

THEOREM 1. Assume that a>0 and that

(1.11)  h: R — R is continuous on (0, 00), positive and nonincreasing on (0, 9]
for some 6>0 and h(u)=0 if u<0,

(1.12)  for each p>0 there exists 6, € (0,0] such that uh(u)’ is nondecreasing
on [0,6,].
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Then
(1.13) x(t) = jt (t—s) " *h(x(s))x(s)ds, te[0,T]
0

where x € C([0, T]; R) for some T >0 implies that x(t)=0 on [0, T] if and only
if

(1.14) r (uh@)'™) 'du = +00.

0

In the Comparison Theorem it is assumed that the function k, dominates:the
function k, for all t,s, see (1.7). In some special cases this assumption is
unnecessarily strong as is seen from the following two theorems that also give
us another class of equations that can be used for comparison purposes.

THEOREM 2a. Assume that T>0, >0, p> 1, (1.11), (1.12) and (1.14) hold and
that
(1.15)  k(t,s) is nonnegative and measurable on [0, T]x [0, T], k(t,s)=0 if s
>t,

t
(1.16) sup J k(t,s)P(t—s)PA~271ds < 00 .
te[0,T]1 JoO
If x € C([0, T]; R) satisfies the inequality
(1.17) x(t) £ j k(t, s)h(x(s))x(s)ds, t€[0,T]
0
then x(t)<0 on [0,T].

THEOREM 2b. Assume that T>0, 0>0, p>0, (1.11), (1.12) and (1.15) hold but
(1.14) does not hold and that

t
(1.18) sup j k(t,s)ds < o0,
tel0,T1 Jo
T
(1.19) lim J |k(t,s)—k(to,s)lds = O  for all t, € [0,T]
t—=15,t€[0, T J o
t
(1.20) sup j k(t,s) P(t—s)Pe "D 1ds < 00 .
te[0,T1 J o

Then there exists a number Ty>0 and a function x € C([0, T,]; R) such that
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(1.21) x(t) = J‘r k(t,s)h(x(s))x(s)ds, te[0,T,]
0

and

(1.22) x(t)>0, te(0,T,].

2. Proof of Theorem 1.
First we establish some useful properties of the function h.

LEMMA. Assume that (1.11) and (1.12) hold and let p>0 be arbitrary. Then

(2.1) J h(s)Pds = 2uh(u)? if ue[0,0,,].
0

Moreover, h is locally Lipschitz-continuous on (0,0,) and

(2.2) d/du(uh(u)f) = 2 *h(u)? for ae. ue 0,9,,) -

Proor. To establish (2.1) we have only to note that u*h(u)” is nondecreasing
on [0,0,,] and hence

J h(s)Pds < u*h(u)"f stds = 2uh(wp, uel0,6,,].

V] 0

From (1.12) we know that u%h(u) is nondecreasing on [0, d,,,] and therefore it
follows from (1.11) that for every £¢>0

|h(u+e)—h() < (u+e) ((u+e)?—uh(u), ue (0,0,,—¢
and so
W) < qu™'h(u), ae. ue(0,0,,).

Using this inequality we easily deduce that (2.2) holds.

Assume that x € C([0, T]; R) satisfies (1.13) but x(t) is not zero for all
t € [0,T]. Then we may without loss of generality assume that x(t)>0 on
(0, T]. Observe that (1.12) and an application of the Comparison Theorem
show that we can assume that x is nondecreasing on [0, T,] where T, € (0, T].
Moreover, we choose T, to be such that x(t)<4d, on [0, T,]. We are going to
show that we get a contradiction if (1.14) holds.

The first case we will consider is when a=n+1 where n is a nonnegative
integer. The equation (1.13) is just the differential equation

23) x"* V(@) = nlh(x@O)x(@), t e [0,T,], xP0) =0, i=0,1,...,n.
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If n=0, then it is well-known that (1.14) implies that x(t)=0. Let n>0. We are
going to show by induction that

Q4) X" £ dy(R(x@)x @)D (DYDY, te[0,T,],

where d; is a certain constant and j=0,1,...,n. This inequality holds when j
=0 by (2.3). Assume that (2.4) holds for a certain integer j and multiply both
sides in the inequality by (x"~?(1))"U*! and integrate. This gives since
x"=(0)=x""7"Y(0)=0 and h(x(t))x(t) is nondecreasing on [0, T']

G+1D/G+2)(x=P())u+ i+
< d(h(x(O)x(D) 9+ Dx=i= D), ¢ € [0, T,]

and we see that (2.4) holds with j replaced by j+ 1. If we take j=n in (2.4) we
have

x'(t) £ dh(x@))V"* Yx(), t € [0, T,]

and an application of the Comparison Theorem shows that again we have to
consider the case n=0. If (1.14) holds we get a contradiction as a=n+1.

