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GEOMETRIC ASPECTS
OF THE TOMITA-TAKESAKI THEORY I

CHRISTIAN F. SKAU

Our goal is to relate the various objects of geometrical nature that is
naturally encountered in the Tomita—Takesaki theory of von Neumann
algebras with properties of the normal states they correspond to. In section 1
we give a background for this paper by establishing a fixed reference frame on
which to base the geometrical objects we introduce. In section 2 we start with a
standard form (M, H,J, P*) of a o-finite von Neumann algebra M and fix a
cyclic and separating vector &, in P". We visualize the real subspaces K = M,¢;
and K= M;¢&; as operator graphs of an essentially unique operator 4, 0< A4
<1, defined on H"=P"— P" Thus we may introduce a well-defined notion of
relative position of K and K. In section 3 we study the cones P§0=M +¢o and
P20=M’+ §o and show that these determine ¢=w; up to a Jordan
isomorphism of M.

In a forthcoming joint paper with U. Haagerup [9] we will explore further
how the geometry of the various cones characterize the associated normal
states.

1. Background.

Throughout this paper we will assume that M is a o-finite von Neumann
algebra, i.e. any orthogonal family of projections in M is at most countable. It
is well known that this is equivalent to the existence of a faithful ¢ in (M),
where (M,), denotes the set of all normal positive linear functionals on M,
M, being the predual of M. This, in turn, is equivalent to, by the GNS
construction, that M can be faithfully represented as acting on a complex
Hilbert space with a cyclic and separating vector. So, to fix our ideas, we may
assume that M acts on the complex Hilbert space H with ¢, € H a cyclic and
separating vector for M. Let J=J, and 4=4, be the conjugate linear
isometric involution and modular operator, respectively, associated with
(M, &,) by the Tomita-Takesaki theory. Thus JMJ = M’, where M’ denotes the
commutant of M. The modular operator gives rise to the one-parameter
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modular group {a,} of automorphisms of M defined by o,(x)=A4"x4"" x € M,
teR.

The fix points of the modular group, i.e. the set of those x in M such that
o,(x)=x, Vt € R, is called the centralizer of w; and denoted by C=C; . (Here
wg, in (M,), is defined by w; (x)=<x¢n,&o>, x € M). Using the KMS-
boundary condition one shows easily that

C={xe M| we, (xy)=wg, (yx), Yy € M}

[18; Lemma 15.8].

We introduce some important geometrical objects associated with (M, &.).
Let P*= P} denote the closure of M , &, where M, denotes the positive part of
M, that is, P*=M ,&;. P* is a proper cone, that is, P* N (— P*) = (0), with the
property that to every positive normal functional ¢ on M (thatis, ¢ € (M,),),
there exists a unique ¢ € P* such that ¢ =w, [18; Theorem 15.1]. Likewise we
define P’ =P} to be the cone M', &5 . Then it is known that P* and P” are dual
cones, ie. P’=(P°={¢( e H | <& n>20, Vn e P*}. The cone P*=P§ isnota
geometrical invariant of M but depends upon the particular cyclic and
separating vector &£, or more precisely, depends upon the faithful positive
normal functional .

In 1972/73 Connes [4], Araki [1] and Haagerup [7,8] independently
introduced the cone P* which really is a geometrical invariant of M. To be
specific, let P*=P} =A"*(P*)". This is easily seen to be equal to 4~ '/4(P")".
P" is self-dual, ie. P'=(P"°={¢(e H I (&n)20, Vn e P*}. More impor-
tantly, P*‘=P§0 is an invariant of M. In fact, we have the following invariance
theorem [4; Théoréme 2.7]:

Let #: M — M be a *-isomorphism, where M is a von Neumann algebra
acting on the Hilbert space H with n, € H a cyclic and separating vector for M.
Define P*=P;_with respect to (M, ,) analogously as P* =P} was defined with
respect to (M, &;). Then there exists a unique unitary operator v: H — H such
that v(P")=P* and &(x)=vxv*, x € M.

In particular, if M=M and ¢=id we get:

Let no € H be a cyclic and separating vector for M. Then there exists a
unique unitary operator v € M’ such that v(P} ) =P, . Furthermore, if n, € P},
then P; =P} and J=J, =J, . Also, to every ¢ € (M), there exists a unique
¢ € P§ such that p=w,.

The invariance theorem leads directly to the following property of P* which
we will make extensive use of in proving the main theorem of section 3. It
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relates the Jordan isomorphisms of M and the unitaries on H leaving P"
invariant. (Cf. [4; Section 3] and [7; Corollary 5.12]).

(t) We state this property for M a factor since we shall only need it in that
case.

Let a: M — M be an automorphism, that is, « € Aut (M). Then there exists
a unique unitary operator u on H such that a(x)=uxu*, x € M, and u(P")=P".
In particular, uMu*=M. Correspondingly, let f: M - M be an anti-
automorphism. Then there exists a unique unitary operator v on H such that
B(x)=Jvx*v*J, x € M, and v(P")=P". In particular, vMv*=M".

