ON HSIAO'S CONJECTURE ON HECKE GROUPS

GÜNTER KÖHLER

1.

Let $q \ge 3$ be a rational integer, and put

$$\zeta_q = \exp(\pi i/q), \quad \lambda_q = \zeta_q + \zeta_q^{-1} = 2\cos\frac{\pi}{q}.$$

The Hecke group $G(\lambda_a)$ is generated by the transformations

$$U: \tau \mapsto \tau + \lambda_a$$
 and $T: \tau \mapsto -\tau^{-1}$

of the upper half plane. These groups were introduced by E. Hecke [1, Nr. 33] when he found his famous correspondence between Dirichlet series with functional equation on the one hand and entire modular forms for $G(\lambda_q)$ on the other hand. Recently Hong-Jen Hsiao [2] studied pairs of Dirichlet series which are related by a functional equation. He proved that these pairs correspond to entire modular forms for the subgroup $H(\lambda_q)$ of $G(\lambda_q)$ which is generated by U and

$$L = TUT: \tau \mapsto \tau/(-\lambda_a \tau + 1) .$$

The relation $TU^k = L^kT$ shows that $H(\lambda_q)$ has index at most 2 in $G(\lambda_q)$. If q is odd then the formula

$$T = (TU)^q T = L(UL)^{(q-1)/2} \in H(\lambda_q)$$

proves $H(\lambda_q) = G(\lambda_q)$. (This formula can be obtained from [1, p. 613].) Using some formulae from M. Knopp [3] Hsiao proved

$$[G(\lambda_a): H(\lambda_a)] = 2$$

if q=4 or q=6, and he conjectures this to be true for all even $q \ge 4$. In 2 below I give a simple proof of this conjecture. As in [2] this result yields examples of pairs of Dirichlet series $\varphi \neq \psi$ which are related by a functional equation; this is shown in 3.

Received January 2, 1980.

2.

It is convenient to use the matrices

$$\tilde{U} = \begin{pmatrix} 1 & \lambda_q \\ 0 & 1 \end{pmatrix}, \quad \tilde{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \tilde{L} = \tilde{T}\tilde{U}\tilde{T} = \begin{pmatrix} -1 & 0 \\ \lambda_q & -1 \end{pmatrix}.$$

Let $\widetilde{G}(\lambda_q)$ be the group which is generated by \widetilde{U} and \widetilde{T} , and let $\widetilde{H}(\lambda_q)$ be the group which is generated by \widetilde{U} and \widetilde{L} . Then $G(\lambda_q)$ and $H(\lambda_q)$ are obtained from $\widetilde{G}(\lambda_q)$ and $\widetilde{H}(\lambda_q)$ by factoring out the center

$$\left\{\pm\begin{pmatrix}1&0\\0&1\end{pmatrix}\right\}.$$

We introduce the set S_a which consists of all matrices

$$\pm \begin{pmatrix} 1 + \lambda_q^2 p_1(\lambda_q^2) & \lambda_q p_2(\lambda_q^2) \\ \lambda_q p_3(\lambda_q^2) & 1 + \lambda_q^2 p_4(\lambda_q^2) \end{pmatrix}$$

with arbitrary polynomials p_1 , p_2 , p_3 , p_4 in Z[X]. Obviously, \tilde{U} and \tilde{L} belong to S_a , and the product of any two matrices in S_a is again in S_a . Therefore,

$$\tilde{H}(\lambda_a) \subset S_a$$
.

