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POSITIVE CONES ASSOCIATED WITH
A VON NEUMANN ALGEBRA

HIDEKI KOSAKI
Abstract.

Let .# be a von Neumann algebra on a Hilbert space $ with a cyclic and
separating vector &,. For a € [0,4], a cone P*in § is given by P*= (4°.4 . &),
where 4 is the associated modular operator. We characterize the cone in terms
of Haagerup’ LP(.#)-space and prove the followings:

(i) For o € [0,4] (« € [0,4] when . is finite), the map: £ € P* > w, € M ] is
bijective,

(i) Any fixed point under JA*~2* can be written as a difference of two
elements of P*

Introduction.

Following the development of the Tomita-Takesaki theory, Araki [2]
introduced a one parameter family of pointed cones P?, « € [0,], associated
with a von Neumann algebra admitting a cyclic and separating vector. (In [2]
the cone was denoted by V*) Among them, there are three distinguished cones
P°, P* and P*, which are also denoted by P*, P*, and P’ in the literature. It was
shown by Araki [2] and Connes [3] that P* is neutral in many aspects. It
seems however that the cones P a e [0,1], deserve further investigation.

In the present paper, by using Haagerup’s L?(.#)-spaces, [7], we study the
above mentioned one parameter family of cones. Especially we obtain a
Radon-Nikodym theorem for the cones.

We shall freely use the standard results as well as notations in the Tomita—
Takesaki theory, which are found in [12].
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1. Notations and main results.

Let .# be a von Neumann algebra on a Hilbert space $ with a cyclic
separating vector &,. Throughout the paper, we shall leave the vector &, fixed.
For the convenience we normalize &, so that the corresponding functional w,
=y, is a state. Associated with {.#,$,¢,} we have the modular operator 4
and the modular conjugation J. Since &, is fixed, we shall denote the associated
modular automorphism group simply by {s,}.

For each a € [0,1], we have #,¢,=D(4})=D(4% so that the following
definition makes sense:

DeriNiTION 1.1, ([2]). The cone P%, a € [0,1], is the closure of the convex
cone A*M &, in §.

We then have P°=P* P*=P" and P*=P"’. Araki, [2], showed that
Pt ={neH: (|&=20 forall ¢ P} = JP*,
P* < D(A4*"%%) and A¥%E = J¢ Ee P,

With this set up, we state the main result.

THeoREM 1.2 (Radon-Nikodym theorem). For each « € [0,4], the map:
¢e PP w; e M, is bijective. If M is finite, then the correspondence is
bijective for each o € [0,3]. Here w, means the functional on # given by w(x)
=(x£|&), x e M.

In the course of proving this, we shall characterize the cone P, « € [0,4], in
terms of Haagerup’s L>(.#)-space (Proposition 2.2) and derive certain
properties (Propositions 2.3 and 2.4).

Before proceeding further, we make a few comments. For a =0 the bijectivity
of the map was shown by Takesaki, [12]. For a =4, Araki [2] and Connes [3]

. proved the result. For this special value of a, they exhibited further interesting
properties, such as bicontinuity, concavity and so on. For the detail we refer
their original papers. Skau [11] showed that the bijectivity of the map:
¢ e Pt w, € A} is equivalent to the finiteness of .

As an immediate consequence of the theorem, we get the following
uniqueness of Araki’s one parameter family of Radon—Nikodym theorems [1]:

CoroLLARY 1.3 If @=<lwy, ¢ € # , with some positive number 1. then, for
each o € [0,1], there corresponds a unique a, € # such that

aéoe P and @(x) = we(arxa,), x € A .
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Proor. The existence was proved by Araki [1]. The uniqueness follows from
Theorem 1.2.

2. Positive cones in Haagerup’s L?(.#)-space and the injectivity.

To show the injectivity of Theorem 1.2, we need an apparatus invented by
Haagerup [8]. Making use of the crossed product of .# by a modular
automorphism group, he constructed L?(.#)-spaces, 1 <p=< 0.

Let .#, denote the crossed product .# x ,R of .# by R relative to the action
{6}, {0, : s € R} and 7 be the dual action of R=R on .#, and the faithful semi-
finite normal trace on .# satisfying:

100, = e %1, se R (see [13]).

