MATH. SCAND. 47 (1980), 275-294

A SINGULAR STURM-LIOUVILLE PROBLEM
TREATED BY NON-STANDARD ANALYSIS

BENT BIRKELAND

1. Introduction.

In a recent paper, S. Albeverio, J. E. Fenstad, and J. R. Heegh-Krohn [2]
prove that the classical theorems on the oscillation of eigenfunctions of the
Sturm-Liouville problem for second-order differential equations remain true
when the zero-order coefficient is given by a measure instead of by a
(continuous) function. Their work is motivated by applications to physics.

Their proof uses the classical Sturm-Liouville theory (smooth coefficients), a
certain amount of perturbation theory for operators in Hilbert space, and the
“Transfer principle” (or “Elementary extension Principle”) of non-standard
analysis.

On the other hand, A. L. MacDonald, in [6], gives a new proof of the
completeness of the eigenfunctions for the classical (regular) Sturm-Liouville
problem. He starts from the classical finite difference approximation of
Plancherel-Levitan (see [7, ch. 1, § 5]), and uses the fact that for the
corresponding finite-dimensional eigenvalue problem the completeness of the
eigenvectors is trivial. The core of his argument is an inequality which enables
him to “pass from the discrete to the continuous case” via the Transfer
principle.

This approach is conceptually pleasing, and if one accepts the Transfer
Principle, it is also technically much simpler than the classical proofs of
completeness.

The aim of the present note is to show that the method of finite differences,
as used by MacDonald in [6], can be refined to work in the more sophisticated
setting of Albeverio et al. This will give new and simpler proofs of the results in
[2, Section 4], and somewhat better bounds on the eigenvalues.

The paper is organized as follows:

Our thain results are stated and commented upon in Section 2. Section 3
contains a brief summary of some more or less elementary facts about
difference equations. The crucial inequalities are proved in Section 4, while the
passage from the discrete to the continuous case, via non-standard analysis,
will be found in Section $.
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2. The problem, and the results.

We let 1 denote a finite non-negative Borel measure on [0, 1], and consider
the eigenvalue problem, which we write somewhat imprecisely as

@2.1) —Y'(x)+uY(x) = t¥(x), O<x=<I1,
2.2) Y(0) = Y(1) = 0

where 7 is a parameter.

There are several ways to give a precise meaning to (2.1). One of them is to
multiply in (2.1) by Y(x) and integrate over 0<x<1. Using integration by
parts, and (2.2), one is led to consider the quadratic form defined by

1 1
2.3) Ad =J (@) dm + J P2 dy .
0 0

(where dm denotes Lebesgue measure), on the space C} of those continuously
differentiable functions @ on [0, 1] which satisfy (2.2). We will prove that 4 has
a countable family of “generalized eigenfunctions” {Y;} which behave very
much in the same way as do the eigenfunctions of the classical Sturm-Liouville
problem; except that they will not, in general, be in Cj. A precise statement is
found in Theorem 1 below.

Another reasonable interpretation of (2.1) is obtained by integrating twice
over an interval [0, x>, and then change the order of integration. This leads to
the integral equation

(2.4) Y(x) = xY’(0)+J‘ (x—8)Y(s)du—1 ‘r (x—s)Y(s)dm .
0

[0, x>
"It is not hard to prove by standard methods (“contraction principle”) that for
every 1, (2.4) has a continuous solution Y, on [0,1], but it seems difficult by
such methods to decide for which t© we have Y,(1)=0, and to obtain further
information about these eigenfunctions. We will prove that the above-
mentioned Y ;,7; solve this problem too.

THEOREM 1. Let p be a finite Borel measure on [0,1], and define a quadratic
form A on C[0,1] by (2.3). Write M =pu[0,1], B=2(1+12M).

