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SPECTRA OF ACTIONS ON TYPE I C*-ALGEBRAS

ELLIOT C. GOOTMAN! and DORTE OLESEN?
Abstract.

Let (A4,G,a) be a C*-dynamical system. For A commutative, a
characterization of the Arveson and Connes spectra in terms of the isotropy
groups is obtained. For A type I and G-simple, relationships between the
spectra of (A4, G,a) and certain subgroups of the isotropy groups are obtained
in special cases. However, an example is given, with 4 homogeneous of degree
2, to show that the natural analogue of the commutative characterization fails
in general.

Introduction.

Let A=C,(A), the continuous functions vanishing at infinity on the locally
compact Hausdorff space A. Let o be an action of a locally compact abelian
group G on A, or equivalently, let (G, A) be a locally compact topological
transformation group. For 7 € 4, let G, denote the isotropy group at = for the
action of G on A. In section 1 we characterize the Arveson spectrum Sp () [1]
and the Connes spectrum I'(x) [19] in terms of isotropy subgroups.

Specifically, we show Sp (x)=U,. G5, (1.2), G; denoting the annihilator of G,
in G, and from this we obtain a characterization of I' («) as the subgroup of G
consisting of elements which belong to G for all = in a certain dense subset of
A (1.6). This, in turn, leads to an independent proof (1.8), for commutative
algebras, of the characterization in [21] of I' () in terms of the dual action & of
G on the crossed product algebra G x A.

A has no non-trivial closed G-invariant ideals if and only if A has no non-
trivial closed G-invariant subsets. In this case we say 4 is G-simple, or (G, A) is
minimal. When A is G-simple and commutative, there is one common isotropy
group, denoted G,. It follows then from the results of section 1 that

G =T =Sp@.
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Furthermore, the crossed product algebra G x A4 is simple if and only if the
above subset of G equals G. (To see this, observe that if 4 is G-simple and G,
={0}, then all induced representations of G x A are weakly equivalent, while
the generalized Effros-Hahn conjecture [14] implies all irreducible
representations of G x A are weakly equivalent to induced representations. The
converse follows by [21, Proposition 6.3].) Finally, for = € A, there are natural
actions of G, on 4 and of G, on n(A), denoted, respectively, by a|;_and by o™.
Let k, be the natural map of G onto G,=G/G} given by restriction to G,. It
follows trivially from the remarks above that each of the sets k. (I'(2)), I' (| G,),
I (@™, k. (Sp (@), Sp (x| G,), Sp (™) just consists of the identity in G,, and hence
one has

ke(F(@) = T'alg) = I'(2")
and that

k(Sp (@) = Sp (elg) = Sp (&™) .

In sections 2 and 3, we investigate the extent to which suitable analogues (see
below) of the above statements hold for G-simple actions on type I, non-
commutative C*-algebras A. Although some of our results can be extended to
non-G-simple actions as well, we generally stick to the G-simple case for
greater coherence. Also, particular references to other work on these questions
is given in the body of sections 2-3.

For general type I C*-algebras A it is immediately obvious that the isotropy
groups for the action of G on A yield insufficient information about either the
spectra of the action or the ideal structure of the crossed product algebra. For
example, let A= M,, the algebra of all 2 x 2 matrices over C. Then A consists of
just one point, the identity representation n, so every action is G-simple, with
Gy ={0}. The spectra and the ideal structure of G x 4 can be quite different,

however. If Z, acts by a=Ad ((1) _(1)), then Sp (x)=Z,, I'(®)={0} and G x 4

01
is not simple. If Z, x Z, acts by a, =« as above and a, =Ad ( 1 0), then I'(a)

=2Z,xZ,, and the crossed product algebra is simple. Rather than G,, it is
known that a certain subgroup S, (deﬁned below) is more relevant for the
spectra and the ideal structure. For n € 4, there is a multiplier representation U,
with multiplier w, which implements the action of G,:

U)n(@U(s™!) = n(a,(a), VaeAd, seG,.

Then S,={s € G, : w,(s,t)=w,(t,s) Vt € G,}, and w, is called totally skew if S,
is trivial. The relevance of S, for ideal structure arises from the fact that if w, is
totally skew, all irreducible w,-representations are weakly equivalent ([3],
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[15]). Furthermore, if A= C(H), the compact operators on H, it is known that
I'(@)=S; [15]. Thus, in questions of spectra and ideal structure, G, is replaced
in sections 2-3 by S,.

In section 2, we obtain some positive results for G-simple actions on
arbitrary type I C*-algebras, as well as positive results for certain special
classes of actions. In section 3, we obtain more positive results for G-simple
actions on continuous trace algebras, and on continuous trace algebras of
finite degree. We also present an example of a G-simple action on a
homogeneous algebra of degree 2 which provides negative answers to a
number of the questions arising from the results of section 1. Some of the
questions arising from section 1 are still unsettled.

For general notation on C*-dynamical systems, the reader is referred to
[23, Chapters 7-8] or [18]. We mention only that for an action a of G on A, we
write «,(a) for the action of a group element t in G on a in A, «,(a)
=jG f (), (a) dt for the corresponding action of fin L *(G) on A, and & for the
dual action of G on the crossed product algebra G x A. Of course G is always
assumed to be abelian. We consider only separable C*-dynamical systems
(4,G,a), ie, A is a separable C*-algebra, G is a second countable locally
compact group, and all representations are on separable Hilbert spaces. K(G)
and K (G, A) denote the continuous, compactly supported functions on G with
values in C, respectively, 4. We sometimes identify a representation L of G x A
with the corresponding covariant pair of representations (n, V) of (4, G, «), and
unless otherwise mentioned, identify representations with their unitary
equivalence classes. If H is a closed subgroup of G, we use the notation
INDy6L to denote either the unitary representation of G induced from a
unitary representation L of H, or the representation of the crossed product
algebra G x A4 induced from the representation L of H x A.

