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EIGENSPACE REPRESENTATIONS OF
NILPOTENT LIE GROUPS

JACOB JACOBSEN and HENRIK STETK&ER

1. Introduction.

At the International Congress of Mathematicians in Nice 1970, S. Helgason
[3] posed the following problems concerning a homogeneous manifold G/H, H
being a closed subgroup of a Lie group G.

(A) Determine the algebra D(G/H) of all differential operators on G/H which
are invariant under G.

(B) Determine the functions on G/H which are eigenfunctions of each D €
D(G/H).

(C) For each joint eigenspace for the operators in D(G/H), study the natural
representation of G on this eigenspace; in particular when it is irreducible,
and what representations are so obtained.

These problems initiated several investigations, in particular of semisimple
Lie groups. See sections 4 and S of the survey paper [4].

Nilpotent groups were in the special case of the (2n+ 1)-dimensional
Heisenberg group treated by A. Hole [5]. He showed that if H is a connected,
non-normal subgroup, maximal with respect to these properties, then the
eigenspace representations from (C) are topologically irreducible (except for
the eigenvalue 0).

We present a generalization of Hole’s results to any simply connected,
connected, nilpotent Lie group G.

Let g be the Lie algebra of G, let f be a real polarisation at o« € g* and let H
be the analytic subgroup of G corresponding to h:=tNkera. Then (Theorem
6.1) D(G/H) is generated by the G-invariant vector field on G/H determined by
any Z € I\ D and the natural representation of G on the joint eigenspace

{u e £&(G/H) | Du=y(D)u, YD € D(G/H)}
from (C) is equivalent to the restriction 4,, ¢ of the left regular representation of

G to
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Bt = {ue&G)| Xu=—iaa(Xu, VX et}

where a=a(y) is a constant. If y30 then a+0.

In terms of 4,, ; we get the following answers to the problems (B) and (C),
when a € C\ {0}:

(i) There exist topological isomorphisms of &, onto &(R") where n
=dim g/f (Theorem 3.1) such that
(i) the derived algebra di,, ;(D(G)) viewed as operators on & (R") equals the
algebra of all differential operators on R” with polynomial coefficients
(Theorem 4.1).
(iii) A,, ¢ is both operator and topologically irreducible (Theorem 5.1).
(iv) If Ag,1, is equivalent to 4, y, then I, =1, (Proposition 7.4).

The result above on D(G/H) is a corollary of (iii). Another and earlier proof
is due to A. Hole (Theorem 3.7 of [6]).

Hole’s result for the Heisenberg groups is generalized by (iii).

It can be mentioned that our results are still true if the function space & is
replaced by the distribution space 2’ in the statements.

Our key result (ii) is closely related to a theorem of Kirillov ([7, Theorem
7.1, p. 82]), the difference being that we consider

1) representations on spaces of C®-functions and distributions,

2) functionals on g which may be complex-valued,

3) and that we make the representations explicit in terms of coexponential
bases.

In the unitary theory two polarisations at the same point in g* give rise to
equivalent representations. (iv) shows this is not the case for representations on
spaces of C*-functions or distributions.

2. Notation.

We conform to the standard terminology for function and distribution
spaces. For example, if M is a manifold, then 2'(M) denotes the strong dual of
2 (M)=C>(M).

Throughout this paper G denotes a real Lie group with left Haar measure
dg, Lie algebra g and exponential map exp. By means of dg function spaces like
& (G) and 2(G) are identified with subspaces of 2'(G) and differential operators
D: &(G) — &(G) with their unique continuous extensions D: 2'(G) —» 2'(G).
The complexified universal enveloping algebra of g will be identified with D(G),
the complex algebra of all the left invariant differential operators on G.