There exists a sequence {t;}5%, of real numbers, and a sequence {Y;}52, of
continuous functions on [0, 1], such that
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a) The following inequalities hold:
n’j? £ 1 £ (nj+ M)
and
lY;(x)) = B, 0=x=1, 15j<00,

b) {Y;} is an orthonormal and complete sequence in L*[0,1].

c) If & is twice continuously differentiable on [0, 1], and ®(0)=®(1)=0, then its
orthogonal expansion in terms of {Y;} converges uniformly to ®.

d) If @ is continuously differentiable on [0,1], (0)=¢(1)=0, and 35 ,d;Y; is
its expansion in terms of {Y;}, then

AD = Y d?
j=1

e) The Y; are solutions of (2.4) with 1=,

f) Y; has exactly j+ 1 zeroes in the closed interval [0, 1], and between two zeroes
for Y; there is a zero for Y;,,.

g) The derivative Y'(x) exists and is continuous, and satisfies |Y'(x)| §2B‘c}, if
u({x})=0or Y;(x)=0. At the remaining x, Y’ has a jump discontinuity of size
Y;(x)u({x}). On intervals I = [0, 1] where p is of the form du=gdm, g € L*(I),
Y’ is absolutely continuous, and Y; satisfies Y"+(g—1)Y=0 almost
everywhere.

REMARK 1. Albeverio et al, in [2], consider a seemingly more general
problem: they define the quadratic form A by

AdD = Jl (15'(x)2P(x)dm+J~1 &(x)*du

0 0

where P is a measurable non-negative function on [0, 1], with 1/P integrable. It
is not hard to verify that the change of variable

* ds
“X)‘LF@

will reduce this to the case P=1.

REMARK 2. For M <t;<00 the remark following Proposition 3 implies a
sharper estimate for the Y;:

1Yl < V2@+2M)(1-Me;H™" .
Also, asymptotic estimates of the form

tj_j2n2 < C,j—l



278 BENT BIRKELAND

can be proved by adapting the method of [4, § 11.4] to the identity (4.5), and
then proceeding as in Section 5.

3. The discrete boundary value problem.
A Sturm-Liouville theory for the difference equation

(3.1 N2A*y(k)+ (A—qk))y(k) = 0, k=1,2,...,N—1
with boundary conditions
(32) y(©0) = y(N) =0

can be developed by essentially the same methods as for the corresponding
differential equation. The main difference is that since in the discrete case one
works in a finite-dimensional space, the proof of the completeness of the family
of eigenfunctions is much easier.

All this must have been known for nearly a century, but we have found no
convenient reference for the discrete version of the theory, so in this section we
give a brief summary of it, as far as necessary for our present purposes.

We use the following notations: N is a fixed positive integer =5. The
“potential” g={q(1),...,q(N —1)} is given, it is supposed to be non-negative:

(3.3) qk) 20, 1=k<N,

and it will sometimes be convenient to define q(k)=0 for k=0, and for k=N. 4
is a real parameter. The difference operators 4 and 42 are defined by

Ay(k) = y(k+1)—y(k)
and, to preserve some symmetry in the formulae,
A*y(k) = A(dy(k—1)) = y(k+1)=2y(k)+y(k—1).

The factor N? in (3.1) could of course have been absorbed into g and A, but in
Section 5 it will be slightly more convenient to have it the way we have written
it.

We will use the following norms for vectors v={v(1),...,v(N)}:

N N E
ol = X @), ol = (Z |v(k)|2) » vl = max fu(k)|
k=1 k=1 1SksN

and recall the inequalities

ol = llolly £ N¥vll; S Nivlly, -

The equations (3.1), (3.2) can of course be considered as a system of N—1
linear equations for the N—1 real unknowns y(l1),...,y(N—1). The
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corresponding matrix is of the form 4 — AI where I is the identity matrix, and
where the entries A;; of A are:

A;j=0 if li—jl>1
(3.4 A, = N? if li—jl=
A; = —2N%*—q(), 1<i<N.

Since the matrix A is symmetric, it follows from elementary linear algebra that
(3.1), (3.2) has N —1 pairwise orthogonal real eigenvectors y,,. . .,yy—_,, which
form a basis for R¥ ! and that the corresponding eigenvalues 4,,...,Ay_, are
real.