1. The commutative case.

Let (Co(X),G,a) be a separable C*-dynamical system, or equivalently, let
(G,X) be a second countable locally compact topological transformation
group. For x in X, let

G, = {te G| tx=x}

X

denote the isotropy group at x, and for any closed subgroup H of G let H*
denote the annihilator of H in G, ie. H-={y e G| y=1 on H}.
Let

(Puf)E) = .[H f(t+s)dys
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be the canonical map of L!(G) onto L!(G/H). Then one has the following

1.1. LemMA. Let (Co(X),G,a) be a separable C*-dynamical system. For

fe L(G),

lloegll = sup (@6 f1l -
xeX

Proor. For x in X, and h in Cy(X), we have

oy (h)(x)

r»

. f @, (h)(x) dt

»

. S@h((—1)x)dt

P Jf(t+s)h((—S-t)x)desdf
G/G, J G,

3

h((—1t)x) (jc f(t+5s) des> di

J G/G,

r»

h((— D)@, f (D dr .

J G/G,

Hence ||a/|| Ssupyex [P, -

To prove the converse, take f in K(G), with support contained in the
compact set E. For x in X, @ _fis supported by the compact set Ein G/G,, and
the map E — X:cG, — (—c)x is continuous and one-to-one, hence a
homeomorphism with its image. Now for any g in C,(G/G,), and for c in E,
g((—c)x)=g(cG,) is a continuous function on (—E)x< X, thus extends to g’
in Co(X) with [Ig'll o =1Igllc = Igll - Hence

x

U . Pe,f (Dg(D) df’

r

. P¢ f (D2 (D) df‘

»

) ¢c,f(t)g’((—f)x)d11

J G/
r

. fg ((-nx)at

r

S (), (g)(x) dt

v

loe, (YN = Noxgl gl oo -
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Clearly then, for each x in X,

@6 Sl = llogl s
and by the density of K(G) in L!(G) this holds for all fin L!(G).

The following theorem was conjectured and partly proved by M. B.
Landstad during the second named author’s stay in Trondheim in August
1977. Here we give a complete proof.

1.2 THEOREM. Let (Co(X), G, ) be a separable C*-dynamical system. Then

Sp(@) = U Gx .
xe X

Proor. By definition,
Sp (@) = hull{fe L'(G) | «,=0}.

Now by [24, 2.7.4 Theorem] one has @; f=0 if and only if the Fourier
transform f of f vanishes on G. Hence by 1.1 a +=0if and only if f vanishes on
UGL, and by regularity of L!(G) we have that if y ¢ UGL, there is an [ in
L* (G) such that f(UG%)=0, that is, &;_f =0 for every x but f(y)+0.

1.3 REMARK. In [19, 5.3 & 5.4] it is shown that for a single automorphism,
the Arveson spectrum for (Cy(X), Z,«) is always a finite union of subgroups of
the circle. This is also easily derivable from 1.2, since if G,={0} for some x,
then Sp (¢)=T by 1.2, and if G, is never {0}, then G,={n,Z}, n,+0. Now if
supn,=o00, Sp(x)=T, and if supn,<oo, it is a finite union of proper
subgroups. Note that Sp («) for (Cy(X), Z, «) coincides with the usual operator
spectrum o (o) for a, cf. [5, 2.3.8].

Recall that, by definition, the Connes spectrum I'(x) for a commutative
algebra is the intersection of Sp (x|I) where I runs through all non-zero G-
invariant ideals, i.e. by the above theorem

*) r@= 0N UG;>,

Ye 06(X) €Y

0%(X) denoting the non-empty open G-invariant subsets of X. The Borchers
spectrum is defined to be the larger set

**) rgw= N (U Gy*),

Ye2%(x) \veY

29(X) denoting the dense open G-invariant subsets of X.
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1.4 LEMMA. Let (Co(X), G, a) be as above. Let y € G. Then
(1) y e I'(®) if and only if for every neighbourhood V of y the set
XV ={xeX| GtnV+g)

is dense in X.

(ii) y € I'g(a) if and only if X ;’ , for every neighbourhood V of v, is not nowhere
dense.

Proor. (i) Let y € I'(«) and let V be a neighbourhood of y. If X ;’ is not dense,
the complement (X))° contains a non-empty open set, hence by the G-
invariance of X} it contains a non-empty open G-invariant set, so by (*) there
is a y in (X)) such that VN Gy + @, a contradiction.

Conversely, assume X ;’ to be dense for every V. For any non-empty open set
YS X, there is a point yy, in YN XY, hence VNG;, +J,

Vﬂ(U Gj)#QJ,

yeY

and we conclude that y e U,y G}.

(ii) Let y € I'g(«). Reasoning as in (i) we see that if X ;’ is nowhere dense, i.e.
(_XT')‘ is open and dense, there is a y in (X f ) such that ¥ N Gy + &. Conversely,
if X ;’ is never nowhere dense, then choosing Y to be dense, open and G-
invariant there is for every ¥ a y, in YN X} and hence y e U,y G}.