We denote by g* the dual of g, by (g*) the set of complex valued, real linear
functionals on g, and by Cg* the set of all complex multiples of elements from
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g*. If o € (g*), we write S(a; g) for the set whose elements are the subalgebras

f of g subordinate to a, i.e. with a([f,f])={0}. The subset of S(x; g) consisting

of subalgebras of maximal dimension subordinate to « is denoted by M(a; g).
If « € (%) and f € S(«; g), then

wi=ue2(G)| Xu=—ix(X)u, VX €t}
and
Eu1:= EG)ND,,

are closed subspaces of 2'(G) and &(G) respectively, and they are invariant
under the action of G by left translations. Using the methods of [ 1, Chap. VIII,
§ 2 No. 3], we find that the action of G restricts to differentiable representations
Ay rand A,y of G on 2,y and &, respectively.

2.1. DerFiNITION. Let T be a subalgebra of g. We say that an ordered set
{X1,...,X,} of elements from g is a coexponential basis modt for g if the
following two conditions are satisfied:

(@ {X,+5L...,X,+1} is a basis for g/f.

(b) g;:=span{X;,..., Xt} is an ideal of codimension 1 in g;_, for j

=1,...,n+1.
A coexponential basis mod {0} for g is said to be a coexponential basis for g.

2.2 LeMMA. If T is a subalgebra of a nilpotent Lie algebra g, then there exists a
coexponential basis mod ¥ for g.

Proor. If t+g then take X, as any element off f in the normaliser of .
Proceed inductively.

2.3. ProOPOSITION. Let G be a simply connected, nilpotent Lie group. Let
{X1,...,X,} be a coexponential basis for gmod a subalgebra t. Then the map
(xq,...,x,) > exp (x;X,)...exp(x,X,)exp (f)

is a diffeomorphism of R" onto G/exp (¥).

Proor. The case t=(0) is well-known (Theorem 3.18.11 of [10]). The general
case follows easily from this when we supplement the given basis with a
coexponential basis for f.

On basis of the Proposition we identify G/exp () and R" when a
coexponential basis mod f for g is given. We will write g-x for the action of
g € G on x € R"=G/exp (f).
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2.4. DEFINITION. A representation on a topological vector space is said to be
scalar (resp. operator) irreducible if the only continuous (resp. densely defined
and closed) intertwining operators are scalar multiples of the identity operator.

3. Eigenspaces on nilpotent Lie groups.

In this section we realize our representations 4,; and A,; on R" via
coexponential bases.

3.1. THEOREM. Let G be a simply connected, connected nilpotent Lie group, and
let t € S(a; g) for some o € (g*)C. Let {X,,...,X,} be a coexponential basis
mod ¥ for g, and let s*: £(G) — &(R") be the corresponding map given by

(*N(xq,- - > x,) 1= flexp (x, X,) .. .exp (x,X,)
for fe £(G) and (x4,...,x,) €R".
Then
(a) s* restricts to a topological isomorphism s*: &, y — &(R") which extends
uniquely to a topological isomorphism s*: 9,  — 2'(R").

(b) s* makes i,y equivalent to a representation i of G on &(R") of the form
[4(g)f1(x)=exp [iz(p(g, x))]1f(g "' -x) for g € G, f € £(R"), x € R, where
p: GxR" — 1 is a certain polynomial map.
The same formula holds for the representation A of G on 2'(R")
corresponding to A, y.

(c) The endomorphisms di(X): &(R")— &(R"), and dA(X): 2'(R")
— Z'(R"), X € g, are differential operators with polynomial coefficients.

Proor. Let K be the analytic subgroup corresponding to f, and let y be the
character on K given by
xexpX) := 2™  for Xet.
Let s: R" — G be the map
$(Xg,...,X%,) 1= exp (x, X,) ... exp (x,X,) for (x;,...,x,)eR".
Now fe &, iff
* f(s(x)k) = (fos)(x)x(k)™* for xeR" and ke K.

(a) It follows from (*) that s* is a vector space isomorphism between &, ; and
& (R"). It is clearly continuous and the continuity of its inverse is a consequence
of the open mapping theorem.