The eigenvalues are also simple. If y, and y, are solutions of (3.1) (for one
and the same value of 1), and if y,(0)=y,(0)=0, then y, and y, are
proportional

y2(k) =y, (Ky,(1)/y, (1), k21
as is seen from (3.1) by induction .in k.
For later reference, we sum up all this as
ProvrosiTioN 1. The problem (3. 1), (3.2) has N —1 real, simple eigenvalues,
which we denote by )
A <Ay < ... <An-y

The corresponding eigenvectors, y,,. . .,ynN-1, Which we normalize by

N-1
(3.5) Iy;l3 = Zl yi(l? = N
k=
are mutually orthogonal: If i=j, then
N-1
(3.6) <Yi’.Vj> = Z yl(k)Yj(k) =0

and they span RN~1: any vector ¢ = {(p(k)}k ! € R¥~1 has a unique expansion

N..
3.7) ok) = N zl cyk)  0<k<N.

i=1

The coefficients c; are given by
N-1
Cj = <(P,Yj> = Z (P(k)}’j(k)-
k=1

The special case of (3.1), (3.2) where q is constant, can be solved explicitly in
terms of elementary functions. We rewrite it as
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3.9 N24%z(k)+oz(k) = 0
(3.10 z(0) = z(N) =0

and state, for later reference, some facts which will be useful. The proofs are
straightforward and elementary, but not very illuminating, so we omit them.
When 0<o <4N?, all real solutions of (3.9) can be written in the form

(3.11) z(k) = csin ((k—2)a/N)
where ¢ and » are arbitrary constants, and where a=a/(0) is defined by
(3.12) cos (a/N) = 1—a/2N?, 0€a/N<n .
The function a(o) defined by (3.12) satisfies the identity
(3.13) N?sin? (a/N) = (1 —a/4N?)
and the inequalities

2 2 o? 2
(3.14) oc/6<a<l——1—2—ﬁ3><a<oz .
For 0 <o <3N?, we also have
(3.15) 6/4 < N%sin? (¢/N) < a.
For ¢=1, =0 in the solution (3.12), we have the inequalities
(3.16) N/3 = ki sin? (ka/N) < N
and

N

(3.17) 6/3<N k§1 (4sin (ka/N))* < o .

REeMARK. For large N, (3.16) and (3.17) can be sharpened: For any constant ¢
> 1 there exists an N_ such that when N > N, the upper bounds N and ¢ can
be replaced by c¢N/2 and ca/2, respectively. Also, for large N, the lower bounds
can be replaced by N/2 and 6/2, respectively, when 0 <o < N2,

The eigenfunctions z;, 1<j<N, for the problem (3.9), (3.10) are, (up to a
normalization factor):
(3.18) z;(k) = sin (kjn/N) O0=k=N,
and the corresponding eigenvalues are

(3.19) o, = 2N*(1—cos (jn/N), 15j<N.
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The o; satisfy the following inequalities:

(3.20) /6 < jr*(1—j*n*/12N?) < ¢; < j*n?

and, (if N=4):

(3.21) 6, >9.

We also have explicit values for the norms of the z;, and of their differences:

N

(3.22) Iz} = 3 sin® (kjn/N) = N/2
- "

and

(3.23) I4z;13 = o;N/2.

Sturm’s classical oscillation and separation theorems are also just as easy (or
just as hard) to prove for difference equations as they are for differential
equations. There is one point which should be mentioned; the notion of a zero-
point for a sequence y={y(k)} must be made precise. We do that by linear
interpolation: If, for some integer k, y(k)y(k+1) <0 and Ay(k)=+0, then the real
number

¢ = k—=y(kydy(k)

is called a zero-point or a node for y.

Note that under these circumstances 0 < — y(k)/4y(k)< 1, and that if y solves
(3.1), then y(k)y(k+1)<0 implies Ay(k)+0 (unless y=0).

We will need the following facts:

PROPOSITION 2. Let A; and y;= {yj(k)}{," be the j-th eigenvalue and eigenvector
for (3.1), (3.2). Then:
a) y; has exactly j+1 nodes in the closed interval [0, N].
b) Between two nodes for y; there is a node for y;, .
¢) If &, and &,>¢&, are two consecutive nodes for y;, then

(3.25) Nm(62)™* < &, —¢ £ Nn(d;—llqlle)7*

(the right-hand inequality only if A;> ||q| )
d) the eigenvalues 4; satisfy the following inequalities, where o; is defined by
(3.19), and m=||q|,/N:

(3.26) P26 < 6, S A S 0,4 1gle < P4 1glo -

N-1
(3.27) Y at<t
j=1
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and, for 1<j<N:
(3.28) A £ (jr+m)? .