Conversely, if w is a unitary operator on H such that w(P")= P" then either
wMw*=M or wMw*=M'. In the first case w implements an automorphism
oM —> M by a(x)=wxw*, xe M. In the second case there is an
antiautomorphism f: M — M such that f(x)=Jwx*w*J, x € M.

Let H* = P"— P", Then it is easily seen that H" is the (closed) real eigenspace
of J corresponding to the eigenvalue 1, that is, H*={¢{ e H | JE=¢E}. The
restriction of the inner product on H to H" is real and we have H=H" +iH".
Furthermore, we have H°LLiH " where we use the symbol 1I to denote
orthogonality with respect to the real inner product (& n),=Red&,n),
& ne H. Also J(E+in)=E—in, where &,n e H® So J is the (real) symmetry
with respect to H". We say that the quadruple (M, H,J, P") is a standard form
of the von Neumann algebra M, and by slight abuse of language we say that
the cone P is the natural cone of M. Set K = K¢ =M,&y , where M, denotes the
hermitian elements of M. Then K is a closed real subspace of H and K = P*
— P*, where P*=P} =M ;. Likewise set K=K, =M;&;. Then K=P"—P",
where P’ = PEO =M, ;. The closed conjugate linear operator S=S, defined as
the closure of x¢, — x*&,, x € M, has polar decomposition S=J4*, where as
before J=Jg, 4=4;. Also D(AH)=2(S)=K+iK and S(E+in)=¢—in,
¢,n € K. The adjoint operator of S is the conjugate linear operator F = F; with
2(F)=K +iR and F(¢+in)=¢—in, &, n € K, and the polar decomposition of
Fis F=J4"%, cf. [16; Appendix]. We have KU=iIZ, which is a special case of
the following lemma that we shall need later and whose proof can be found in

[15].
Lemma 1.1. Let & € H be a cyclic vector for M. Then (M,&™ ) =i(M,&").

We also write down the following lemma for later reference. The proof can
be obtained using Lemma 1.1. We also refer to [14] for proof.

LeEMMA 1.2. Let &, € H be a cyclic and separating vector for M. We retain the



314 CHRISTIAN SKAU

previous notation. (Recall that C=Cy_ is the centralizer of w; ). Let £ be a vector
in H. The following is equivalent:

(i) 48=¢
(i) £ Cly ~
(ii)) £ e KN K+i(K N K).
Furthermore,
Ciés =KNK=KNH" =KnNH"
and

C..g =PNP =P NP =P NP".

2. Representation of K=M,¢; and K=M,&; as operator graphs.

Let (M, H,J, P*) be a standard form of the von Neumann algebra M and let
&, be a cyclic and separating vector in P". Then we know from section 1 that P"
=P} and J=J,. It is clear, especially from the Rieffel-van Daele paper [16],
that the “relative position”, whatever that term means, of the real subspaces K
=M,¢; and K= M;¢; is closely related to the modular operator 4 =4 ¢, We
want to bring this out explicitly. Now J(K)=K, and since J is the (real)
symmetry with respect to H' =P"— P'={¢ e H | J¢=E¢}, we have that K and
K lie symmetrically with respect to H". The (real) projection onto H" is clearly
LI +J). Now J|g=4%, Jlg=4"*g, and so

H+Dk = 3T +4Yx  and  FU+))g = F0+47 k.

We note that 4% g and 4~ % ¢ are bounded maps.

LEMMA 2.1. We retain the notation above. Then we have

K = {{+UAE| ¢eH"} and K = {{-UAE| ¢eH"},

I

where
_[I—4%
T I+4+4%

and U =p1“p2.

Here p, is the spectral projection of A corresponding to the open interval 10, 1[
and p, is the spectral projection corresponding to the open interval 11, 00[. In
fact, (I — A%)/(I + A*)= U A is the polar decomposition of (I — A%)/(I + A*) and we
have p,=Jp,J.

Proor. It is easily seen that the 4 and U given above are the factors in the
polar decomposition of (I —4%)/(I+ 4*%). (Note that |I—A4* denotes the
absolute value of I — A* (in the polar decomposition of I — 4%)). Recall that J4J
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=471, and so p,=Jp,J. Set g=%(I +J), the (real) projection onto H®. We first
prove that q(K) (=q(K)) is dense in H". Indeed, assume ¢ € H" and ¢LIg(K).
Let ne K. Then 0={&qn),=<{qé&n>,=<&n),. Hence EIIK and so
¢e H' N KU By Lemma 1.1 we have KU=iK. Now F=F;=JA4"% and so
JA™¥= —¥ since ¢ € iK. As JE=¢ we get A~ #¢ = —¢, which implies that &
=0. So g(K) is dense in H". Now g|x =%(I + 4%)|k. Since 1(I + 4%) has bounded
inverse 2/(I + 4%) we get that q(K) is closed, hence K (and likewise K) projects
onto H".
Let ¢ € H". Then

I— 4% 2
(HuAC (= rrat T 1+A*€)

lies in K because 2/(I + 4%)|ys is the inverse of £(I + 4%)|k. So we have proved
that K={¢{+ UAE | ¢ € H"}. Likewise we prove that K={¢—UA¢ | & € H").