Next we assume that a=n+ 1 —  where n is a nonnegative integer, f € (0,1)
if n=1 and Be (0,27 if n=0. By (1.11) and (1.13) we conclude that

(2.5) xX'(t) £ Jt (t—5)""Ph(x(s))x'(s)ds, ae. te[0,T,]
0

and

t

2.6) x"* V() £ ¢, j (t—s)"Bh(x(s))x'(s)ds ae. te[0,T,]
0

where ¢, is a certain constant. We substitute the inequality (2.5) on the right
side in (2.6) and use the fact that h(x(¢)) is nonincreasing on [0,T,]. Hence
there exists a constant c, such that

13
Q7 x"*He) £ ¢, j (t—s)"*1"2Ph(x(s))*x (s)ds, ae. te[0,T,].

(1]
(Recall that [ (t—s)**ds=T(a+ DI (b+1)/T(@+b+2)t****!, a,b> 1)
Choose T, € (0, T,] so that x(t) <65, + 1y on [0, T,]. Invoking (2.2) we deduce
that an integrating by parts in (1.13) yields

t
(2.8) x(t) 2 ¢3 J (=9 Ph(x(s)x'(s)ds, te[0,T;]
0
where c; is a certain constant. Now we apply Holder’s inequality on the right

side in (2.7) and use (2.1) and (2.8), (recall that n+1—f>n+1—28>0). This
yields
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' (n+1-=2p)/(n+1-p)
X(n+1)(t) é CZ<J (t_s)n+1—Bh(x(s))x’(s)ds> X

0

t Bli(n+1—p)
x (J B(x(s))* x s) ds) < cah(x(@)" V1 0x ()

0o

ae. te[0,T,]

for a certain constant c¢,. Now it follows from the Comparison Theorem (recall
that x?(0)=0, i=0,1,...,n and x™ is absolutely continuous) that we have
reduced the problem to the case when a—1 is a nonnegative integer and that
case we already treated above. Hence we deduce that x(£)=0 if (1.14) holds.

Next we consider the case when a=1—§, B € [271, 1). Assume that we have
already shown that if >2"" then (1.14) implies that the trivial solution of
(1.13) is unique, (this is the case when m=1), and let a=1-—-f, a>2"™*D,
Since h(x(t)) is nonincreasing on [0, 7,] it follows from (1.13) that

x(t)

f (t—5)"%h(x(s) r (s—7r)"Ph(x(r))x(r)drds
.Jo 0

IIA

Cs J' (t—s)* " 2Ph(x(s))’x(s)ds, te[0,T,],
0

where ¢ is a certain constant. Since 1—2f> — (1—2"™") we can invoke the
Comparison Theorem and the induction hypothesis to show that we must
have x(t)=0 if (1.14) holds. Hence an induction argument completes the proof
of the first part of Theorem 1.

Now we proceed to show that if (1.14) does not hold, then there exist
nontrivial solutions of (1.13). First we consider the case when a=1-p,
Be (271, 1). For every ¢ € (0,1), let x, be a continuous nondecreasing solution
of the equation

t

(2.9) x.(t) = 8t+J (t—5)"Ph(x,(s))x.(s)ds, te[0,T,]

0

where T3>0 is independent of ¢, (it is easy to see that such a solution always
exists, cf. [3, Chap. II]). We can choose T; to be so small that x,(t)<J, on
[0,T,] for all ¢ € (0,1). Then we have by (2.2) and (2.9)

(2.10)  x.(f) > 27! j' (t—s)"Ph(x,(s)x,(s)ds, ae. te[0,T,].
0

We can solve h(x,(1))x,(t) from (2.9) and since ¢>0 we get for some constant
Cs

h(x,(6)x. (1) < cq J t (t—s)P x.(s)ds, ae. te[0,T,].
(1]
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We apply Holder’s inequality on the right side in the inequality above and use
(2.10), (recall that $>1— f>0). Since h(x,(t)) is nonincreasing on [0, T;] and
x.(0)=0 it follows that

t

h(x.(0)x.(1) < c6 (J
0

t 2~-1)/B
X <J‘ h(xs(s))“” 1)/(2p~ ”x;(s) ds)

0

1-p)p
(t=5)~Ph(x,()x.(6) ds) <

< X, PPR(x, ()~ VBx, ()2 DIB ae. te[0,T,]
or
2.11) X,(H) > cgh(x, (01" Px,(1), ae. te[0,Ts]

where ¢, and ¢y are certain constants.