PRrOOF. a) and b) are just Satz 1 and Satz 4 in Chapter II, § 1 of Gantmacher
and Krein’s book [3].

To prove c) note that the proof of Satz 2, in the same section of [3] can be
modified so as to prove the following:

If y is a solution of (3.1), and if j is a solution of the same equation with 4
changed to 1> 4 or q changed to §< g, then between two nodes for y there is at
least one node for j. Then c) follows by comparing solutions of (3.1) with
solutions of the constant coefficient equation (3.9), first with 6=4 and then
with 6=4—||q| -

To prove d) we use § 9 of Ch. II in [3]. There it is proved (equ. (132)) that
each 4; is a differentiable function of the g(k), with

(3.29) = y;(k*/ly;ll3 -

i A
0q (k)
In particular, 4; is non-decreasing as a function of g, and hence (3.26) follows
by comparing with the constant-coefficient case, where the eigenvalues are
given by (3.19), and satisfy (3.20).

Now (3.27) follows directly from the left-hand part of (3.26).

Finally, to prove (3.28), let 4; , and y; , be the jth eigenvalue and eigenvector
for the problem.

N24%y(k)+ (A —eq(k)y(k) = 0
y(©) = y(N) =0

where 0<¢< 1. For ¢=0, this is just (3.9), (3.10); the solution of which is given
in detail above. For ¢=1, we have (3.1), (3.2). From (3.29) we deduce

' dﬂ.j’, - y k k)2 2
—d z q( )y],e( )/".VI..-,HZ .
€ k=0

In the next section we will prove that

;q(k)yj,c(k)z é lf,z"’")’j,:"%

(see Lemma 4). Then (3.28) follows by integration with respect to ¢ between 0
and 1.
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4. Bounds for the eigenfunctions.
In this section we will prove the crucial inequalities for the eigenvectors.

PROPOSITION 3. Let 1, <2,<...<Ay_, be the eigenvalues for the problem
(3.1), (3.2), and let y,,y,,. . .,yn_, be the corresponding normalized eigenvectors.
Define m=||q||,/N, and b=2(1+12m).

Then, if A;<3N?, in particular if jSN/2, |qllo<N

(4.1) Iyl < b
4.2) l4y;ll, < (A/N)*
4.3) N4yl < 243b.

If3N*< Aj, an inequality of the form (4.1) still holds, with m and b replaced by
44) m = |qle—m, b =2(1+12m).

REMARK. When N is large, and m? <1 <N, a sharper version of (4.1) is true.
For any constant ¢> 1 there exists a N, such that when N> N, (cm)><i;<N:

Iylee £ V21 +2cm)(1 —cmi; 41,

See Remark 1 after Lemma 2 below.

For the proof of Proposition 3 we will use the following discrete version of a
well-known identity from the theory of ordinary differential equations (see for
instance Ince, [4, Ch. X]).

LemMMA 1. Let y and z be solutions of the difference equations

N2 A%y (k)+ (A—q(K)y(k) = 0, k=20

and
N2?4%z(k)+ Az(k) = 0, k=0
respectively, and suppose that
y(0) =z(0) =0.

Then

k-1
4.5) y(k)z(1) = y()z(k)+N~* 3 qliy@z(k—i) .

i=1

Proor. Direct verification.
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The difficult part of the proof of (4.1) is to obtain a sufficiently strong
estimate for the sum in the right-hand side of (4.5). We leave that part aside for
a moment, and present the remaining part of the proof of (4.1), along the lines
of MacDonald [5].

LEMMA 2. Let y, z, q, and A be as in the previous lemma, and suppose that 0 < A
<3N?2 Let P be some real number such that

k
(4.6) .Zl q@yz(k—i)| £ Pllyll,llzllN* .
Then

4.7) IVl £ 2(04+3PA})|y|,N 7.

Proor. Since (4.5) is homogeneous in z, we may take z(k)=sin (ak/N), with «
=0(A) defined by (3.12). Then (3.15) implies

(4.8) Nz(1) = 4%,
We rearrange the terms in (4.5) and then introduce (4.6) and (4.8):

ly()/z(Ul (k) < ly(k)I+INz(L)] "' Pllyll,N~*

< ()| +247*P|y|l,N % .
The triangle inequality iﬁ I2(RM) then implies (since ||1]2=N) that
ly(@)/z(Dllzll, = (1+2272P)llyl, -
From (3.16) we find that ||z||2= N/3> N/4, and thus
(4.9) y()/z()] < 2(1+2PA7H)|ly|,N~*.
Finally, use (4.5) once more:
' ()l = ly()/z(D+INz()]"*Pllyl,N~*
S 2143PA7 Yy, N?

and the lemma is proved.