We will henceforth use the term “unitary operator” to mean a complex linear
isometric mapping of one complex Hilbert space onto another. We use the
term “isometry”, or “isometric operator”, to mean a real linear isometric
mapping of one real Hilbert space onto another. We will occasionally consider
complex Hilbert spaces in their real restrictions, i.e. where the new (real) inner
product is given as the real part of the original complex one. Let (L,, N,) be a
pair of (closed) real subspaces of the Hilbert space H,, and let (L,,N,) be a
corresponding pair of the Hilbert space H,. We say that (L,,N,) is
(isometrically) equivalent to (L,, N,), in symbols, (L,, N,)=(L,, N,), if there
exists an isometry V: H, — H, such that V(L,)=L, and V(N,)=N,.

THEOREM 2.2. There exists an operator A: H* — H* 0<AZI, such that
(graph A, graph (— A))= (K, K), i.e. there exists an isometry V from the real
Hilbert space H*®H" onto H, in its real restriction, which maps graph A onto K
and graph (— A) onto K.

The operator A is unique up to isometric equivalence, i.e. if B is another
operator with the same properties as A then there exists an isometry W: H*
— H"* such that B=WAW*,

Specifically, we may choose

_ -2
- I"}'Aé H* )

ProOF. Recall that C=C; is the centralizer of w; and let p, be the
projection onto C&;. By Lemma 1.2 we have C&; ={¢ € H | 4¢=¢}. The
operator U of Lemma 2.1 maps the orthogonal complement of Cé&;
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isometrically onto itself. Set U'=U +ip,=p, —p, +ip,, Where p,, p, are the
projections referred to in Lemma 2.1. Then U’ is a unitary operator on H.
Define an isometry V: H*®H" - H=H"+iH" from the real Hilbert space
H*®H" onto H, in its real restriction, by V(é®n)=¢+U'n. That V is an
isometry stems from the claim that U’ maps H" onto iH" or, what is
equivalent, that JU'= — U'J. Indeed, p, =Jp,J and Jp,=p,J. (The latter fact
follows from Lemma 1.2). From this we get immediately that JU'= —U'J.

Let A=|I —A*|/(I + 4%)|y: and observe that from JA4J=4"" we get that J4
=AJ, so A maps H" into H". Clearly 0SA<I, and also ker A={¢ € H* | A¢
=¢}=C,¢;. By Lemma 2.1 we then get:

Vigraph 4) = V{(£, 40 | e HY} = {(+UAL| LeH) = {¢
+UAE| EeH}) =K.

Likewise, ¥ (graph (— A4))= K. (Note that we make the obvious identification of
the set of ordered pairs {(&,7) | &n e H'} with H'®H").

We prove uniqueness. So assume B: H* —» H* such that 0<B<I and
(graph B, graph (— B))= (K, K). To deduce that B is isometrically equivalent to
A we proceed along the lines suggested in [10], see Remark below. We observe
first that 1 is not an eigenvalue of B. Indeed, if ¢ is a non-zero vector in H" such
that BE=¢, then (&, &) € graph B and (&, — &) € graph (— B). Let # € H". Then
the inner product of (& —&) and (n,Bn) equals (& n)>— (& Bn)={n)
—<{B&,n>=0, and so (&, —¢) is orthogonal to graph B. This means that there
exists a non-zero vector in K N K. Now KU=iK by Lemma 1.1 and so
K N iK % (0). This, however, contradicts that (K N iK)U2RU+iRU=K +iK
and K +iK is dense in H. So we have proved that I — B has an inverse.

We now exploit trigonometric analogy. The graph of a linear transformation
on a Hilbert space is very much like a line in a plane. Since the elements of
graph B are ordered pairs (&, BE), it follows, purely formally, that the ratio of
the second coordinate to the first is always B; so B plays the role of tangent of
the inclination 6. Now the geometric fact that the diagram

when rotated upwards through 6 becomes

20
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suggests that (graph B, graph (— B)) is equivalent to (graph T, H*@®0), where
T=2B/(I —B?). (Use that tg20=2tg0/(1 —tg?#)). Observe that T is a well-
defined positive self-adjoint operator, possibly unbounded, with 2(T)
=Range (I — B) and ker T=ker B. The trigonometric analogy suggests further
that the equivalence above is implemented by the isometry U,: H*@®H"
— H*®H" defined by

I B I B

(Use that rotation counterclockwise through 6 has the matrix

cos —sinf
sin 6 cosf) )’
It is readily verified that U, is an isometry. By straightforward computation we

get
U,(graph (—=B)) = {(I+B»)},0)| ¢e H'} = H'®0.

Also

I—B? 2B
U, (graph B) = {(U T u+‘32>*5>’ éeH“}.
Now
- B? 1-B?

Range <—(m—2—);> = Range(I-B) = 2(T) and T<m 6)
—_ ZB £
T (J+BY)

Hence graph T=U,(graph B).