Let us normalize the Haar measure dk on K in such a way that
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J‘ f(g)dg = J J f(s(m)k)dkdm, where dm is Lebesgue
¢ G/K JK measure on G/K=R",

and choose 0 € 2(K) such that

J 0(kydk = 1.
K

We define the continuous linear map i: 2(G/K) —» 2(G) by
(ip)(s(m)k) := @(m)y(k)0(k) for ¢ € D(G/K), me G/K, ke K,

and let @ denote the restriction to 2, ; of the transpose map i to i. So &: 2,
— 92'(G/K) is continuous and linear. It is easy to check that ® is an extension
of s* on &, .

It is left to show that @ has a continuous inverse. For that purpose we
introduce the continuous linear map f: 2(G) — 2(G/K) given by

(Bo)(m) := JK p(s(mk)y (k)" dk  for ¢ € 2(G), me G/K .

As is easily seen, its transpose f': 2'(G/K) — 2’'(G) satisfies the relation
Rk = x(k)~'p* forall ke K,

ie. p' maps 2'(G/K) into 9, .
Since foi is the identity map on 2(G/K), we get that @of' is the identity on
2'(G/K) and so f' is a right inverse of @. On the other hand,

p's*f = f forall fe&,;,

so f's* is the identity map on the subspace &, of 2, ;.
Since &, ; contains the Garding space for A, y, it is dense in &, ;. By continuity
B'o® is the identity on all of 2y, so that f' is a left inverse, too.

(b) The formula for 4 is a consequence of (*) with p: G x R" — f determined
by g7 !'s(x)=s(g" ' x)exp[p(g,x)] for g e G, x € R".

Since &(R") is dense in 2'(R"), we get the corresponding formula for A by
continuity.

(c) Differentiate the formula in (b).

3.2. LEMMA. Let G be a simply connected, connected, nilpotent Lie group. Let
f € S(a, g) for some o € (g*)<, and assume given two coexponential bases mod
Jor g. Define as in Theorem 3.3 corresponding maps s} and s¥.

Then s¥o(s¥)~': &(R" — &(R") transforms the algebra of all differential
operators with polynomial coefficients on R" onto itself.
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PrOOF. An explicit calculation reveals that s¥o(s¥)~! is given by
[s¥o(s)™'f1(x) = exp (ix(g(0)f(p(x)) for fe £(R") and x e R",

where p: R" — R" and q: R" — { are certain polynomial maps.
The lemma now follows because (s¥o(s¥) ')~ ! =s¥osF ™! has the same form
(with p replaced by p~! and q by —qop™1).

4. The algebra di(D(G)).

Below we present our key result. Its unitary analogue was proved by Kirillov
(Theorem 7.1 of [7]). A crucial point in his proof is use of equivalence of
certain representations. Section 7 below shows that the corresponding
representations are not equivalent here, so the classical approach has been
modified here.

4.1. THEOREM. Let G be a simply connected, connected, nilpotent Lie group, let
o€ Cg*\ {0} and let t € M(a; g). Let there be given a coexponential basis mod
for g. Then the corresponding realization A of the representation 4, ¢ on & (R") has
the property that dA(D(G)) is the algebra of all differential operators with
polynomial coefficients on R".

4.2. REMARKS. (i) 4 is described in Theorem 3.1 where it is also shown that
dA(D(G)) consists of polynomial differential operators.

(i) The theorem clearly remains true if A, ; is replaced by 4, .

Proor. In the proof we work with suitably chosen coexponential bases. That
is allowed by Lemma 3.2.

The proof goes by induction on dim g. If dim g=1, then A is a representation
on &(R% and dA(X)=ix(X) for X € g. Since a0, the theorem holds in this
special case.

The induction hypothesis is that the theorem is true whenever dimg< N, so
we shall show that it holds when dimg=N + 1.

Let 3 denote the center of g and observe that 3 < by the maximality of I. We
divide the proof into three parts (A), (B) and (C), of which (A) and (B) can be
handled as by Kirillov in his proof of Theorem 7.1 of [7]. The proofs of (A) and
(B) are therefore deleted.

(A) We may and will assume that ker a N 3={0}.