Let C denote the set of points of continuity for the map x — G, from X into
Z, the space of closed subgroups of G endowed with the Fell topology. By (the
proof of) [14, Lemma 1.1] the complement of C is meagre in X, hence C
contains a dense G, subset of X. We now strengthen 1.4 (i):

1.5 LemMa. Let (Co(X),G,a), y and X} be as in 1.4. Then y € I'(a) if and only
if X yV 2C for all neighbourhoods V of y.

Proor. If XY 2C for all ¥, then by 1.4 (i) y € I'(«). Assume y € I'(x) and let V
be a compact neighbourhood of y. Take x, € C. As x, € X} =X, we can find a
sequence x; in X! with x; — xo. Now for each x; there is a character y; in
énvn G, and by the compactness of ¥ we may pass to a subsequence and,
by re-indexing, assume x; converges to some y, in V. As x, € C, x; — X,
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implies G, — G, in Z, which in turn implies that for each t € G, there is
(again, perhaps, after passing to a subsequence and relabelling) a sequence
t; € G,, with t; — t. Hence

Xol) = limy(t) =1, xeVNG; and X)2C.

Y

1.6 THEOREM. Let (Co(X), G, «) be a separable C*-dynamical system, and let
y € G. Then the following are equivalent

(@) yeTI'(w

(b) For every neighbourhood V of v,
XV ={xeX| GiNV+} is dense in X

(c) For every neighbourhood V of y, X ;’ 2C

d) X,={xe X | ye GL} is dense in X

(e) X,2C

® 7€ Nyeoox (U, c yGy), 0°(X) being the non-empty open G-invariant subsets
of X.

ProoFr. (a) <> (b) is Lemma 1.4 (i) and (a) < (c) is Lemma 1.5. As G is
closed in G, X,=N, XY. Thus (c) = (e), and () = (d) by density of C. As
density of X, implies X, N Y+ ¥ for every Y in 0°(X), and thus that y € G, for
some y in Y, we have (d) = (f). Finally, (f) = (a) by the formula (*) for I'(«)
which precedes Lemma 1.4.

1.7 REMARK. It is immediate from the equivalence of (a) and (e) in Theorem
1.6 that I'(®)=, .- GL. Thus the characterizations of I'() given in Theorem
1.6 yield directly—for commutative C*-algebras—the fact that I'(a) is a
subgroup of G. (For a proof of this fact in general, see [19, Prop. 2.3].) We also
give — again, for commutative C*-algebras —an alternate and simpler proof of
the characterization [21, 5.4] of I' () in terms of the dual action of G on the
crossed product or transformation group C*-algebra.

1.8 THEOREM. Let (Co(X), G, ) be a separable C*-dynamical system, and let
y € G. Theny € I'(a) if and only if &,(I)N 1 is non-zero for every non-zero ideal 1
in G x Co(X).

Proor. Assume y ¢ I'(@)=yceox) (U,cyGy). Then there is a compact
neighbourhood V of é in G, and some Y € 0%(X), such that yV N Gj = @ for all
y € Y. We want to find some ideal I+0 in G x Cy(X) so that &,()N1=0. As
GxCo(Y) is clearly a non-zero ideal in GxCoy(X), it suffices to find
12G x Co(Y).
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Choose a compact neighbourhood K of é in G such that
yKNK =@ and KNGy = F Vye?Y.

Let U be a compact neighbourhood of éin G with U+ U< K, U= —U. Let U°
be the interior of U, k, the canonical map of G onto G, 0,=k,(U°), and y, the
restriction of y to G,. Then for every yin ¥,0,Ny,0,= &, O, % (J open. Let F,
denote the complement of O, in Gy, so that for every yin Y, F Uy F = Gy, and
F, is a proper closed subset of G,.

Let 0,(f)=f() for fe Co(Y), let g, € F,, and let J,xy, denote the
corresponding representation of G, x Cy(Y), cf. [23, 7.6.4]. Let IND (d, x ,) be
the induced representation INDg 16 (8, x x,). Let

I = kernel ). Y IND(d,xy,) .

yeY y,eF,
Then I+0 since for each y, the representation IND y, of G is supported on
ky'(F)) = {xe G| xg, €F,},
and the closure of the union of all these is proper in G. In particular,
U°NU, vk, *(F)==,s0é ¢ U, vk, '(F,), and the identity representation of
G is not weakly contained in {IND y, | ye Y, y, € F}. Fixt e Y. The identity
representation of G is weakly contained in IND (¢,), é, denoting the identity of
G,, and thus IND (é,) is not weakly contained in {IND, | yeY, y eFy} and
the kernel of IND (J, x (¢,)) does not contain I. On the other hand, F Uy F,

=G, so

&) NI = kernel ), Y IND(5,xy,).

yeY x,eG,

As the family of irreducible induced representations is dense [13, Theorem 4.3],
&,(I)NI=0 as claimed.

Conversely, suppose I is a non-zero ideal in G x Co(X) but &,()NI=0.
Then for every x in X and y in G,,

KerIND (0, xy) 2 I or a_,(I)

so either IND (6, x x) or IND (4, x k.(y)x) has a kernel containing I. Now if 4
is a dense subset of X then

{KerIND (6,x) | xe 4, xeG,}

is dense in the primitive ideal space of G x Cy(X), almost exactly as in the proof
of Theorem 5.11 of [10]. If y € I'(x), then

X,={xeX| yeG3}
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is dense in X by 1.6 (d), and if y € G, k. (y)=1, so

IND (6, xk,(y)x) = IND(J,xy), Vxed, yeG,.
It follows that I =0.

2. G-simple actions on type I algebras.

We begin this section by discussing both the structural restrictions on
a type I algebra A and the restrictions on the behavior of the isotropy sub-
groups G, which follow from the assumption that 4 admits a G-simple action.
We then consider the relationships between the subgroups S, of G,, the spectra
of the action, and the ideal structure of the crossed product.