By analogy we get that (graph A4, graph (— A)) is equivalent to (graph T,
H*@®0), where T, =2A4/(I— A%). Here T, is a positive self-adjoint operator,
possibly unbounded, with 2(T,)=Range (I — 4) and ker (T;)=ker (A). Since
~ clearly is an equivalence relation we get that (graph T, H*@®0)= (graph T,
H'@®0). Let U,: H'®H" - H*®H" implement the equivalence. Since U,
maps H*@®0 onto H*®0 we get that U, is a direct sum W,@® W, where W and
W, are isometries on H". The assumption that W, @®W maps graph T, onto
graph T implies that if ¢ € 2(T,), then W ¢ e 2(T) and TW {=WT¢; in
other words, TW,=WT,. Taking adjoints we get W¥T=T,W* and by
multiplication we get T>=WT2W*. Hence T=W T, W* because both T and
T, are positive self-adjoint operators and the positive square root is unique. In
particular, W maps ker T, =ker 4 onto ker T=ker B and L, = H"©ker T, onto
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L=H"Sker T. (We use the symbol © to denote orthogonal complement). The
restriction of T, to 2(T,)N L, is self-adjoint and non-singular in L, and the
same is true for the restriction of T to 2(T) N Lin L. Now

24 2B

v

respectively, and restricting to L; and L, respectively, we can solve in terms of
A and B, respectively, to get A=f(T;) and B=f(T), respectively, where

- 2
f(d) = —l+)1+A7 1>0.

i 9’
All this adds up to the conclusion that B= WAW*, and the proof is complete.

REMARK. In [10] pairs of subspaces K, and K, are studied which are in
generic position, i.e. the pairwise intersections of K, and K, and their
orthogonal complements are all (0). In our situation the pair (K, K) is not in
generic position, since K N K =C,¢; and KU N RU=i(K N R)=i(C,&,)" by
Lemma 1.1 and Lemma 1.2. The above theorem is in its purely geometric
aspect closely linked to the main theorem of [10; Theorem 3], though the
unicity of the representation is not explicitly proved there. (See also [16;
Theorem 2.4]).

Owing to Theorem 2.2 we may now be precise and define what we mean by
the vaguely intuitive term “relative position” of K=M,¢; and K=M,¢;,
where &, € P" is a cyclic and separating vector for M.

DEeFINITION 2.3. By the expression “relative position of (K, K)” we mean the
isometric equivalence class of the operator A =|I — 4%|/(I + 4%) (restricted to
H"), where 4 = A, is the modular operator associated with (M, ;).

This is equivalent to say the unitary equivalence class of the operator |I
— A4%/(I + 4% on H, with the proviso that the unitaries in question commute
with J=J, . (In fact, an isometry on H" has a unique extension to a unitary
operator on H that commutes with J).

In view of Definition 2.3 a natural question to ask is the following: Given
another cyclic and separating vector 1, € P" with associated (real) subspaces
K,=Myn;, K,=Mjn;, and (essentially) unique operator 4, =|I — 43|/(I + 4})
on H" where 4,=4,; if the relative position of (K,K) is the same as the
relative position of (K, K,), what is the relation between the faithful positive
normal linear functionals ¢ =w,, and Y =w, ? To be specific, assume there
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exists an isometry V: H* — H" such that 4, =VAV*. Let the unique unitary
extension of V to H again be denoted by V. We then have

-4l _ II-4% -

* =
) I+4} I+4%

If 4, =VAV* (or A['=VAV*)it follows from spectral theory that equation (*)
holds. Conversely, assuming M is a factor, it seems to be a reasonable
conjecture that if (*) holds, then either 4,=VAV* (or 4;'=VAV*). (Note
that if the absolute value is removed from the two numerators in (*), then it
follows from spectral theory that 4, = VAV *). Now S, =J4*% F; =JA~* and
S,=J4%, F w=J41 # Using that the polar decomposition is unique we
conclude (cf. discussion preceding Lemma 1.1): If there exists a unitary
operator ¥ on H such that V(K)=K, (or V(K)=K,) then the relative position
of (K, K) is the same as the relative position of (K, K,). Conversely, assuming
M is a factor, we conjecture that if the relative position of (K, K) is the same as
the relative position of (K,,K,), then there exists a unitary operator V on H
such that V(K)=K, (or V(K)=K,).

Returning to our original question we assume that ¢ =w, and ¥ =w, are
normal states, i.e. | &l = |10l = 1. If Y = @oa, where a is a Jordan isomorphism
of M, then one can show that the relative position of (K, K) is the same as the
relative position of (K,, K,), cf. section 3. The converse, however, is not true as
the following example shows. (The example was shown us by U. Haagerup.
Actually, as explained in the next section, the case when M is finite requires
some elaboration, but the example below avoids this problem).

ExampLE. We construct an infinite factor M (of type I) on standard form
(M, H,J, P*) with the following property: there exist two cyclic and separating
unit vectors &, and 7, in P* and a unitary operator V on H such that V(K)
=K,, but o, #w;ox for every Jordan isomorphism o of M. (Recall that K
=My, Ky=Mynq).