From now on, dim3=1 because h:=keraNf has codimension 1 in f and
3t Fix an element Z € 3\ {0}, and note that there exists an element Ye g
such that [g, Y]=RZ. The subspace g,:={Veg | [V,Y]=0} is an ideal of
codimension 1 in g, so the induction hypothesis applies to g,.
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(B) t=go
(©) t&go.

In this case there is an element X € b such that [ X, Y]=Z. Furthermore
Y4 f because T € S(a,g) and a(Z)=+0.

Let hy:=bhNg,. Since X ¢ go, we get the following identities of direct sums of
vector spaces:

g =RX+g, and f:=RZ+RX+},.

Let:=RZ+RY+b, Then ¥ is a direct sum of vector spaces, it is a subalgebra
of g which is a subordinate a, and finally ¥ is of maximal dimension
subordinate o because dim¥' =dim¥. Since ¥ =g, it follows from (B) that the
representation 4, p satisfies the conclusion of the theorem.

2(G; K) := {p € £(G) | ¢ has compact support modulo K}

is a subspace of &(G), invariant under left transiations.

Since there is a coexponential basis for ¢ modf with Y as a member, it
follows that the function y — @(exp (yY)) belongs to 2(R) for any
¢ € 9(G; K). The prescription

00

(Fo)(g) := J o(gexp (yY))dy for ge G, ¢ € 2(G; K)

-0

clearly defines a linear mapping F: 2(G; K) — &(G). It is easily checked that
F(2,)S 6,1, where D, 1:=8, 11N 2(G; K). Furthermore F commutes with left
translations so that

(*) Fi,1(8)p = A, r(@Fp forallge G, ¢ € Dyy.

To see what are the properties of F, we introduce coordinates:
Note that the direct sum of vector spaces

§:= RY+RZ+RX +h,

is in fact a subalgebra of g of codimension n=0. So if we let {X,,..., X,}
denote a coexponential basis mod§ for g, then {X,....X,Y} is a
coexponential basis mod f for g while {X,. .., X,, X} is a coexponential basis
mod ¥ for g.
From Theorem 3.1 (a) we get the topological isomorphism
Y = s*:4,1(G) > ER"MY)
given by

(PNt - s twy) = flexp (6,Xy) .. . exp (t,X,)exp (Y)) .
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As is easily seen, ¥ restricts to an isomorphism,
Y: 21— 2R
Similarly we get another topological isomorphism
Y o= s*: 8,¢(G) > ER™Y)
given by
(Y'N(ty,- - >tmx) = flexp (£,X,) - . . exp (¢, X,) exp (xX)) .
These two topological isomorphisms define the representations 4 and A’
corresponding to A, ¢ and 4,y from the statement of the theorem.
An explicit calculation reveals that the operator
YFP~1: PR - &R
equals F,z, where
F:2R"™Y) » &R forany ce C

is given by

(F)(t,x) = f o(t,y)e”dy for ¢ € 2(R"1).

- 00

We collect the properties of F, that we need in a lemma.

42. Lemma. Let ¢+0. Then F, is continuous and injective, and to every
polynomial differential operator E on R"*! there exists another E' such that

F.Ep = EF,p foral ¢ e 2(R"*).

Proor. The continuity is an immediate consequence of the closed graph
theorem.
To prove the injectivity, we assume that F.@ =0. Then for any fixed t € R" the
function

o0
zZ I @(t,y)e > dy

is entire and vanishes on R, so it is identically 0. In particular, the ordinary
Fourier transform of y > ¢(t,y) is 0, and so ¢ =0.

Since F, commutes with differential operators only involving the t-variables,
it suffices to prove the last statement in the cases E=y and E=0J/0y. But here
E'=(—ic)”19/0x and E =icx work.
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We continue with the proof of the Theorem. It follows from (*) and the
continuity of F, where c=a(Z), that

Fdi(D)p = dX(D)F,p for all ¢ € 2(R"*}).

Let now E be an arbitrary polynomial differential operator on R"*!. Let E' be
the polynomial differential operator from the Lemma.