For each normal semi-finite weight ¢ on ., let ¢ be the dual weight on .4,
[4], [6], and h,=d¢@/dr be the Radon-Nikodym derivative of ¢ with respect to
7 in the sense of Pedersen—Takesaki, [8]. Since the dual weights are precisely
the 6 -invariant weights on .#, normal semi-finite weights ¢ on .# are in the
bijective correspondence with positive self-adjoint operators h affiliated with
My such that

0,(h) = e *h, seR.

An interesting fact about this correspondence is that ¢ is finite, that is, ¢
belongs to .#}, if and only if h, is 7-measurable in the sense of Segal, [10].
The space LP(#), p € [1,00[ is defined as the set of all T-measurable oper-
ators k such that

O,k) = e”Pk, seR.

The algebraic structure in LP(.#) is considered on the regular ring of 7-
measurable operators.

Imbedding .# into .#, as the fixed point algebra .#% we have the
representation (respectively anti-representation) of .# on the Hilbert space
L?(.#) defined by

m(x)k = xk  (respectively n,(x)k=kx), xe€ .#, ke L*(A).

The involution J: k € L2(#) +— k* € L>(#) and L*(#), together with m,(.#)
form a standard form {m,(.#),L*(.#),J,L*(#),} in the sense of Haagerup,
[5]. By the uniqueness of a standard form, P"= P* is identified with L?(.#),.
Through this identification, we denote the operator in L!(.#), corresponding
to w, by hy, that is, hy=dd,/dt. Thus we identify {A4,9,¢,} with
{n,(#), L>(A),h§}, which will be kept throughout the paper, except for
section 4.
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LEMMA 2.1. Let k be a t-measurable and h be a non-singular t-measurable self-
adjoint operator. If we have either kh=0 or hk=0, then k=0.

Proor. By taking the adjoint, we may assume that kh=0. Then k vanishes
on the intersection of the domain of k and the range of h, which is strongly
dense in the sense of Segal, so that k vanishes everywhere, [10, Cor. 5.1].

Let h be a non-singular z-measurable self-adjoint operator and ky, k, be t-
measurable operators. If k;h=k, (respectively hk,=k,), then by the above
lemma k, is uniquely determined by h and k, so that the notation k, =k,h~!
(respectively k, = h~'k,) makes sense. Keeping this fact in mind, we note in our
realization of the Hilbert space that

D(4%) = {k e L*(#) : hkhs* e L2(4)},
A% = hkhy®, ke D(4Y.

Now the cone is characterized by the following:

PRroPOSITION 2.2. For each o € [0,4], we have
P* = {ke L*(H): h§ 2%k 2 0} .
For each a € [1,1], we have
P* = (ke L*(#): khi*"*20}.

Proor. The second assertion follows from the first since JP*= P*~* Thus we
may assume « € [0,4]. Suppose k € P* and choose a sequence {x,} in .# , such
that . .
k = lim4°x,h{  (in norm).
For each h e L'**(.#),, hh}~2* belongs to L?(.#) and

t(hh§~2%k) = lim t(hh}~224%x,h})
’ = limt(hh}~2*h3x,hE %)
= limt(hh§ *x,h§"% = 0,

since h§~°x,h§~* belongs to LY!~2*(.#),. Thus h§ 2%k belongs to the dual
cone LY1=2¢(4), of L'?*(.4),.
Conversely, if k € L2(.#) and h§ 2k >0, then we have, for each x € .4 ,,

Ck| A*~*xhgy = Ck|h§~xhy)
t(h%xh} k)
T (HaxhSh3~2%) = 0,

]

I
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because h%xh? belongs to L'/?*(#) . Therefore, k belongs to the dual cone P* of
pPi-e

PROOF OF THE INJECTIVITY (of the map: &€ P*— w,e #,, o€ [0,17).
Suppose that
{m(x)key | ky) = {m(x)kylky)s x€ M ky,ky € P

Then there exists a partial isometry u in .# such that k, ==, (u)k, =k,u. Thus,
we have

h%—zakl = hg_zakzu .

By Proposition 3.2, both of h ~ 2%k, and h} 2%k, are positive self-adjoint. Here
the self-adjointness follows from the t-measurability of respective operators,
[1, Theorem 5]. The uniqueness of the polar decomposition implies

h}~2%k, = h§ ™k, .
Thus, we have k, =k, by Lemma 2.1.
ProposITION 2.3. If & in D(4*~2%) satisfies JA*~2*E =¢, then there exist two
vectors &, and &, in P* such that {=¢, —¢,.