Let M, be the 3 x 3 matrices acting standardly as a von Neumann algebra
on H, =M, (in Hilbert-Schmidt norm) by left multiplication. The natural cone
P} for M is the set of positive matrices. Let 1,, 4,, A3 be (non-zero) positive real
numbers and set

i 0 At 0
h = Cy 12 N k = Cy 2,2_1
0 4 0o !

where ¢, and c, are chosen so that Tr, (h)=Tr, (k)=1, Tr, being the canonical
trace on M,. Choose A,,4,,4; so that h and k do not have the same
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eigenvalues, e.g. 1, =4,=1, A;=2. Set é=h*, n=k* Then ¢ and 5 are cyclic
and separating unit vectors in P%. Let () € Hy. Then A‘:(/J,»j)=(/1i/1j"l/,tij),
4, ()= (A A Also J,=J,=J,, where J 1 (p)= (ujp)- Let U be the unitary
operator on H, defined by U(u;;)= (u;), i.e. U is the transpose map. We easily
verify that UJ,U*=J, and U4,U*=4,. Now let M, be the unique type I,
factor acting standardly on the Hilbert space H, of Hilbert-Schmidt operators
in M, by left multiplication. The natural cone P} for M, is the set of positive
Hilbert-Schmidt operators. Let a € ]0,1[ and set

a 0

1—-a a?
hy = —* )
a a

0

Then h, is a trace-class operator in M, and h} is a unit vector in H,. Notice
that h®h, and k®h, do not have the same eigenvalues. (Compare the two
largest eigenvalues). Thus h®h, and k®h, are not unitarily equivalent. We set
M=M,®M,, acting on H=H,®H, (= Hilbert-Schmidt operators in M). M
acts standardly with natural cone P equal to the positive Hilbert—Schmidt
operators in M. Set

o = {®h} = H*@h} and no = n®h} = k*@h}.

Then &, and 7, are cyclic and separating vectors for M in P". We have that J &
=J, =J, where J is equal to the map x — x*, x € H. Let U: H; — H, be as
above and let id: H, — H, be the identity operator. Set V= U ®id. Then Vis a
unitary operator on H and it is easily verified that VJV*=J and V4, V*=4
So V maps M, ¢, onto M,n,. However,

w0g,(*) = Tr((h®h):) and @, () = Tr ((k®h,)")

are not related by a Jordan isomorphism a, since this would entail that h®h,
and k®h, were unitarily equivalent. (Indeed, this is a consequence of the fact
that the canonical trace Tr on M is invariant under Jordan isomorphisms and
that automorphisms of M are inner).

Mo*

ReMARK. We think it is appropriate at this point to mention that if we had
chosen a more restrictive notion of relative position, taking the cone P* into
account, then it would be true that normal states with the same relative
position are equal modulo a Jordan isomorphism. Specifically, if we require the
unitary operator V that implements the equivalence in (*) above to map P*
onto P*, then Y = gou for some Jordan isomorphism a of M. (Here we assume
M is a factor). Indeed, if V&, =y, then it follows easily from property (}) of
section 1 that 6= g@oa for some Jordan isomorphism « of M, where f=w, .
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Besides it can be verified that either VAV*=4, or VAV*=4;", where 4,
=4,. (Cf. proof of Theorem 3.1). So by (*) we get

-4}l _ -4}

I+4%  I+4%°

This equality implies by elementary spectral theory that f(log 4,)=f(log 4,)
for every even Borel function fon R, ie. f(1)=f(—4), 4 € R. In particular, 4¥
+A7 =A%+ 45" Vt € R. By the results in [9] this yields ¢ =, thus proving
Y =goa. (For M finite there might be a second alternative, analogous to the
situation described in Lemma 3.3, cf. [9]).

We conclude this section by presenting a suggestive, if rather simplified,
figure. Retaining the previous notation let &, € P* be a cyclic and separating
unit vector for M with 4=4;, P'=M &, PP=M' &5, K=M,¢5 =P P,
R=M;¢,=P"—P". By Lemma 1.2 we have

KNR=KNH =RNH" =C&; = {EeH| JE=¢ Ae=¢},

where C is the centralizer of w, . Likewise let n, € P* be another cyclic and
separating unit vector and let 4,, P%, P}, K,, K, and C, be the corresponding
objects associated with 7.

K=P-P P _ i .
\\\ \I\<1=P1—Pli Pl

~
N ~

Hh — Ph__Pn R g Sl L Ph

s T
. ‘K, = P{-P{  P]

7 1
/K = PS_P# Pb

We may think of H* as the x-axis and imagine the orthogonal y-axis as a
replica of H". By Theorem 2.2 the “tangents” of the “angles” 6 and 6,,
respectively, are the (equivalence classes of the) operators

_ 144 d _ -4

= = ,  respectively .
A I+2¢ " L T P y

The example we gave above shows that =0, does not necessarily imply that
w, =wgoo for some Jordan isomorphism a of M. As the remark above
indicates one has to bring the various cones into consideration in order to get
this conclusion. This will be clarified in the next section.

The figure also suggests that one should study the projected images of the
various P*-cones into H®. This is done in [9].

Math. Scand. 47 — 21
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3. The cones P*=M ,¢; and P"=M' ;.