Recall from [11, 3.2] and [22, 3.6] that such an A is necessarily liminal and
homogeneous and, if unital, is homogeneous of finite degree and thus
continuous trace. Proposition 2.1 shows that A is either extremely well-
behaved or extremely pathological. We have no examples of the latter, and
Proposition 2.2 indicates that perhaps the former always holds.

A point 7 in A4 is called separated if, for every  in A, 7+ 7, there exist disjoint
open sets containing © and 7, respectively. A point which is not separated is
called unseparated. Let

MA), ={xeA, | n — trn(x) is finite and continuous on A} .

2.1 ProposiTION. Let (A, G, ) be a G-simple C*-dynamical system, with A of
type 1. Then the following are equivalent:

(a) A has continuous trace.

(b) 4 is Hausdorff.

(©) M (A), +{0). )
d) Z={ned | 7t is unseparated} is not dense in A.

Furthermore, (a)-(d) automatically hold if A is unital or if G is compact.

ProOF. (a) = (b) = (c) follows from [8, 4.5.3 and 4.7.12]. As #(A4), is the
positive part of a 2-sided ideal .#(A4) in 4 [8, 4.5.2], (c) and G-simplicity
implies M (A)= A, that is, A has continuous trace. Clearly (b) holds iff the set %
of (d) is empty. As % is G-invariant, it is either empty or dense by G-simplicity,
and we have (b) iff (d). If 4 is unital, (a) holds as mentioned above, while if G is
compact, then by [15, Lemma 22], 4 is homeomorphic to a quotient of G,
hence Hausdorff.

Note that if (a)—(d) of Proposition 2.1 do not hold, then A has both a dense

G-invariant set of separated points and a dense G-invariant set of unseparated

Math. Scand. 47 — 22
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points. Although an example of a type I algebra 4 with 4 containing dense sets
of separated and of unseparated points is known [7], it is not clear how one
could make such an example G-simple. The usual (trivial) proof that all
isotropy subgroups are equal, for a G-simple action on C,(X), is based on

™ if x, - x in X and sx,=x, Vn, then sx = x .

Of course, (*) also applies to 4 if A is Hausdorff, and precisely the same
argument shows all isotropy groups are equal in this case. The next
proposition shows all isotropy groups are equal in any case, and is followed by
two examples indicating that (*) can fail if A4 is either not type I or not G-
simple.

2.2 ProvosiTION. Let (A, G,a) be a G-simple C*-dynamical system, with A of
type 1. All the isotropy subgroups for the action of G on A are the same.

Proor. The set S of separated points in A is a dense G, [8, 3.9.4]. Let t € A4,
n € S. By G-simplicity, there is a sequence {t,} in G with t,t > n. If s € G, t,t
=t,st=st,t — sn. As n € S, we have G, G,. Thus all points of S have the
same isotropy group, which contains all other isotropy groups. A also
possesses a dense open Hausdorff set O [8, 4.4.5]. Let s € G,. By G-simplicity,
the non-empty open Hausdorff set s~0 N O contains a translate of 1, say gr,
g € G, and we can find a sequence {g,} in G with g,n — gt. Then g,n=sg,n
— sg7. But gt, sgt and hence eventually all g,z lie in the Hausdorff set O, so gz
=sgr=gst, 1=s7 and G, <G,

2.3 ExampLE. If the condition that A is type I is dropped, the conclusion of
2.2, with the action now being that of G on PRIM 4, the primitive ideal space
of 4, no longer holds. Indeed, let A=T x &, the crossed product of the fermion
algebra by the gauge action. Then A is prime, and Z-simple under the dual
action & of Z. The isotropy group for the O-ideal is Z, and is {0} for all the non-
zero primitive ideals, [20, section 5], see also [4].

2.4 ExaMpLE. If A4 is type I, but not G-simple and A not Hausdorff, (*) need
not hold. Let A4 be the algebra of all sequences x = (x;, X,,. . .) of 2 x 2 matrices
Ax) O

0 u
non-Hausdorff (cf. [8, 4.7.19]), and letting Z, act by permuting the diagonal
elements of x,, for each n, we see that the isotropy group for all the separated
points in 4 is Z, itself, whereas for the two unseparated (limit) points it is {0}.

such that x, converges to a diagonal matrix < ) asn — 00. Then A is

2.5 REMARK. Let G act on a type I algebra A. In light of 2.2-2.4, the question
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arises as to whether all points in a given quasi-orbit in 4 have the same
isotropy group. We do not know in general, but if the quasi-orbit is locally
closed it is homeomorphic to the dual space of a type I C*-algebra which is G-
simple, (as in [15, pp. 223-224]), and the answer is yes by 2.2.

As discussed in the introduction, it is not G, but rather the subgroup S, of
G, which seems to be more relevant for the spectra of the action, and the ideal
structure of the crossed-product algebra. For a G-simple action on a type I
algebra 4, we do not know if all the S,’s must be identical. However, if 4
satisfies (a)-(d) of Proposition 2.1, they are (3.1). In any case, turning to the
relationship of the S,’s to the spectrum, we have

2.6 ProposSITION. Let (A, G,a) be a C*-dynamical system (not necessarily G-
simple), with A of type 1. Then N, _;S:<I(a).