REMARK 1. If N is large, (3.16) can be sharpened to ||z||2=N/2, and if A< N,
(3.13) implies

INz(1)"! £ A7¥(1-1/4N)" %,
The proof of Lemma 2 then shows that, with c=(1—1/4N)~*
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y@)/z() = 22(L+cPA™H)|yl,N~*.
Using (4.5) in a slightly different way, we then find
k) = 221 +cPA™ )+ A Hlyl o ligll /N
or, if 1> (cm)?*:
Wle S 22A+cPA™H (1 —cmi™ )7 |y ,N~*
where ¢< (1+ 1/4N).

REMARK 2. A natural way to obtain an inequality of the form (4.6), would be
to use the Cauchy—Schwarz inequality:

k
Y, a@y@ztk—i)| = lgll2liyl2lzle -
i=1

Thus, we might use P=||q|,N ~* or, somewhat weaker: P=|q| . This latter
value is the one which MacDonald uses in [6]. Unfortunately this value,
although perfectly good for the case treated in [6], is too weak for our
purposes.

The following trick has been adapted from S. Agmon’s book [1, § 7].

LemMA 3. Let y={y(0),...,y(N)}, z, and q be vectors in RN*!, and suppose
that either
(4.10) y0) = z(N) =0, or y@0)=yN)=0.

Then, for every real ¢>0:

N
(4.11) Y aGy@?| £ lglyElaylz+e iyl
i=1
and
N
4.12) Y q@y@)z0)| £ lqlliEldyl+e7 iyl el Azl +e7zll,)
i=1

Proor. Define, for 0Sk<N:
k
k) = Y. q()
i=0
and note that 4Q(k—1)=q(k) when 1Sk<N.

If v={v(0),...,0(N)} € R¥*!, with v(0)=v(N)=0, the “summation by parts”
formula gives
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N-1 N-1
2 a0w() = i; 40(i- @) = ¥ 200 = 12l 4vll; .

Now, in view of (4.10), v(i) =y (i)z (i) will satisfy the boundary condition, and we
find, using the Cauchy—Schwarz inequality:

N-1
146@zM), ;1 14y ()z(i) + y () 4z ()|

< laylizlzllz + lylzll 4zl .

Finally, note that |Q| ., <lqll,, and use the following two simple inequalities
between non-negative reals a, b, ¢, d, and a positive &:

2ab < ea®+¢71b?
ab+cd £ (ea+e 'c)(ed+¢7 D).

The lemma follows.

LEMMA 4. Let y be an eigenvector for (3.1), (3.2), and A the corresponding
eigenvalue. Then

(4.13) Nlayll, £ A¥yll,
and
N
(4.14) Y qkyk)? £ Am|y|3
0
with m=||q||,/N.

Proor. Multiply in (3.1) by y(k), take the sum over k, 0<k<N, and use
summation by parts:

N-1 N-1 N-1
N? k‘_;o (dy®)* = 4 21: y(k)?2 — ‘l,_: q(k)y (k) .

Since ¢ =0, this proves (4.13). To prove (4.14) use (4.11):

Y aky k) < llgly €Ayl +e~ v S lgll €A/N2+eYlyl3
and take e=NA~%

LEMMA 5. Let y be an eigenvector for (3.1), (3.2), and let z(k)=sin (ko(1)/N)
with a=0a(A) defined by (3.12). Then

(4.15) 12 a@y@z(k—i)l < 44*m|y|,N*.
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(That is: We may use P=4mA* in Lemma 2)

Proor. Use (4.12) with z(i) replaced by z(k—i), N by k, 1 <k < N. Then for
e>0:

S = [} q@y@z(k—i)
< llalls el dylla +e~ Iyl el Azl +e7 izll) -
Recall from (3.16), (3.17) and Lemma 4 that
Izl < NY, 14zl £ (WUNE, 1ldyll, S 2yllo/N .
This gives
S < llglli eAY/N +e7 Iyl 2 (e(/N)* +&7INY) .
For ¢=N*1"% the lemma follows.