The main theorem of this section is stated for factors only. The reason for
this is that our results are more awkward to state for general von Neumann
algebras, while on the other hand the factor case will elucidate all the
significant ideas involved. However, the subsequent results, appropriately
modified, are true for general von Neumann algebras. Roughly speaking, in the
general case one has to “split” the various objects under consideration by
appropriate projections in the center of the von Neumann algebra M. All this
stems from Kadison’s [11] characterization of Jordan isomorphisms a: M
— M, to wit, « can be decomposed as a direct sum of a *-isomorphism and a
*-antiisomorphism by splitting M in direct sums by appropriate projections in
the center of M. If M is a factor this becomes simply that a Jordan
isomorphism is either an automorphism or an antiautomorphism.

The following theorem clarifies the significance of the P*- and P’-cones with
respect to perturbations of normal states by Jordan isomorphisms.

THEOREM 3.1. Let (M, H,J, P") be a standard form of the factor M. Let ¢ and
¥ be two faithful normal states on M and let £, and n, be the two unique cyclic
and separating unit vectors in P* such that p=wy, Y =w,. Set P*'=M &5,
P’=M',E; and Pi=M ,n;, Pi=M' n;. Then the following statements hold:

(i) Y =g@on for some automorphism a: M — M if and only if there exists a
unitary operator u on H such that u(P*) = P}. (If M is finite we have to assume in
addition that u,=n,).

(ii) Y = @of for some antiautomorphism B: M — M if and only if there exists
a unitary operator v on H such that v(P*)= P}. (If M is finite we have to assume
in addition that vé,=n, and also that &, (or n,) is not a trace vector for M).

COROLLARY 3.2. Thereis a 1—1 correspondence between the automorphisms o
of M which leave ¢ = w;_ invariant (i.e. pox= @) and the set of unitary operators
u on H which map P*=M & onto itself. (If M is finite we have to assume in
addition that the v’s fix &, and also that & is not a trace vector for M). There is a
1—1 correspondence between the anti-automorphisms B of M which leave ¢
invariant and the set of unitary operators v on H which map P*=M &5 onto P’
=M, &y . (If M is finite we have to assume in addition that the v’s fix £, and also
that &, is not a trace vector for M).

ReMARK. If M is a type I factor then y = qoa for some automorphism o if
and only if Y = @of for some antiautomorphism . Hence we conclude from the
above theorem that in this case P* is unitarily equivalent to P} if and only if P*
is unitarily equivalent to P}. This is not true in general. In fact, Connes [5] has
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shown the existence of factors of all types (except type I) with separable
predual which are not antiautomorphic. By the above theorem it follows that
there exist (non-finite) factors such that no P*-cone can be mapped onto any
P’-cone by a unitary operator on H. On the other hand we know that J(P})
=P} for every cyclic and separating vector &, in P; J is an isometry but
conjugate linear.

We might ask a related question: If v(P*)= P} for some unitary operator v
on H, does it then exist a unitary operator u on H such that u(P*)=P}{? We
give an example to show that this is not the case in general. Indeed, by the
above theorem it is sufficient to exhibit a finite factor M with two faithful
normal states ¢=w; and Y=w, such that y=g¢of for some anti-
automorphism f of M, while y % @oa for every automorphism o of M. (Here
oMo € L*(M, 1), where 1 is the normalized trace on M. We also make sure
that ng ' ¢ L*(M,1),, cf. Lemma 3.3 for a discussion of this point). Let N be a
type 11, factor (with separable predual) not antiisomorphic to itself. Set M
=NQ®N°P, where N°P is the opposite algebra of N, that is, N°P is identical with
N as a vector space while the multiplication o in N°P is given by xoy
=yx(x,y € N). Let : NQN° — N®N°P be the antiautomorphism such that
B(x®y)=y®x for x,y € N. Set ¢ =1, ®0, where 1, is the normalized trace on
N and 0 is a faithful normal state on N such that the centralizer of 6 is a
maximal abelian algebra 4 of N. (If A is maximal abelian in N we first find
h e N, such that h generates A [6; Ch. I, §7, Exercice 3]. By appropriate
scaling we may assume that h™* ¢ L*(N,t1,),. Set 0=t,(h-)=wj. Then
centralizer of 6 is {h}' N N =A). We set = @of. Then clearly y =0®1,, and so
Y =w,, where no=h*®I € L*(M,1),. Since h™* ¢ L*(N,7,), we have that
Mo ' ¢ L*(M,1),.

We claim that & @oo for every automorphism o of M. Assume to the
contrary that y = gon for some automorphism a. We have ¢¥ =a~'og?on, o?
=id®¢® and o'=0’°®id, VteR. So ¢?®id=a"'o(id®0c?)ox, VteR.
Considering centralizers we get AR®NP=0"'(N®A). In the central
decomposition of A@N°P and N®A, respectively, the fibers are almost all
equal to N° and N, respectively. By decomposition theory [6; Ch. I, §6] we
get that N and N°P are *-isomorphic, a contradiction. So ¥ % @oa for every
automorphism a of M.

We now turn to the proof of Theorem 3.1. The reason for the special
assumption when M is finite is due to the fact that in only this case may a P*-
cone coincide with a P’-cone. This is clarified in the following lemma.

LEMMA 3.3. As above let (M, H,J, P*) be a standard form of the factor M and
let &, and n, be two cyclic and separating vectors in P".
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If A, =4, ! then (i) M is finite. So we may assume that M acts by left
multiplication on H =L*(M, 1), where 1 is the unique normalized trace on M, and
P'=L%*(M,7),. (L*(M,7) is the set of all closed operators affiliated with M that
are L?(t)-summable, cf. [12,17]).