Since A, ¢ as noted earlier satisfies the conclusions of the theorem, there
exists D € D(G) with dA'(D)=E'. Thus

Fdi(D)p = dZ(D)F.¢ = E'F.¢ = F Eg
for all ¢ € 2(R"*!). By injectivity
di(D)p = Ep for all p € Q(R"*Y).

Hence the two differential operators di(D) and E coincide.

5. Irreducibility statements.

5.1. THEOREM. Let G be a simply connected, connected, nilpotent Lie group. If
o€ Cg* and Te M(x; g) then the representations A,; and A,; are both
topologically and operator irreducible.

Proof. If a=0 then the representations are one-dimensional and the
theorem is trivially true, so we will in the rest of the proof assume a 0.

The representation 4, ; is by Theorem 3.1(b) equivalent to a representation 4
of G on R" of the form

(*) [4(@)f1(x) = exp [ia(p(g, )] [x(e)/1(x),

where p is a certain map of G x R" into f and where t denotes the transitive
action of G on R"=G/exp (f). Moreover by Theorem 4.1, dA(D(G)) is the
algebra of all differential operators on R" with polynomial coefficients.
Similarly for A, .

Now the topological irreducibility of 4:

Let E+{0} be a closed A-invariant subspace of &(R") and let
uo € Et <&’ (R"). By the Hahn-Banach theorem it suffices to show that u,=0.
Since E is invariant under polynomial differential operators we get for all
polynomials p and all e € E that

{ug,pe) = 0.
The polynomials are dense in &(R") (see f.ex. [9]), so

{ug, fe) = 0 for all fe &(R") and e E,

Math. Scand. 48 — 4



50 JACOB JACOBSEN AND HENRIK STETKZ&ER

and thus
euy =0 forall eecE.

Now 1(g) acts transitively on R"” and A(g) and t(g) differ according to the
formula (*) only by a nowhere vanishing factor, so for any x € R” there is an
e € E with e(x)#+0. Consequently u,=0.

Minor modifications of the proof just given yields the topological
irreducibility of A, ;: Replace & by 2’ and observe that 9 is reflexive (it is a
Montel space).

The operator irreducibility of 4, and 4, ; is an immediate consequence of
the following lemma.

5.2. LEMMA. Let A be densely defined, closed linear operator on & (R") or 2 (R")
with the property that PA< AP for every polynomial differential operator P on
R". Then A=cl for some constant c € C.

Proor. Since the polynomials are dense in &(R") and 4 is closed we deduce
that the domain of definition D(A) of A4 is closed under multiplication by C*-
functions and that 4 commutes with such multiplications.

A is densely defined, so there exists for each x € R” a function g € D(A4) with
g(x)%0. Since D(A) is closed under multiplications |g|> € D(A), so we may
take g=0, and choose a locally finite partition of unity {y,} =& (R") and
corresponding functions g, € D(A) so that

So(x) := il//k(x)gk(x) >0 forall xeR".
1

The sum gq:=> Y, Ag, € &(R"). Since A commutes with multiplications we
get for any ¢ € D(A) that

_a(l+ - %
Agp = A(},O;d/kgk«)) e

so A is multiplication by go/f, € &(R"). But then A is everywhere defined.
Furthermore, since A commutes with differentiation the function gy/f, is a
constant.

5.3. REMARK. Theorem 5.1 and hence also Theorem 4.1 are not true in
general if « € Cg* is replaced by a € (g*)C: Using the notation of [2] we
consider g =gs_4, T=span { X3, X4, X5}, let a € (g*) satisfy a(X,)=0, ¢(X,) =1,
a(X5)=i and choose the coexponential basis {X,, X,} mod ¥ for g. The center
of D(G) contains D:=2X,X;—2X,X,+ X3 ([2 p. 326]). Computations show
that
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0 0
(@A(D)f1(x,3) = 25§+2i5§+y2f for fe &R .

It follows that A,y is neither scalar nor topologically irreducible.

6. Representations on homogeneous manifolds.
In this section we apply our results to Helgason’s problems, mentioned in
the introduction. The answer to (A) which is expressed by Theorem 6.1 below,

is due to A. Hole (Theorem 3.7 of [6]). We give an independent proof that
connects it to the eigenspace representations.