We assume that $q \ge 4$ is even, and we consider the field $K_{2q} = \mathbb{Q}(\zeta_q)$ of (2q)-th roots of unity and its maximal real subfield $K_{2q}^* = K_{2q} \cap \mathbb{R} = \mathbb{Q}(\lambda_q)$. Let us suppose that $\widetilde{T} \in S_q$. Then $\lambda_q \cdot p_2(\lambda_q^2) = 1$ for some $p_2 \in \mathbb{Z}[X]$, whence $\lambda_q \in \mathbb{Q}(\lambda_q^2)$, and $K_{2q}^* = \mathbb{Q}(\lambda_q^2)$. But $\mathbb{Q}(\lambda_q^2) = \mathbb{Q}(\zeta_q^2 + \zeta_q^{-2}) = K_q^*$ is the maximal real subfield of $K_q = \mathbb{Q}(\zeta_q^2)$. From

$$[K_{2a}: K_{2a}^*] = 2, \quad [K_a: K_a^*] = 2, \quad K_a \subset K_{2a}$$

and $K_q^* = K_{2q}^*$ we conclude that $K_q = K_{2q}$. This is impossible since q is even. This contradiction shows that $\tilde{T} \notin S_q$, and hence that $\tilde{T} \notin \tilde{H}(\lambda_q)$. Thus Hsiao's conjecture (1) is proved for all even $q \ge 4$.

We note that the identity and T represent the cosets of $H(\lambda_q)$ in $G(\lambda_q)$. This will be used in the last section.

3.

The groups $G(\lambda_q)$ and $H(\lambda_q)$ meet the requirements in [4, chapter VIII]. Therefore ([4, p. 282]), for every even $k \ge 4$, the Eisenstein series $E_k(\tau)$ and $F_k(\tau)$ for $G(\lambda_q)$ and $H(\lambda_q)$, respectively, converge on the upper half plane and define entire modular forms of weight k for these groups. They are defined as follows. For any

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}),$$

put

$$j_M(\tau) = \frac{d(M\tau)}{d\tau} = (c\tau + d)^{-2}.$$

The subgroups of translations in $G(\lambda_q)$ and in $H(\lambda_q)$ are both generated by U; we denote this group by G_{∞} . Then

$$E_k(\tau) = \sum_{M:G_\infty \setminus G(\lambda_d)} (j_M(\tau))^{k/2}, \quad F_k(\tau) = \sum_{M:G_\infty \setminus H(\lambda_d)} (j_M(\tau))^{k/2},$$

where M runs through a complete set of representatives of cosets $G_{\infty}M$ in $G(\lambda_q)$ and in $H(\lambda_q)$, respectively. These functions are not identically 0 because of $E_k(i\infty) = F_k(i\infty) = 1$.

Now, for $k \ge 4$ even, choose $r = -i^k$ and define

$$F_k^*(\tau) = r \left(\frac{\tau}{i}\right)^{-k} F_k \left(-\frac{1}{\tau}\right) = -\sum_{M: G_{\infty} \setminus H(\lambda_n)} (j_{MT}(\tau))^{k/2}.$$

Then, by the remark at the end of section 2, $F_k - F_k^* = E_k \pm 0$. Let φ and ψ denote the Dirichlet series associated with F_k and F_k^* , respectively. Then $\varphi \pm \psi$, and the functional equation

$$(2\pi/\lambda_a)^{-s}\Gamma(s)\varphi(s) = r(2\pi/\lambda_a)^{-(k-s)}\Gamma(k-s)\psi(k-s)$$

holds, as explained in [2].

In closing this note I would like to call the reader's attention to [5] and [6] and related work on Hecke groups which is listed there.

I wish to thank the referee for his remarks which simplified and shortened the proof in section 2.

REFERENCES

- 1. E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959, 2. Aufl. 1970.
- Hong-Jen Hsiao, A remark on Hecke's theory on Dirichlet series with functional equation, Chinese J. of Math. 6 (1978), 147-152.
- 3. M. Knopp, Modular functions in analytic number theory, Markham, Chicago, 1970.
- J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys no. 7, Amer. Math. Soc., Providence, 1964.
- 5. J. Wolfart, Eine Bemerkung über Heckes Modulgruppen, Arch. Math. (Basel), 29 (1977), 72-77.
- J. Wolfart, Transzendente Zahlen als Fourierkoeffizienten von Heckes Modulformen, Acta Arithmetica, erscheint demnächst.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT WÜRZBURG AM HUBLAND D-8700 WÜRZBURG BUNDESREPUBLIK DEUTSCHLAND