Proor. We shall show that for y e N__; 5%, é,(I)=I for all ideals ISG X A.
The result then follows from the characterization of I'(«) in [21, 5.4]. It suffices
to show that &,(P)=P for all P in PRIM (G x A), and by [14] every such P is
the kernel of an induced representation L of the following form [26]: there
exists 7 in A, a w,-representation U of G, on H, which implements the action
of G, on A, and an irreducible w,-representation W of G, such that L is
induced from the irreducible covariant pair (I®n, W®U) of (4,G,,alg).
Furthermore [3, Theorem 3.1] w, may be chosen so that it is a “lift” of a totally
skew multiplier w’ on G,/S,, and W is then of the form x ¥, where y € G, and V
is the lift to G, of an irreducible w'-representation V of G,/S,. Writing (G, w)
for the space of unitary equivalence classes of irreducible w-representations of a
group G, we have [3, Theorem 3.1] that the map G, x (G,/S,, W) — (G, w,)
sending a pair (x, V) into ¥, is continuous. Furthermore, the map (G,,w,)
— (G, % A)” sending W into (I®n, W® U) is easily seen to be continuous, by a
routine w*-approximation argument applied to fe K(G,,4) and an
elementary tensor in H,®H,. The continuity of induction from (G, X A) to
(G x A)” is routine to check, as is the fact that

a,(P) = ker (yL) = ker(INTIG) I®m, xylg, I~/®U)>.
GK

As 9lg, € Sy, we can of course consider y|g, as a character y' of G,/S,, and the
representation )’lc,f’ as the “lift” to G, of the w'-representation y'V of G,/S,.
The proposition then follows from the continuity of all the maps defined above,
and the fact that all irreducible a-representations of an abelian group G, where
o is a totally skew multiplier, are weakly equivalent [15, Proposition 32].
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2.7 PrROPOSITION. Let (A, G,a) be a G-simple C*-dynamical system, with A of
type 1. Let o|g_denote the action of G, on A, «" the canonical action of G, on
n(A) and k, the canonical map from G onto G,. Then

k.(Sp (@) = Sp (alg) = Sp (@) .

Proor. The first equality is a result of Connes [5, 3.4.3] and does not depend
on G-simplicity. Writing « , for the natural action of f € L'(G,) on 4, it is clear
that o, =0 implies (a"),=0, so that Sp («|g)2Sp («") (indeed, it is clear that
Sp («lg)=Sp («") U the Arveson spectrum of «|;_on ker ). Now if (a"),=0 for
fe L*(G,), then moa,: A — (0) and in fact (tn)oa, =0 for all ¢t € G. It follows
by G-simplicity that a;=0, and so Sp («")2Sp (/g ).

We shall see in section 3 that Proposition 2.7 does not hold if Sp () is
replaced by I'(«). Also, regarding Proposition 2.6, we shall see that even for G-
simple actions with one common S,, Sy can be proper subset of both I'(x) and

ker (BlpriMexa) = {y€ G| &,()=1V ideals ISG x A} .

Furthermore, the relationship between the size of S, and the spectra, on one
hand, and the simplicity of the crossed product on the other, is murky-
implications hold in one direction (see below), but not necessarily in the
opposite direction (see 3.4). For certain classes of actions, though, some
positive results along the above lines can be obtained. For example, if A
=Cy(X) is G-simple, there is one isotropy group G,, and, as mentioned in the
introduction and from the results of section 1, we have: Gi=TI(x)=Spa«
=ker (&|prim g x4 while G x 4 is simple iff G; = {e}. Furthermore, Proposition
2.7 trivially holds for both Sp () and I'(«), as Sp (a")=Sp (x/g)={e}.

2.8 CoROLLARY. Let (A, G,a) be a G-simple C*-dynamical system with A of
type 1. If S,={e} for all m in A, then

Sy = ker (@lpriMGx4) = T'(@) = Sp (@) .

Furthermore, G x A is simple, and k(I (@) =T(a").

Proor. The first statement is trivial since S,J;=G, while the second is [11,
Theorem 4.1]. For the third statement, observe that k, (I'(®)=k,(G)=G,,
while I'(¢") equals the annihilator of S, in G, by [15, Theorem 18 and
Proposition 34].

2.9 ProrosiTION. Let (A4, G,a) be a G-simple C*-dynamical system, with A of
type 1. If the action of G on A is transitive, then all S,’s coincide. Denoting this
common subgroup by S, we have
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S* = ker (@lprivex4) = ().

Furthermore, G x A is simple iff S={e}, and also k(I (a))=T (™).

Proor. The w-representation U of G, which implements the action of G,
on A, that is,

Utyn(@U(@)™ ! = n(x(a), VteG,aeAd,

also implements the action of G,,=G,on 4, for any ¢t in G. Thus S, =S§,, for any
t in G. Denote this subgroup by S. Then

St < ker (BlpriMex4) S T'(®)

by Proposition 2.6 and its proof. Once we show I'(a)=S*, the rest of the
proposition follows, since S = {e} implies that G x A is simple by [11, Theorem
4.1], while G x A simple implies I'(@)=G by [21, Corollary 5.4], so S=T"(a)*
={e}. As I'(®)=S", the last statement follows exactly as in the proof of Cor-
ollary 2.8.