Since we assume that (1.14) does not hold, there exists a function
v e C'([0, T,]; R) such that

(2.12) V() = cgh(v(®))V*Pu(r), t € [0,T;] ,
() > 0, te (0,Ts],

(let v be the solution of the equation {3 (h(u)!/*u) ™! du=cgt). Since v'(f) — 0 as
t — 0 but x,(t) = &t there exists for every ¢ € (0, 1) a number T, € (0, T5] so that
x.(t)2v(t) on [0, T,]. But then it follows from (1.12), (2.11) and (2.12) that there
exists a number T, € (0, T,] such that T,= T, for all ¢ € (0, 1). Now it is easy to
see that a subsequence of the functions x, must converge uniformly on [0,7T,]
to a solution x of (1.13) as ¢ — 0 (see [3, Chap. II]). Since we must have x(t)
=v(t) on [0, T,] it follows that we have found a nontrivial solution of (1.13).

Assume next that a=2n+2—2f where n is a nonnegative integer, § € [0, 1),
(1.14) does not hold and that we have already established the second part of
Theorem 1 if « takes the value n+1—f, (this is the case when n=0 and
B e (271,1)). Hence we may assume that there exists a nondecreasing and
continuous function v such that

t

(2.13) () = c} J (t—s)"Ph(v(s)v(s)ds, t € [0, Ts], v(t) > O, ¢t € (0, Ts]
0

where Ts>0 and ¢, is a positive constant that will be specified below. We
choose T to be so small that for every € € (0,1) we have x,(t)<, on [0, T;]
where x, is a continuous nondecreasing solution of the equation

(2.14) x.(t) = et"* 184 f (t—s)?" 17 28h(x,(s)x,(s)ds, te[0,Ts].
0

Math. Scand. 48 — 5
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From this equation we obtain

(2.15)  x.(t) > ¢ jt (t—s)"—# r (s—=1""Ph(x,(r)x,(r)drds , t € (0, Ts]
o 0

where ¢ is a certain constant. Observe that by (2.13) v(t)=0(t"**"#)ast — 0
and by (2.14) x (1) >et"** # on (0, T]. Hence there exists for every ¢ € (0,1) a
number T, € (0, Ts] such that x,(t)=v(t) on [0, T,]. From this fact combined
with (1.11) and (1.12) we conclude that

h(x )x.() = hE) @) o), 0srss<T,

since v(t) is nondecreasing on [0, Ts]. Therefore we are able to deduce from
(2.13) and (2.15) that x,(1)>v(t) on (0,7T,] so that we have T,=T; for all
¢ € (0,1). Again we see that a subsequence of the functions x, converge
uniformly on [0, T] to a solution of (1.13) (with a=2n+2-2f) as ¢ > 0.
Since we must obviously have x(t)=v(t) on [0, Ts] it follows that we have
found a nontrivial solution of (1.13) for this value of o.

To complete the proof of Theorem 1 we can use an induction argument,
since all the necessary steps have been established above.

3. Proofs of Theorems 2a and 2b.

Since h(u)=0 if u<0 we may clearly assume that the function x is
nonnegative on [0, T]. Then it follows from the continuity of x and (1.16),
(1.17) that x(0)=0 and hence we may without loss of generality assume that
x()<min {1,6} on [0,T]. From (1.17) we deduce with the aid of Holder’s
inequality that (g=p/(p—1))

(B.1)  x(tye < ( J t k(t,s)”(t—s)”“”"”"‘ds)q/p

0o

t
f (¢ —s)10 /P~ =Dp(x(5))x(s)ds, t € [0, T] .
0

Let y(t)=x(t)? and note that by (1.11) h(x(¢))<h(y(t)) on [0,T] since x(t)
<min {1, 8}. Therefore it follows from (3.1) that

(3.2) y(e) < cf? j ‘ (t=9"h(y(s)\'y(s)ds, t € [0, T]
V]

where ¢;=sup, 0.1y fb k(t,5)P(t—5)P* "®~1ds. Now we can apply the
Comparison Theorem and Theorem 1 to the inequality (3.2). We conclude that
y(t)=0 on [0,T] and the proof of Theorem 2a is completed.

To prove Theorem 2b we observe that by Theorem 1 there exists T, € (0, T]
and a function x € C([0, T,]; R) such that x(1)>0, t € (0, T,] and
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(3.3) x(t) = ¢; VetD f (t—s)*1"h(x(s))"2x(s)ds, te[0,T,]
0

where now g= (p+1)/p and ¢, =sup,.jo, 11 [6 k(t, )" P(t—s)"* V"1 ds. By (3.3)
and Holder’s inequality we deduce that

t q/(p+1)
(3.4) x(t)" < Cz_"/("+ 1)(J k(t, s) -+ l)lq(t — s)(p+ 1)(a/q—1) ds) X

0

X J‘ k(t,s)h(x(s))x(s)?ds, t € [0, T,] .

0

Again we let y(t)=x(1)? and note that h(x(s)) S h(y(s)) by (1.11) since we may
assume that x(f)<min {1,6} on [0, T,]. Then it follows from (3.4) and the
definition of ¢, that

y = j k(t,)h(y(s))y(s)ds, te[0,T].

0

Now we can apply the Comparison Theorem to complete the proof of
Theorem 2b.
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