Then (i) &5 ! is again in L>(M, 1) and no= A& ! for some 4> 0. In particular, if
P} =P, then (i) and (ii) hold.

Conversely, if (i) and (ii) hold then P} =P; .

ProOF. Since Sy =JA4} and F, =J4,* we get from the assumption 4,
=4,' that §; =F,, and so M,{; =Mz, (cf. section 1). Define 6(x)
=<{x€p,No>, x € M. Let x and y be hermitian elements of M. Then 0(xy)
={xyo, Moy =<y, XNyy € R, since by Lemma 1.1 we get iM,,n(I;I=M;,n0‘
(=M, &;). In particular, if y=1I we get that 0(x) is real for x hermitian. Hence

0(xy) = 0((xy)*) = 00x) = 6(yx); Xx,yeM,.

By linearity we get that 8(xy)=0(yx) for every x and y in M. We want to show
that 62 0. For that purpose it is enough to show that n, € P} =(Pf)°. By the
hypothesis it follows that 4, fixes 1, and so o= Aiono € P}, since we have that
P20=A§O(P“ na (Aﬁo)). (The latter fact is easily verified, cf. [2; Theorem 2.8]).
Now 6+0, since £, is cyclic for M, and 0 has a central support by its tracial
property. Since M is a factor we conclude that 6 is a positive multiple of a
unique faithful normalized trace t on M, say O=ct, ¢>0. In particular, M is
finite. With H=L?(M, 1), P"=L*(M,1),, and inner product on H defined by

En>=1(n*¢), &,n € L*(M, 1), we get
ct(x) = 0(x) = {x&o,Mm0) = T(Mex&o) = T(EoMoX)

for x € M. (Recall that £,,n, € L,(M,1),). Hence we must have £,n,=cl, and
s0 &g '=cng € L,(M,7) and no=A&; !, where A=1/c. If P{ =P, then clearly
Mo =M1, , and so Sg =F, . This implies 4, =4, ! and so, as we have just
seen, (i) and (ii) hold.

The converse follows by noting that M’ acts on H=L?(M,t) by right
multiplication. In fact, approximating by cutting down with appropriate
spectral projections e of &, to make the operators bounded, we get

Pho={nox| xeM,}” = {&'x| xeM,}™
= {&5 " (foexeto) | x € M, and e “appropriate” spectral projection of &}~

= {exef, | x € M,, e as above} ™ = P, .

This completes the proof.
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RemARK. The above proof is direct and in the spirit of this paper. However,
if we rephrase the above lemma in terms of the modular groups rather than the
modular operators another proof comes more natural. In fact, a more general
result including weights as well as elements in (M), can be proved using the
alternative approach. We think both the rephrasing as well as the proof is
interesting so we give a brief sketch below. (Note that we do not have to
assume that M is a factor).

LEMMA 3.3, Assume o¢=0", Vt € R, where ¢ and y are faithful, normal,
semifinite weights on M. Then M is semifinite.
If ¢ and § are in (M,)., then M is finite.

SKETCH OF PROOF. The condition ¢f =¢", implies that Y =yoa?, V¢ e R.
Then ¢ =g (h-) for a (non-singular) positive self-adjoint operator affiliated with
C’={xeM | of(x)=x, Vt € R} and ¢¥(x)=h"s?(x)h" ", x € M, t e R. (Cf.
[13; Theorems 4.6 & 5.12]). Now

0% 2(x) = 02,(0%,(x)) = °,(c¥(x)) = 0%, (h'a?(x)h™") = hi*xh™",

and so ¢?(x)=h""2xh"'2, Vt € R. Hence M is semifinite [18; Theorem 14.1].
Set t=¢(h*-). Then

ot(x) = hY2(h™"2xhi2)p~ 2 = x

for all x in M. So t is a faithful trace on M. If ¢ and ¢ are in (M,),, then
1=¢(h*-) is a bounded trace on M since h*<}(I +h), and so t<4(p +@(h"))
=%(¢ +y), cf. [13, Section 4].

We shall also need the following lemma.

LEMMA 3.4. With the same setting as in the previous lemma, assume that 4,
= A, . (In particular, this is the case if P§°=Pf,0). Then ny= A&, for some A>0.

Proor. We get that 6,=a,=4"-47",t € R, where 4 =4, =4, and {o,} and
{o,} are the modular groups of w; and w,,, respectively. By [18; Theorem 15.4]
we immediately get that n,= A&, for some 41>0. Another proof, more direct
and elementary, was shown us by van Daele (private communication) and we
think it is worthwhile to sketch it. First we observe that the hypothesis implies
that M, £ = M, . In fact, this is an immediate consequence of S¢°=JA§0 and
Sy, =J Aﬁo. Now let x € M,, x' € M}, Then {(x&,, x'n,) is real because of Lemma
1.1. Hence {xx'&y,n,y is real for every x € M,, x' € M. The von Neumann
algebra {M U M'}" is generated by the *-algebra
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|

and any hermitian element in 4 is a sum of elements of the form

™M=

xx;| x;e M, x;e M’} ,
1

W

3+ X*) (7 + X *) = Fi(x = x*)i(x = x'*) (=xxX'+x*x'¥),
where xe M, x' e M’ .