Accordingly, let y € G, y ¢ S*. We shall construct an ideal I+ (0) in G xA
with &, (I)N1=(0), so that y ¢ I' (o) [21, Corollary 5.4]. pur construction is
similar to that of Theorem 1.8. Let t=y|g. Then t#¢ in §, that is, there is an
open set O in §, 0%, é € O such that 0 Nt0=¥. Taking complements,
there exists a proper closed subset C <8 such that é ¢ C and CUtC=S5. Let D
={x e G, | xls € C}, and let

I = ker(IND Y® (n®l, U®xW)) ,
G1G yeD

where as above, U is the w-representation of G, implementing the action of G,

on A, w is chosen so that it is the “lift” of a multiplier (which we also denote by

w) of G,/S, and W is the “lift” to G, of some irreducible w-representation W’ of

G./S. As G,=DU (yl)D, it is clear that

106&,(I) = ker (IND YO (n®l, U®xW)>.
G,1G yeG,

Since all irreducible w-representations of G,/S are weakly equivalent [15,
Proposition 32], it follows precisely as in the proof of Proposition 2.6 that

1N&,

= ker (Y@ (all irreducible representations of Gx A induced from
G, xA)

= N P =(0),
PE&PRIM (G x 4)
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by transitivity. To show I%(0), we shall show INDgc (=®I, UQW) is
not  weakly contained in the family of representations
{INDg 16 (n®I, U W) l x € D}. If it were, we could apply the induction-
restriction theorem to the restriction to S x 4 of the induced representations
under consideration, and also apply the continuity of the restriction process, to
conclude that as representations of S x A, {(tm, U) | t € G} is weakly contained
in {(tn,xU) | t € G, y € C}. Here by U we mean Uls, which is an ordinary
unitary representation of S. Thus, 3y, € C, t, € G so that

(m,U) = lim (t,n,x,U) in (SxA) .

It follows that t,t — m in A and thus, by G-simplicity and transitivity, that
t,G, — G, in G/G,. By passing to a subsequence, we can thus find a sequence
{s; '} in G, with t,s;' — e in G. Thus

(5a7, xaU) = (Sta )(tam, xaU) — (m,U)
in (S x A)". But s,n =, and a unitary implementing the equivalence is U (s,), so
U(sn)(samt, taU)U (50) ™" = (0, 2,U) — (m, U)

in (§% A)". Note that for s, € G, U(s,) commutes with all U(s), s € S, precisely
because of the definition of S in terms of the multiplier w.

We shall now show that (n, U) is not weakly contained in {(n, xU) | x € C},
and we shall be done. Pick a neighbourhood N of ¢ in § such that N=(—N)
and (N+ N)NC=¢. Then NNyN= ¥y € C. Now observe that there is a
certain arbitrariness involved in the choice of U, as follows: for any 7 in G,, tU
is also a w-representation of G, which implements the action of G, on A4;
likewise, the restriction of TU to § is an ordinary unitary representation. Thus,
after replacing U by tU, for a suitably chosen 7 in G, we may, without having
changed any of our previous arguments, now suppose that é lies in the
spectrum of the unitary representation U|g. We can then choose f=f* in L' (S)
such that supp f< N and U(f)#0. There exists & € H, such that |U(f)¢|| =1
and, as A is liminal, a € A4 such that n(a) is the rank one projection on U(f)¢.
Thus n(a)U(f)= (=, U)(f®a)+0, while

(L xU)(®a)8 = n(@Uf)E = KUQNE UNOU )
US*=NEHU) =0, VieH, yeC,

i

since supp(f*syf) SNNyN=. So (m,yU)(f®a)=0 Vye C, while
(m, U)(f®a)*0, so (m, U) cannot be weakly contained in {(n, xU) | x € C}.

2.10 REMARK. Once it is established that all S,’s coincide the result that



SPECTRA OF ACTIONS ON TYPE I C*-ALGEBRAS 343

I'(@)=S"* could also be deduced from the decomposition of G x A for a tran-
sitive action as obtained in [16, 2.13] combined with [20, 6.1].

2.11 CoroLLARY. Let (A, G,a) be a G-simple C*-dynamical system, with A of
type 1. If G=R,Z or a compact group then

§* = ker @primeya) = (@),

S denoting the common S, for all n € A. Furthermore, G x A is simple if and only
if S={e}, and also k(I (x))= T (a").

Proor. By (2.2), all the G,’s are the same, hence either G,={e} or G/G, is
compact for the groups in question. The first case is covered by (2.8), the
second by (2.9).

3. G-simple actions on continuous trace algebras.

As indicated in section 2, there is reason for suspecting that when (4, G, a) is
a G-simple C*-dynamical system with 4 of type I, then A4 must have
continuous trace. In this section we restrict our attention to G-simple actions
on continuous trace algebras. We first show that all the S,’s, n € 4, coincide.
Then, an example is given with 4 homogeneous of degree 2 indicating, among
other things, that for this common S,, I (2) need not equal S;, and that G x A
can be simple without S, being trivial. Finally, we consider G-simple actions on
homogeneous algebras of finite degree, for which I' (@) = G. Although S, need
not be trivial, the possibilities for both G, and S, are quite limited. Note, as
mentioned in the beginning of section 2, that if 4 is a G-simple type I algebra
which is also unital, then it must be homogeneous of finite degree and hence
has continuous trace.

3.1 THEOREM. Let (A, G,a) be a G-simple C*-dynamical system, with A having
continuous trace. Then for all m in A, the subgroups S, coincide.

For the proof of Theorem 3.1, we need the following two lemmas:

3.2 LEMMA. Let H be a Hilbert space, (P,) a sequence of rank one projections
converging strongly to a rank one projection P, and (U,) a sequence of unitaries
such that U,P,U¥ converges strongly to P. Then U,PUY converges strongly
to P.

Proor. By writing rank one projections explicitly as projections on unit
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vectors, one easily sees that rank one projections converging strongly to a rank
one projection in fact converge in norm. Hence U,PU} — P in norm.