REeMARK. For large N, the factor 4 in (4.15) can be replaced by 2, since (3.12)
and (3.13) can be improved then.

END OF PROOF OF ProPOsITION 3. We keep the condition 0 <A< 3N? from
Lemma 3 for some time yet. It follows from (3.26) that /1i§3N2 whenever j
<N/2, and ||qll, S N?/2.

The inequality (4.2) was proved in Lemma 4, and (4.1) follows by combining
Lemma 2 and Lemma 5.

To prove (4.3), start by taking differences in (4.5):

k-1
4.16)  dy(k) = (y(1)/z(V)4z(k)+ (Nz(D))'N~' 3 q@)y(@)Az(k—i) .
i=1

Recall the following inequalities for the various terms in (4.16):
y(1)/z(D] < 2(1+8llql /NIyl N~*,
follows from (4.9) and (4.15). Familiar trigonometric identities and (3.13) imply
|4z(k)| = |4sin (ka/N)| = 2|sin (a/2N)|[cos ((2k + 1)a/2N)|
< 2lsin (a/2N)] = (2(1—cos (¢/N))} = AIN"1,
From (3.15), or (4.8), we have
INz(1)] > 4%/2.
For

k
T=|Y qly@az(k-1)

i=1
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we use (4.12): For any ¢>0 we have:
T < lighy Eldylo+e7 iyl el 4%zl +e7 Azl ) -
An inequality for ||4%z||, is obtained from (3.9) and (3.17):
N?||4%||, = A|zll, S AN .

For the other terms in the expression for T use (3.16), (3.17), and Lemma 4:
This gives

T < ligh Iyl (eA/N +&™ ") (eAN "3+~ (A/N)?)
and, with e=N*17%:
T < 4lqll Iyl AN
When all this is substituted into (4.16), the result is, when |y|, = N?%,
ldy(k) < 2(1+12|q]l;/N)A*N !

and (4.3) is proved.
To treat the case A;>3N?, we associate with y={y(k)} a new vector y~,
defined by

y () = (=Dy(k) .
Then a simple computation shows that y solves (3.1) if and only if y~ solves
N24%y~ (k) + (AN?2—A+q(k)y~(k) = 0
which can be written in the form
(4.18) N2 2%y~ (k) + (A~ =g~ (k)y~ (k) = 0
with
AT = 4N’ —i~llqles 8 (W) = llqll—aq(k).
., Then (4.18) is of the same form as (3.1), with 0=¢~ (k)= 9|, and

lg™Ili/N = llgllw—llqlly/N .

It follows that (4.1) holds with the modified value (4.4) for b and since |y~ ||,
=|lyllo» the proof of Proposition 3 is complete.

5. The non-standard argument. Proof of Theorem 1.

Information about non-standard analysis can be found for instance in
Keisler’s book [5].
We let *R be a non-standard extension of the reals, choose a hyperfinite
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positive integer N, and use the following “obvious” correspondence between
functions on [0, 1] and vectors in *RN*1: To a real function @ on [0,1] we
associate the vector ¢ defined by

(5.1) ¢(k) = *®(k/N), 0=<ksN

where *@ is the *-extension of @.
Then the following is true (see [5]):
If @ is continuous, then

(5.2) o(k) ~ @() whenever (k—1)/N~0

(the symbol ~ denotes “infinitesimally near™).
Conversely, if ¢ € *RN*! satisfies (5.2) and if |¢ (k)| < 0o for every k, then the
standard real function

(5.3) &(x) = st(p(k)) when x = st (k/N)

is well-defined and continuous on [0,1] (st(*) denotes “standard part”).
If @ is continuous (or at least piecewise continuous on [0, 1], then

1 N
(5.4) J ddm = st<N"1 Y (p(k))

0 k=0

(Recall that dm denotes Lebesgue measure).
It follows from (5.3) that @ is continuously differentiable on [0, 1] if both ¢
and NA¢ satisfy (5.2), and in that case

(5.5) ®'(x) = st (Ndep(k)) when x = st (k/N).