Hence, any element in D(4*~2%) can be written as a linear combination of four
elements in P*.

Proor. By considering J¢, if necessary, we may assume « € [0,4]. The
assumption on &=k means that h} 2%k is a self-adjoint element in L'/! ~2*(.#).
Let uh=h}"%*k be the polar decomposition. Due to the self-adjointness, we
have

uh = hu* = u*(uhu*) .
Thus, by the uniqueness of the polar decomposition, we have
u=u*,
h = uhu* = uhu .

Since u?> =uu* =u*u is a projection in .#, the spectrum of u is included in the
finite set {—1,0,1} so that we can choose projections p,,p, in . such that

u=p—>r,
pp, = 0.

Hence we have

h = (py—p2)h(p,—p,) -



300 HIDEKI KOSAKI

On the other hand, we have

h = (py+p)h(py+ps)

because the range projection of h is given by u*u=p, +p,. Thus we have
h = pihp, +pshp, ,
h§™*k = (py—p2)h = pyhpy—pahp, .
Set &, =kp, and &,= —kp,. Clearly (=&, —¢, and we compute
h§~**kpy = (prhpy—pzhpo)py = pihpy Z 0,
—h§~**kp, = — (pthp, —p2hpo)p; = php, 2 0.
Thus, £; and &, belong to P* by Proposition 2.2.
Finally, the second assertion follows simply from the identity

no= (n+JA3 "2 )2 +i(n—JA*"2))2i, e D(4F).

PropPOSITION 2.4. The real subspace K,=P*—P* in § is closed and the

mapping
S, E+ine K, +iR, — E—in e R, +iK,

is a (conjugate linear) closed operator. Furthermore, the polar decomposition of

S, is given by
S, = Jar~%,

Proor. The previous proposition means that &, is nothing but the set of all
fixed points under J4*~2% which is the involutive isometry of the Hilbert space
D(4*72%) equipped with the graph norm. Thus &, is closed in D(4*~2%). For
n € K&,, we compute

20nl* = Inl>+nl> = lnl>+|J4* 22
= |Inll*+14* )2,

’

so that, on &,, the topology of $ coincides with the one of D (4% ~2%). Therefore,
R, is closed in $. The other assertions of the proposition are trivial.

Propositions 2.3 and 2.4, which are known for special values a=0, %, [9],
mean that we can completely recover 4 and J from the cone P%, a1

3. The surjectivity.

In this section, we keep the identification established in the previous section
and prove the surjectivity of the map: £ € P* — w, € A}, « € [0,4].
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Let o/ be the set of all x € # such that the Fourier transform, as a
distribution, of the .#-valued function: t € R > o,(x)=hilxh;" € # has a
compact support. It follows that

i) & is a o-weakly dense *-subalgebra of .#.
ii) For each x € o/, the function t € R — 0,(x) € .# is extended to an entire
function, whose value at z € C will be denoted by o,(x).

The following formulas can be checked by the uniqueness of analytic
extension:

O-z+w(~)c) = Gz(o-w(x))9 Uz(xy) = Gz(x)az(y) >
0.(x*) = g;(x)*; x,yeH; z,zweC.

At first we prove two technical lemmas. The second one is due to Araki [1],
however we give the proof for the sake of completeness.

LemMa 3.1. Let T be a positive self-adjoint operator on § such that h§ belongs
to the domain of T and T is affiliated with #, then for a, B € [0,1], 4°T4% is a
densely defined closable operator and h§ belongs to its domain.

ProoFr. If x € &/, then we have

e
n,(x)h§ = hfx € D(4P)
AP, (x)hy = hBhixhg® = h3hbxhg?
h%”—w(x) = n,(a_w(x))hg ,

so that we have
TAm,(x)h§ = m,(0 ;5 (x)Th} ,
because T is affiliated with .#. The spectral decomposition for T yields that
Th§ < P° < D(4}) ¢ D49,
so that we have
m,(0 (X)) Th € D(4%),

because m,(<) leaves the domain of any power of 4 invariant. We thus have

A°T AP, (x)h}

Aanr(o-ip(x»Ths )
= nr(o—(a+ﬂ)(x))AaTh3 ’
Hence D(4°T4%) contains =,(s/)h3, which is dense in $. Since we have
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(4°TA%* 2 A*T4*,

and D(4°T4% is dense as seen above, 4°T4* is closable.