6.1. THEOREM. Let G be a simply connected, connected, nilpotent Lie group. Let
oa€g*\ (0) and k € M(x; g).

Then h:=tNker a is a proper ideal in Y. If H denotes the analytic subgroup of
G corresponding to Yy then we have for any Z € I\l that

D(G/H) = Pol (y(2)),

where y(Z) is the non-zero vector field on G/H given by

d
Lr(2)f1eH) = - f(gexp (tZ)H) for fe &(G/H), geG.

t=0

Proor. | is an ideal in f (of codim 1) so the formula for y(Z) defines a non-
zero element of D(G/H).

We may assume that [g, Z] < [Let i< g be maximal among the ideals of g
contained in b, and let Z, e g represent a non-zero element of the center of g/i.
Then [g,Z,]cich and Z, e I\ Replace Z by Z,.] Then exp (tZ)gH
=gexp (tZ)H for all g € G and t € R, which implies that y(Z) belongs to the
center of D(G/H). In particular, if D € D(G/H) and b € C then D leaves the
eigenspace

E,:= {fe &(G/H)| y(2)f=bf}
invariant.

Now it is easy to see that the natural representation of G on E, is equivalent
(under the pull back of n: G — G/H) to A,y 1, Where a= in(Z)~'b. It follows by
Theorem 5.1 that D acts as a scalar on each E,, b#0.

We identify G/H with R"*! via a coexponential basis {X,...,X,,Z} for
gmod b and denote the corresponding coordinates by x;,. . .,x,,z. Then y(Z)
=0/0z and E, =& (R)®e".

The scalar action of D on each E, implies that D is a polynomial in 0/0z.
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6.2. COROLLARY. Let the assumptions and the notation be as in the theorem.
Let furthermore y be a character on the algebra D(G/H). Then

(a) the natural representation L of G on the joint eigenspace
{fe &(G/H) | Df=y(D)f, VD € D(G/H)}
is equivalent to A, y where
a=ix((2)u2)"".

(b) If x=+0, or y=0 and t=g, then L is both topologically and operator
irreducible.

(c) If x=0 and t=+g then L is neither topologically nor scalar irreducible.

The corollary remains true if & is replaced by 2’ in the statement.

Proor. (a) was already noted in the proof of the theorem.

(b) If x+0 then a+0 so the result follows from Theorem 5.1.
If =0 and T=g then &, ;=& 4 is one-dimensional.

(c) Here an=0 so A, reduces by Theorem 3.1(b) to the natural
representation of G on &(G/K).

The constants on G/K form an invariant subspace of the infinite dimensional
space &(G/K) so the representation is not topologically irreducible.

It is not scalar irreducible either: Let X e n(f)\f where n(f) is the
normaliser of f in g. Then the corresponding operator &(G/K) is a continuous,
non-trivial, intertwining operator.

The same proof works in the distribution case.

6.3. REMARK. We mention without details how the unitary theory fits into
our setup: Let o € g*, let f € M(a; g), and let x be the character on exp (f) given
by

x(expX) = e*®  for X et.

When y is unitary then the induced unitary representation y1G is a
subrepresentation of A,; Since any continuous, unitary, irreducible
representation U is induced from a character of the above form, each such U is
equivalent to a subrepresentation of the natural representation on a joint
eigenspace of the form

{ue 2'(G/H) | Du=u(Dyu, VD e D(G/H)}

from Helgason’s problems. In this sense the eigenspace representations
contain all the continuous unitary irreducible representations of G.
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7. A counterexample.

In the theory of unitary representations of nilpotent Lie groups any two
subalgebras £, ¥ both of maximal dimension subordinate o € g*, that is
£, € M(x,g) give rise to equivalent unitary representations of the group. In
this section we will show by a simple example that the corresponding result is

false for our eigenspace representations, even when the notion “Equivalent” is
replaced by “Naimark related”.