3.3 LEMMA. Let (U,) be a sequence of unitaries such that for all rank one
projections P, U,PU¥ — P strongly (hence in norm). Let ¥ denote the canonicgl
map of the unitary group of H, endowed with the strong topology, onto the
projective unitary group, endowed with the quotient topology. Then

(1) 3 sequence (z,) in C with |z,|=1, z,U, — I strongly.
(2 YUY — ¥

Proor. That (1) is equivalent to (2) follows from [27, p. 97, 10.1]. As in the
proof there, it suffices to show that for any subsequence U, which converges
weakly to an operator A, we have A =al, with |a| =1. Accordingly, let U, — A4
weakly. As

IU,PU—P| = |U,P—PU,| -0,

for all rank one projections P, we clearly have AP = PA for all such P, so that A
=4I, |A|£1. Also, P being compact implies PU¥ — AP strongly, so U,PU}
— |A]*P weakly. Thus |i|=1.

PROOF OF THEOREM. Let m,7 € A. By G-simplicity, t,n — 7 in A for some
sequence (t,) in G. By (2.2), G,=G,,=G,, for every t in G. For the rest of this
proof, we wish to consider only concrete irreducible representations of 4 of
equivalence class © and 7, respectively. By abuse of notation, we denote these
concrete representations by 7 and 7, and note that by homogeneity of A, they
can be assumed to act on the same space H. It follows from [8, 3.5.8] that, after
passing to a subsequence if necessary, there exists a sequence (V,) of unitaries
so that

* V,tm)(a)V}¥ — t(a) strongly, Vae 4.

Let U™ and U® denote the multiplier representations of G,=G, which
intertwine correctly with © and 7, respectively. U” intertwines correctly with all
the representations tm, t € G, also. To verify that S, =S, we must show that if

(**) Ut(U™(s) = U*()U"(®) VseG,,
then

Ur(t)Ut(s) = U*(s)U*(t) VseG,.
Accordingly, fix ¢ in G, satisfying (**), and let s € G,. We have
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(***) (U (=s)V, U™ (s)V )V, (t,m) @)V ¥)(V, U™ (=s)VFU(s))

= (U (=9)V)((tam) (o (@) (VXU (s)

converges strongly by (*) to U'(—s)z(a,(a))U*(s)=1(a), YVa € A. Since A has
continuous trace, it follows by [8, 4.5.3] and the proof of [8, 4.4.2] that for any
rank one projection P on H, there exists a € A such that t(a)=P and ¢(a) is a
rank one projection for all irreducible representations ¢ whose equivalence
class is in a suitable neighbourhood of the equivalence class of 7 in A. Thus for
n large enough, V,(t,n)(a)V ¥ will be a rank one projection P,. By applying (*),
(**), (3.2) and then (3.3), with the U, of (3.2) and (3.3) standing for U%(—s)
V,U"(s)V}, we have c, in C, |c,/]=1 such that ¢,V,U"(s)V¥ converges to
U*(s) strongly. Similarly, for ¢ in G, we have d,, in C, |d,| =1, with d,V, U (t)V*
converging to U*(¢) strongly. If ¢ satisfies (**), it follows immediately by strong
continuity of multiplication (on bounded sets) that U*(¢)U*(s)= U*(s)U*(t), and
we have S, = S,. The argument is clearly symmetric in = and 7, and we are done.

3.4 ExampLE. Let A=C(T, M,) be the C*-algebra of continuous functions
from the unit circle into the 2 x 2 matrix algebra. Let

(af)(t) = Wf(e ®)W*, fed, teT,

1 0
an action of Z on A, which commutes with the action  of Z, on A given by

BN = Uf(OU*, feA teT,

1
where 0 is an irrational multiple of 2z, and W=( ) Then n — o defines

0
-1
the discrete abelian group G=Z x Z, on A. The action is clearly G-simple, and
G,=Z, for every m in A, while §=5,=G, since U?=1. We claim that the
crossed product algebra is simple and I' (& x f) = (Z x Z,) . Given this claim, we
will thus have an example of a G-simple action ax on a homogeneous
algebra of degree 2 such that: (1) I'(xx f)%S*; (2) the crossed product is
simple but S is non-trivial (so that the converse of [11, Theorem 4.1] does not
hold); and (3) k. (I'(ex B)F=TI((xxp)"). To see (3), note that k. (I'(xx B))
=k,((Zx Z,))=2,, while I'((« x f)*)=the annihilator of S, in G, [15, Prop.
34], hence is {0}.

To verify the claim, observe that since Z x Z, is a discrete group, I'(a x f§)
=(Z x Z,) if and only if the crossed product algebra is simple [21, Theorem
6.5]. We shall actually give 2 independent, quite different proofs of the claim.
The first uses a characterization of I'(x x f)* in terms of the canonical action
on the multiplier algebra M (A) of A; the second involves checking that all

1 . . .
where U = < 0 > Combining these two actions, we get an action a x f§ of
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irreducible induced representations of the crossed product algebra are weakly
equivalent, and then invoking the generalized Effros—Hahn conjecture [14] to
prove simplicity of the crossed product.

For the first proof, we need

3.5 LEMMA. Let (A, G,a) be a G-simple C*-dynamical system, with A having
continuous trace. If Sp (a)/I () is compact (as a subset of G/I'(0)), then

Fr@* ={teG| Ju e Z(MA™); x,=Adu},

Z(M(A)') denoting the center of the fixed-point algebra for the canonical
extension o' of a to M(A).

Proor. This is a verbatim repetition of the proof in [19, 4.2] for the case
where A is simple, using that, as shown in [23, 8.6.11], every derivation of a C*-
algebra A with continuous trace is inner in M (A).