For reference, we also note the corresponding expression for second
derivatives:

(5.6) " (x) = st(N24%p(k)), x = st(k/N)

provided that N242¢ also satisfies (5.2).

The representation (5.4) of integrals by Riemann sums may of course be
generalized to Stieltjes integrals: If p is some finite (Borel) measure on [0, 1]
and *pu its non-standard extension (defined via the extension of the cumulative
distribution of ) then

1 N k k+1
5.7 ddu = *o(k/N*ul —, —— ).
(5.7 L pu = st (Eo (k/N) u[N N >)

But the numbers *u[k/N, (k+1)/N) may be too large for our purposes, so we
need a modified version of (5.7).

LEMMA 6. Let u be a finite Borel measure on [0,1]. Let *R be a non-standard

Math. Scand. 47 — 19
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extension of R, and let P <N be a hyperfinite positive integer such that P/N ~0.
Then there exists a vector q € *RN*! such that for every continuous function
@ on [0,1],

(5.8) Il Pdy = st(N~! Z *@(k/N)q (k)
0

and that

(5:9) 0=sgqk=sP.

Proor. Let M be a finite integer such that u[0,1]< M.

Let Q(x)=u[0,x] be the cumulative distribution function of u, (with Q(x)
=u[0,1] if x>1) and let r(k)=*Q(k/N), k=0,1,....

Let P, be the hyperfinite integer such that NP, P<N + P, and define

q(k) = ((r(k+MP,)—r(k))N/MP,) .

Then clearly 0<q(k) < P, and the verification of (5.8) is straight-forward.
The reader may verify that (5.8) also holds for integrals over intervals [0, x),
0<x<1 except when u({x})#0 and &(x)=*0.

Now we return to the boundary value problem (2.1), (2.2) of Section 2.

We choose a vector g € R¥N*! to represent the measure u from Section 2, as
described in Lemma 6, with P* <N, and consider the discrete boundary value
problem (3.1), (3.2) on the interval {0,1,...,N} in Z. (g and y now take their
values in *R).

The “transfer principle” or “elementary extension principle” of non-standard
analysis (see [5]) then tells us that all the results we found in Section 3 and 4
about the eigenvalues and eigenfunctions of (3.1), (3.2) remain valid in our
present, nonstandard setting. We will prove Theorem 1 by translating them
back to the standard setting of Section 2.

First, from (3.28) it follows, since m= ||q||;/N <00, that 4; is finite if and only
if j is finite, and since in that case st (¢;)=n%? by (3.19), we obtain

That is, the numbers 7;=st (4;) satisfy a) of Theorem 1.
Next, use Proposition 3: From (4.3) it follows that

y;(m)—y; (D = ,‘E::’ dy;(k)| = (m—DA$B/N .

This implies that when j is finite, (5.2) is valid for y;, and hence that the
functions
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(5.10) Y;(x) = st(y;j(k)) when x = st (k/N)

are well defined and continuous on [0,1] (in fact Lipschitz-continuous). The
bound (4.1) then implies

1Y;(x)] £ 2(1+12M)

for all x, all finite j, and a) is proved.
In view of (5.4), the orthogonality relations (3.5), (3.6) now imply that the

functions {Y;}52, are orthonormal over [0,1] (with respect to Lebesgue
measure) as stated in b) of Theorem 1.

To prove completeness, we consider a two times continuously differentiable
function @ on [0, 1], with ¢(0)=®(1)=0, and we define the corresponding
@ € *RN*1 by (5.1).

Then, from Proposition 1 we have

N-1

o) = N~! Z cy;(k)

i=1

with

N
c; =L@,y = .;o o(k)y;(k) .

For finite j, we have

(5.11) d; = st(c/N) = st(N"' Y oK)y, (k) = r DY dm .
: 0

It follows that for any positive integer M <oo

M
st (N‘l g:l cjyj(k)> = ‘;1 d;Y,(st (k/N))

with d; defined by (5.11).
To prove completeness for {Y;}52,, it will therefore be sufficient to show that
for every real positive standard ¢ there is an integer M =M, <oco such that

N-1
(5.12) Nt ,ZM ley, () <& OSKSN.