LEMMA 3.2. Let T be a positive self-adjoint operator. If
) (mkIThY = (n(o-u()TkIRY; kheD(T); xe o,
then we have

2 (k| Ty = (0 ()THkIBY;  khe D(TH); xeof .

Proor. We have only to show 2) for k and h in a core of T*. Thus we may
assume that both of k and h belong to a bounded spectral subspace of T. Set

fi@) = <m0k T?hy and  fo(2) = (M (0-iu(X)Tk| B .

Then both of f; and f, are entire functions of exponential type and

1
limsup—log|fjre™?)| = 0;  j=1,2; e=+1.

Hence Carleson’s theorem (for example, Boas: Entire Functions, Academic
Press, New York, 1954, Chap. 9.2) yields f; (z)=f,(2), z € C, since f,(n)=f,(n),
n=0,1,2,..., by repeated use of 1). In particular, we have f,(})=/,3).

We take an arbitrary ¢ in 4 and fix it throughout the section. By a result
of Takesaki, [12], there exists a positive self-adjoint operator A affiliated with
# such that

ky = Ah§ € P°, @ = wy, .

We will construct a representative vector k, € P* for ¢ by making use of the
, operator A.

By Lemma 3.1, 4¥44* 2% is a densely defined closable operator on § and h}
belongs to its domain if 0Sa<i. We denote the closure of 4*44%~2* by T,.
Since A4 is affiliated with .#, we expect a certain commutation relation between
T, and &,(x), x € .

LemMma 3.3. Each =, (x), x € o, leaves D(T),) invariant and
1) Tanr(x)k = 7tr(a'i(2a—l)(x))Tak’ k € D(Ta) .

Furthermore, n,(x) leaves D(T¥) invariant and

2) Tin,(X)k = ,(0i20-1)(X) Tk, ke D(TY).
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ProoF. It is straightforward to see that m,(x), x € o, leaves D(4*44%~2%)
invariant and

AL 1 (D = T,(0i00— 1 (0))A2A42 "2k, k € D(42A4%~ %)

For each k € D(T,), we can choose a sequence {k,} in D(4*44*~2%) such that

k = limk, Tk = limTk,,
because D(4*A44%72%) is a core of T,. We then get, for each x € &/,

n,(x)k = limr,(x)k, ,
lim T,7,(x)k, = lim7,(03,-1)(%)) Tk,
= 1,(0i2a-1y(X) Tk ,
so that =,(x)k belongs to D(T,) and (1) is valid, or equivalently, we have
T, (x) 2 7 (0i2q-1)(X)T, -
By taking the adjoint, we have
T, (0i2a-1)(¥)*) = TER(0us - 20(x*) 2 7 (x*)T .

By replacing x by 0;,,-1,(x)*, we have

T¥n,(x) 2 m,(0izq-1,(X)TS -

Thus we have the second assertion.

Lemma 3.4. If T,=u,H, is the polar decomposition, then we have, for any
x € o and k,h € D(H)),

(m (k| Hh) = {m,(0izq-1y()H K| B .

Furthermore, the phase u, belongs to #.

Proor. For any x € & and k,h € D(T*T,), we compute
(m,(x)k| T T,hy = (T, (x)k| T,h) ,
= (M,(0424-1)(X))T,k| T,h> by Lemma 3.3 (1)
= (T, (0i2a-1y(X) Tk | h)

@,

so that we have
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<nr(x)k'Hah> = <nr(ai(21—1)(x))Haklh>; k’h € D(}Ia); xe o s

due to Lemma 3.2.
For each k € D(T}), h € D(T,)=D(H,), we compute

(k| uHhy = (my(x)k | Th)

= (T¢n, (x)k|h)

= {m,(0y2q-1)(X))T¥k|h), by Lemma 3.3 (2),
= M, (0i2q-1)(X)Houtk | h)