Hence (y&, 7o) is real for every y € {M U M'}}. As ¢, is cyclic for {M U M'}"
we get by Lemma 1.1 that n, € (M N M’),&,. (Observe that the commutant of
{M U M'}" is the center M N M’ of M). Since M is a factor we get that ny= A&,
for some A € R. Now &, and 7, are in P*, and so we must have A>0 since P" is
a proper cone.

ProoF oF THEOREM 3.1. (i) Assume first that Y = @oa for some o € Aut (M).
By property (t) of section 1 there exists a unitary operator u; on H such that
u,(P")=P" and a(x)=u,xuf, x € M. Then we have for x e M

Mooy = Y(x) = @oa(x) = upxuflo,Gop = {xufCo,ufco) -

Since u*{, € P", we get by the unique representation of (M,), by vectors in P*
(cf. section 1) that no=u}é,, hence £, =u,n,. Set u=uf. Then

“(P‘)'_“ (P‘)"“ (M. &)™ = WM, uufly)” = Miyng =P:-

On the other hand, assume there exists a unitary operator u on H such that
u(P*)=P}. Then u(M,{;)=M,n, and so uS;u*=S, . By uniqueness of the
polar decomposition we get that ud; u*=4, Hence

P = udh P = udbaulP) = B, (P =

By property (1) of section 1 u implements an automorphism «, or an
antiautomorphism f. Assume the second alternative. Then uMu* =M’ and so

u(PY) = (M u*uo)™ = (M ulo)™ = Py, .

Since P} =P, =u(P") we get that P; = P;; . According to Lemma 3.3 this can
only occur for M finite. In that case we have the additional assumption that 7,
=ué,. Then P; =P, =P", and this is easily seen to be equivalent to Y =w,,
being a trace on M. Now u(P*)= P} implies that u(P")= P}, since P’ = (P*)°, P}
= (P})°. So P} —Pc = P* and hence ¢ = wg, is also a trace on M. As the trace is
unique we get that = ¢ =yoid.

The second alternative we have to consider is that u implements an
automorphism a, =u-u*. Then uMu*=M and we get

u(P*) = (uM  u*ufo)™ = (M, uéo)™ = P:{,, .
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So we have P} =P! =P#, By Lemma 3.4 this implies that n,=u¢,. Hence we
Mo uéo
get for xe M

Y(x) = {xto,moy = {xulo,uly) = {u*xuéo,&o) = {a(x)¢p,&o) = @oa(x),
where a=a;!.

(ii) Assume first that = @of for some antiautomorphism § and let v, be the
corresponding unitary operator on H according to property (1) of section 1.
Then f(x)=Jv,x*v}¥J, x € M, and so

Xy Moy = Y(x) = @of(x) = (Joyx*v}J&o,&0> = {xvido, v§Eo) -
As above this implies that ny=0v}¢&,. Set v=v}¥. Then
v(P*) = v¥(P*) = (W}M,vv}¥é)” = Myng = Pj.
On the other hand, assume there exists a unitary operator v on H such that
v(P*)=Pj. Then v(M,{5)=M,n, and so vS;v*=F, . By uniqueness of the
polar decomposition we get that vd, v*=4, '. Hence
o(P*) = v(4i, P = vabp*o(P)™ = A-¥(P)) = P".

So v implements an automorphism « or an antiautomorphism f, of M
according to property (1) of section 1. Let us assume the first alternative. Then
vMv*=M and so

o(PY) = M v*vée)” = (M,0&o)” = P, .

Hence P} =P, =v(P*)=Pj;. According to Lemma 3.3 this can only occur for
M finite. In that case we have assumed v{, =1, and this implies as above that
no=2¢&, is a trace vector for M, which we have ruled out.

Thus the only alternative is that v implements an antiautomorphism f,.
Hence we have vMv*=M' and so

o(P) = (OM ,v*vle)” = (M 0de)” = Py, .

Thus P} =P, =v(P*)=Py . By Lemma 3.4 this implies that n,=v&,. Now
By (x)=Jvx*v*J, x € M, and so

Y(x) = {xno, o) = {xvéo,080) = {Jv*x*vJE0,&o) = @of(x),
where fB(x)=Jv*x*vJ =B (x).
This completes the proof of the theorem.

Proor oF CoroLLARY 3.2. The proof follows by combining the proof of the
theorem with the uniqueness part of property (t) of section 1.

ReMARK 1. Note that from the proof of the above theorem it follows that if
M is a finite factor and u is a unitary operator mapping P} onto P; (or P;),
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where &, and 7, are cyclic and separating unit vectors in L?(M, 1), (cf. Lemma
3.3), then either ué,=n, or uéy=Any* for some 1>0.

ReMARK 2. Theorem 3.1, appropriately modified, can be generalized to
(non-finite) weights by working with the cones P* and P’ introduced in [14]
and applying the results of [7,8]. Lemma 3.3’ will replace Lemma 3.3 in the
proof.
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