To do that, we need a good inequality for c¢;, From (3.8) and (3.1) we find
(5.13) ¢; = L@y = (@, A7 vg—N*4%)>

N N
= ! [ Y o(k)y(kyg(k)— N? kzo (p(k)A’y,(k):I .
k=0 =
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The assumption that ¢ and @” are continuous on [0, 1], implies that for some
(finite) real p,
lp(k)l < p and N*4%p(k) < p, O<ksN.

For the two terms in the square bracket in (5.13) this implies

N
kZO e K)y;(k)gk)| = pllallIy;lle

and, using summation by parts two times:
12 @k A%y;(k)l = 1Y yi(A 2@ (k) < plly;llo/N -
From (5.13)
lejl < 47 'plyill(liglly +N)

and hence

N-1 N-1
NTU Y Il S p(L+aly/N) T Ilaa

Now, from Proposition 3:

N-1 2 N/2 2 N-1 12

1yl % 6b 6b
5.14) Pilw <« 3 24 Y S5
( Y SRt P

6b2 Nj2 s 6b'2.N 2\2
N

<7 LIy
Recall from Proposition 3 that b is finite, and that b <24(|lq|l,+1). Since
Lemma 6 implies that we may suppose |q|l,, <N/, the last term in (5.14) is
infinitesimal, and hence (5.12) will be true when M < oo is large enough. This
proves ¢) in Theorem 1, and the completeness statement in b) as well.

To prove d), let @ be a continuously differentiable function on [0, 1], with
'@(0)=d(1)=0, and define ¢ € *RN*! by (6.1) as before.

Expand ¢ in terms of {y;}, take second differences, and use (3.1):

N-1
N Y 4%,k

ji=1

N*4%¢ (k)

I

N
Zcm@@@—@.

j=1

I

Next multiply by ¢(k), take the sum over k: 0<k< N, and use summation by
parts in the lefthand side. This gives:
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N-1
-N? Y Ag(k?
k=0

N-1 N-1
Yoo L yRe®al-X de; 3 (e,
= = j

; pkqk)— Y Acj .
J
Finally, divide by N and take standard parts:

J‘(¢’(x))2dx+J‘d)2du =Y t;d}

and d) is proved.
To prove e), take the sum in (3.1) over all k, 0<k<m; and obtain

Ay;(m) = 4y;(0)+N~2 ¥ (q(k)—A)y;(k) .
k=1
Then take the sum over m, 0<m <n and interchange the order of summation:

n n

yi(n) = ndy;(0+N~2 3 (n—ky;(k)g(k)—AN"2 3 (n—K)y;(k) .

k=1 k=1

Let j be finite, and take standard parts:

Yi(x) = xx+J‘ (x—=0)Y;()du(t)—7; J‘x (x—=1)Y;(t)ydm(t)
[0, x> 0

with x=st (n/N), t=st (k/N), t;=st (1) and x=st (NAy(0)). (The integrand
vanishes for t=x, so (5.8) is applicable.) This proves €) in Theorem 1.

To prove the oscillation and separation theorem, i.e. item f) of Theorem 1,
we recall from Proposition 2 that y; has exactly k+1 zero-points

O=€j.0<éj,1< <fj,j=N.

Each of these of course gives a zero

X = st(§;«/N)

for Y, and from Lemma 6 it follows that they are distinct:
Xj—Xj k-1 2 WSt(64)"F > 0.
In addition, it follows from Lemma 7 that
Xj+1,k < Xj, k < Xj41,k+1 *

It remains to show that Y; cannot have any additional zeroes, and that Y; and
Y;,, cannot have a common zero in <0, 1). Both these facts are best proved by
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standard methods, starting from (2.4), and since the proofs follow [2] quite
closely, it seems unnecessary to reproduce them here.
Finally, the integral equation (2.4) implies, when x; <x,:

Y;(x,)— Y;(xy)
X2 — Xy

X

- Y’,(O)+j Yj(t)dy—rj-[l Y,(t) dm

[0,x,) 0

—t 2 x,—t
+ 270 ydu—1, | 2 v )dm
L X2 — Xy

X4,X5) X2 =Xy £ -

from which the first statements in g) of Theorem 1 follow readily. The
inequality for || Y}|,, follows from the Lipschitz-continuity of Y, that is from
(4.3). The last statement of g) follows from (2.4) by derivation.
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