7.1. ExampLE. The 3-dimensional Heisenberg group is a simply connected,
connected, nilpotent Lie group G whose Lie algebra g is spanned by three
elements X, Y and Z satisfying the commutation relations [X,Y]=2Z, [ X, Z]
=[Y,Z]=0.

Let a € g* be given by a(X)=a(Y)=0 and «(Z)=1, and consider
f:=span{X,Z} and ¥ :=span{Y,Z}.
Then L, € M(a,g).

CraiM. The eigenspace representations A4, ; and 4, y are not even “Naimark
related”.

ProoFr of THE cLAIM. Let us first realize the representations on 2'(R):

Let K denote the analytic subgroup of G corresponding to f. Since {Y} is a
coexponential basis for g modf we can identify G/K with R by means of the
diffeomorphism exp (yY)K > y.

It follows via Theorem 3.1(b) that A, ; is equivalent to the representation A
of G on 2'(R) given by

[A(exp (xoX)ul() = e**u(y),
[A(exp WoV)ul(y) = u(y—yo) ,
[A(exp (202)u] () = eu(y) .
Similarly A,y is equivalent to the representation A" of G on 2'(R) given by
[A'(exp (xoX)ul(x) = ulx—xo),
[A'(exp (o Vul(x) = e™ ™ u(x),
[A'(exp (zoZ2)u](x) = e™ou(x) .

Let 7 be the left regular representation of R on 2'(R). Let y be the
representation of R on 2’'(R) given by multiplication with the character x(x,),

where y(xo)(x)=e~**, To prove the claim it suffices to show the following
result:
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7.2. ProposiTioN. A=0 is the only densely defined, closed linear operator on
2'(R) that satisfies the relations

At(x) = y(x)A and Ax(—x) = 1(x)A forall xeR.
ProoF of THE PrROPOSITION. The integrated representations of v and yx are
given by the formulae
(eu = o*xu and x(pu = gu for ¢ € 2(R) and u e 2'(G) .

From the second relation or rather its equivalent trasposed y(x)A4' = A't(x) we
get by integration for any ¢ € 2(R), ¥ € D(A’) that

o*xy e D(A") and A (p*y) = ¢A'Y .
By commutativity
PAY = YA'o
and in particular
$O)(AY)0) = Y(0)(A'p)(0) for all g,y € D(4).

Since A' is densely defined as the transposed of a densely defined, closed
operator there exists ¢ € D(A') with @(0)=1. Then.

0, A) = (A'9)(0X1,y) for all Y e D(4").
Now (A=A so it follows that
6eD(A) and A0 = cl where c is a constant .

When we integrate the first relation we find for any u € D(A) and ¢ € 2(R)
that @ *xu € D(A) and A(p *u)=PAu. Substituting u=05 we get

P2(R)c D(A) and Ag =cp forall o e 2(R).
Returning to the operator A we get for any ¢ € 2(R) and y € D(A") that
(o, AY) = {Ap,¥) = (p,¥) = <o, ¥ .

Hence A'Y=cy for all y € D(A).
The left hand side is compactly supported since A’ is an operator in 2(R),

but if Y %0, then the right hand side is not, unless of course ¢ =0. We conclude
that ¢=0. Then 4'=0 and so 4=0.

7.3. COROLLARY. 4,1 and A,y are not Naimark related.

Proor. The only essential change from the distribution case is the proof of
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Proposition 7.2 (with 2’ replaced by &): For any ¢,y € 2(R) and any f € D(A)
we get by integration that

J(pxf)e D) and A[J(@*f)] = ¥x*($AS)

where J(x)=y(—x) for x € R.

Since the map u +— @=u is continuous from 2'(R) to &(R) for fixed
¢ € 2(R), it follows that A4 has a closure as an operator in 2'(R). Thus 4 =0 by
the distribution case.

Similar phenomena as in the example above occur in general. In fact, using
the results of [8] it is easy to prove the following proposition that we here cite
without proof:

7.4. PROPOSITION. Let G be a simply connected, connected nilpotent Lie group
with Lie algebra g. Let §,t € M(a,g) for some a € Cg*.
If the representations A,y and A,y are equivalent then h=1.
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