As Z x Z, is discrete, (3.5) yields the desired result once we verify that the
action is never inner in the fixed-point algebra. But A= M(4), and A**#
={Al I 4 € C}, where [ is the identity element of A, as follows: if f€ 4 and Bf

=, then f(t)= ("g) d(()t)>, while

10 = @0 = (“‘e—m" 0 )

0 d(e%)

implies a and d are constant functions, which must then be equal since

a 0 d 0
f(t)=(0 d)=(<1f)(t)=<0 a)-

Hence no non-trivial automorphism of A is inner in the fixed-point algebra,
and we are done.

For the second proof, note that 4 is homeomorphic to T, with 7,(f)=f(t)
being the representation determined by ¢ in T. The unitary representation of Z,
={0, 1} sending 1 — U (which we denote by U) intertwines with =, correctly,
and thus for each ¢ in T we have two irreducible representations of G, x A
=2Z, ;;A: {n,U) and {m, xU), x being the character of Z, with x(1)=—1.
Now

m)(f) = (@7'f)(@®) = W*f(eDW,
and WUW ~!=yU, so
Wlan, UYW ™! = (m,e,U)

and thus
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am,, UY = (mo,, xU)D .

As x*=1, it is clear that for any s,t € T we can find a sequence (n;) of even
integers with (o"m, U — (n,U) in (Zz;gA)A, and similarly <{a"m,xU)
— (m, xU). Likewise, for some sequence (k;) of odd integers,

(dbim, Uy = {m,xUY and <(okim, yUY — (n, U

in (Z, X A)". It follows as in Proposition 2.1 of [11] that all irreducible induced
representations of (Z x Z,) x,A are weakly equivalent, and thus by [14,
Corollary 3.2] that (Z x ZZ)«?pr is simple.

We now consider G-simple actions on homogeneous algebras of finite
degree.

3.6 LeMMA. Let (A4,G,a) be a G-simple C*-dynamical system, with A
homogeneous of degree n < 0o. If Sp («) = G, then the (common) isotropy group G,
is a finite group.

Proor. By (2.7), Sp (¢")=G,. Now o denotes the action of G, on n(4)=M,,
and hence Sp (o) contains at most n? elements. Indeed, if Sp («®) contained
n? +1 distinct elements y,, 1 £k <n?+ 1, we could choose non-empty, mutually
disjoint closed neighbourhoods V, of y,. The corresponding spectral subspaces
M#¥(V,) [18, 2.1.1] are non-zero and linearly independent, a contradiction.

3.7 REMARK. The above lemma improves [22, 3.9] where it was shown, under
the same hypotheses, that the common isotropy group must be discrete.

3.8 LEMMA. Let (A,G,x) be a G-simple C*-dynamical system, with A
homogeneous of degree n<oo, and I'(@)=G. Let S denote the common S,
(n € A), |S| the order of S, and U™ the multiplier representation of G, which
implements the action of G, on n(A). Then |G,/S| is a perfect square, |S|)/|G,/S|
divides n, and U™|S, the restriction of U™ to S, is a multiple of the left regular
representation of S.

Before proving the lemma, we make several comments.

3.9 REMARK. Although we know (3.4) that under the hypotheses of the above
lemma, S need not be trivial, the lemma proves that there are severe restrictions
on the size of S. For the case n=2, Example (3.4) exactly exhibits the only
alternative to S={e}, namely both that |S|=2 so S=Z,, and that U" is the 2-
dimensional regular representation of Z,.



348 ELLIOT C. GOOTMAN AND DORTE OLESEN

We also note that if G has no non-trivial finite subgroups, the hypotheses of
(3.8) imply, by (3.6), free action of G on A.

3.10 CoroLLARY. Let (A, G,a) be as in Lemma 3.8, with n prime. Either S ={e},
in which case G,={e} or a group of order n*, or S=G,=2Z,, the cyclic group of
order n.

Proor oF LEMMA 3.8. Let w denote the multiplier on G, determined by U™.
We may without loss of generality [3, Theorem 3.1] assume w is the “lift” to G,
of a totally skew multiplier (also denoted by w) on G,/S. As U, is an n-
dimensional representation of the finite group G, (3.6), it can be decomposed
as a direct sum of irreducible w-representations of G,, each of which is of the
form y,W, for y; € G, and W the unique irreducible w-representation of G,/S
[3, Theorem 3.1 and Lemma 3.1]. Thus U*=Y® y;W=W® X ® y,), the
direct sum being taken over some subset of G, with multiplicity. By Lemma 3.1
of [3], 1G,/S|=(dim W)>, so n=)/|G,/S| -dim (LD x). As Uls=I® (X xils),
we shall be done once we verify that Ulg is a direct sum of all the characters in
S, each occurring with the same multiplicity. For this, we need only check that
for any y in S, - Uls is unitarily equivalent to Uls. Accordingly, let y € S and
write U for Ulg. Then (n, U) and {(r, xU) are both irreducible representations
of Sx A. As G x A4 is simple [22, 3.10], it follows by continuity of induction-
restriction (cf. [11, Prop. 2.1]) that for some sequence (t,) in G, L,={t,n, xU)
converges to L={(n,U) in (§X A)". After passing to a subsequence, if
necessary, we can find by [8, 3.5.8] a sequence of unitaries (V,) such that
VaLn(u)V 5 converges to L(u) strongly for every uin S X A. As we are on a finite-
dimensional space, however, some subsequence (V,) of (V,) converges in norm
to a unitary V, which clearly implements the unitary equivalence between yU
and U.
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NOTE ADDED IN PROOF. For a G-simple action on a type I algebra we now
know that all the S.’s must be identical. Details of this strengthening of
theorem 3.1 will appear elsewhere.
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