= (m(x)ufk|H.h) ,

by the first half of the proof. Hence we have n,(x*)u,H h=u,n,(x*)Hh. Set p
=1-—u}u, the projection onto the null space of H,. For any ke $ and
h e D(H,), we have

(m()pk| Hhy = <,(0120-1)(X)H,pk | BY = 0,
so that (1 —p)r,(x)p=0 for any x € «/. Thus we have p € () =n,(H)=MH,
that is, u¥u, belongs to .#. Since 7, (x)u,(1 — p)=u,m,(x)(1 —p), x € &, as seen
above, we conclude that u, belongs to .#.
LEMMA 3.5. Setting k,=JH h}, we have
i) p=w,, and.
ii) the vector k, belongs to P*.
Proor. (i) We simply compute, for x =m;(x) € A,
0 (X) = {(xkglky = (xJHoh$ | JH hE)
= (H,h§|JxJH h$)
= uduH h§| IxJH h§)
= (u Hh§|IxJu,Hh}> by Lemma 3.4,
= {4 A4 2} | IxJA* A4~ 2°h})
= {A*Ah}|IxJ A* Ah§)
= (xJA*Ah}|J A2 Ah})
= (xJA*k,|JA%k,)

It

{xk,|k,> since k, € P° is invariant under J4*

o(x) .
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ii) Since JP* %= P°, it suffices to show that H,h} € P*~* For each x € &,
we have

<7"r(x)7tr(0i(1 -2q) (x *))hg | Hah3>
= <7Tr(°'i(2a - 1)(x))Ha7tr(ai(l -24q) (x *))h3 | h%)
= <Hanr(ai(l - 2a)(x *))h3 | nr(ai(l -2a) (X*))h3> =20

by the positivity of H,.
On the other hand, we have

nr(x)nr(ai(l -24) (X*))hg
7, (X)m, (h3* ™ x*hy = 2*)hd

h$h3*~1x*hl~2%x = h2*~ix*h)~2*x e P*

I

by Proposition 2.2. Furthermore, the above elements, x € &/, form a dense
subset of P* (For the detail, see [1, Lemma 5]). Thus we conclude that H h}
belongs to the dual cone P*~* of P

Therefore, we have proved the surjectivity of the map: ¢ € P* - w, € A},
« e [0,3].

4. The bijectivity for a finite von Neumann algebra.

To complete the proof of Theorem 1.2, we prove in this section that the
map: ¢ € P*— w; € 4 is bijective for each a € [0,3] when .# is finite.

Throughout the section, 7 is a fixed tracial state on .#. We note at first that
any densely defined closed operator affiliated with .# is t-measurable, [10,
Cor. 4.1], due to finiteness. Thus the Hilbert space L?(.# ; t) associated with 1,
[10], consists of all densely defined closed operators k affiliated with .# such
that t(|k|?) is finite, and ./ acts on L?(.#; 1) as the left multiplications, that is,

m(a)k = ak, ae M, ke lL*(M;T).

As before, {m,(#),L*(#; 1),J,L*(#; ).} is a standard form, where the
involution J is given by Jk=k*, k € L>(#; t). Set hy=dw,/dt, the Radon—
Nikodym derivative of w, with respect to 7. As in section 2, we identify
(M,9,E} with {m (), L*(#; 1),h§} throughout the section so that the
modular operator 4 is given by

D) = (ke L*(A;7): hikho™ € L*(A; )},
A% = hikhy®, ke D(4Y.

Thus we have Proposition 2.2 again in this version. However, by the finiteness

Math. Scand. 47 — 20
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of .#, h{ ~2* makes sense as a t-measurable operator for « € [0,1] so that the
proposition 2.2 can be reformulated in the following fashion:

P* = {keL*(#;1): h{ **k=20} for each a € [0,4].

Thus, by the argument given in section 2, we have the injectivity for each
« € [0,1].

Finally, we prove the surjectivity. Take ¢ € .# and let h, be the Radon—
Nikodym derivative dg/dt. For each o € [0,1], set

k, = h3*~*(h}~2*h, h}~2%)?* .

We have
W82k, = (W2 h g2 2 0,
R W o

so that k, belongs to P*. For each x € .#, we compute

(s | gy = Tlkxk,)

= t(k.kix)

t(h,X)

= ¢(x).

Thus k, is a representative vector for ¢ in P*
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