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ON HSIAO’S CONJECTURE ON HECKE GROUPS

GUNTER KOHLER

Let g=3 be a rational integer, and put
{, = exp (mifg), Ay =L+t = 2cosg.

The Hecke group G(4,) is generated by the transformations
Uitr—t+4i, and Titr —1!

of the upper half plane. These groups were introduced by E. Hecke [1, Nr. 33]
when he found his famous correspondence between Dirichlet series with
functional equation on the one hand and entire modular forms for G(4,) on the
other hand. Recently Hong-Jen Hsiao [2] studied pairs of Dirichlet series
which are related by a functional equation. He proved that these pairs
correspond to entire modular forms for the subgroup H(4,) of G(4,) which is
generated by U and

L=TUT:tt/(=Ag+1).

The relation TU*=L*T shows that H(4,) has index at most 2 in G(4,). If q is
odd then the formula

T = (TUPT = L(UL)*" Y2 ¢ H(3,)

proves H(4)=G(4,). (This formula can be obtained from [1, p. 613].) Using
some formulae from M. Knopp [3] Hsiao proved

M [G(Ap): H(A)] = 2

if g=4 or q=6, and he conjectures this to be true for all even g=4. In 2 below I
give a simple proof of this conjecture. As in [2] this result yields examples of
pairs of Dirichlet series ¢ % which are related by a functional equation; this is
shown in 3.
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It is convenient to use the matrices

~ (1 &) 01\ ~  aoa (1 0)

Let G(4,) be the group which is generated by U and T, and let H(4,) be
the group which is generated by U and L. Then G(2,) and H(4,) are obtained
from G(iq) and A (4,) by factoring out the center

=6

We introduce the set S, which consists of all matrices
(1 P GD) Apad) )
Ap3(A) 1+ 22pa(33)
with arbitrary polynomials p,, p,, ps, p, in Z[X]. Obviously, T and I belong
to S,, and the product of any two matrices in S, is again in S, Therefore,

ITI(iq) < S§,.

We assume that g 24 is even, and we consider the field K,, =Q({,) of (2¢)-th
roots of unity and its maximal real subfield K3 =K, NR=Q(4,). Let us
suppose that Te S, Then 4 -p,(i2)=1 for some p, e Z[X], whence
44 € Q(42), and K%,=Q(42). But Q(22)=Q((? +{,; ?)=K} is the maximal real
subfield of K,=Q((?). From

[Ky: K3l =2 [KgKf1=2 K, <K,

and Ky =K}, we conclude that K,=K,,. This is impossible since g is even.
This contradiction shows that T¢ 5,, and hence that T¢ A(4 ). Thus Hsiao’s
conjecture (1) is proved for all even g =4.

We note that the identity and T represent the cosets of H(4,) in G(4,). This
will be used in the last section.

3.

The groups G(4,) and H(4,) meet the requirements in [4, chapter VIII].
Therefore ([4, p. 282]), for every even k =4, the Eisenstein series E,(t) and F ()
for G(4,) and H(4,), respectively, converge on the upper half plane and define
entire modular forms of weight k for these groups. They are defined as follows.
For any

M = (“ b)eSL(z,R),
c d
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put

d(Mrt)
dt

iu(® = (ct+d)~2.
The subgroups of translations in G(4,) and in H(4,) are both generated by U;
we denote this group by G.. Then

E@= Y (@ FO= Y  (u@),
M:G,NG(i,) M:G N H(,)
where M runs through a complete set of representatives of cosets G, M in G(4,)
and in H(4,), respectively. These functions are not identically 0 because of
E(ioo)=F,(i>)=1.
Now, for k=4 even, choose r= —i* and define

Fg(r) = rG)— Fk('""l_‘) =- Y (ur@)”?.

T M:G N H(4)

Then, by the remark at the end of section 2, F,— F¥=E,+0. Let ¢ and ¢
denote the Dirichlet series associated with F, and F}, respectively. Then ¢+,
and the functional equation

@n/A) =T ()p(s) = r2m/A)~* I (k—s)(k—s)

holds, as explained in [2].
In closing this note I would like to call the reader’s attention to [5] and [6]
and related work on Hecke groups which is listed there.

I wish to thank the referee for his remarks which simplified and shortened
the proof in section 2.
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