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A NEW PROOF OF LOWNER’S THEOREM ON
MONOTONE MATRIX FUNCTIONS

GUNNAR SPARR

By a definition due to Lowner [4], a function h on (0,00) is a monotone
(non-decreasing) matrix function of order n if, for positive n x n matrices 4 and
B,

1) B £ A implies h(B) £ h(A) .
(Here B< A means that A— B is positive semidefinite and h(A) is defined by
h(4) = Qdiag (h(,)....h(@)Q ™" if A = Qdiag (o ..,%)Q"").

Below the scalars are supposed to be real. In the complex case some notational
changes are needed.

Let P, denote the class of monotone matrix functions of order n. Then,
apparently, P, consists of all non-decreasing functions on (0, c0) and P,> P,
oP;y....

The functions that are monotonic of every order are characterized by

LOWNER'S THEOREM. h € ¥ P, if and only if
) h(J) = Tu-l, (O+ai+b, 1>0
- R t+& u ’ ’
where du is a positive finite measure on [0,00), a=0, b € R.

(It is well known (cf. Donoghue [3, ch. II]) that, permitting 4 to be complex,
the functions (2) are exactly those Pick-functions in the upper halfplane that
can be continued analytically across the positive real axis to the lower
halfplane. This fact will however not be used in the sequel).

In his book [3] Donoghue presents the three different proofs of this theorem,
existing in literature: Lowner 1934, Bendat-Sherman 1955, Koranyi—Nagy
1956. They are all based on a precise description (of interest in itself) of the
classes P, by means of certain difference quotients.
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In our approach we make use of another function class: h € M, if and only if,
for a;e R, 4;>0, j=1,...,2n,

t)v—l 2n 2n
f— 20 for t>0,) a; =0 implies ) a;h(4) = 0.
1 1

2
3 ;
3 lea’t+,1j

M, is closely related to P,. In fact:
LEmMa 1. P, M, <P, n=1,2,....

Knowing this, in proving Lowner’s theorem one may consider (| M, instead
of N P,. Thereby, in the validity of (3) for all n one recognizes a condition for
the solvability of a moment problem, where the function value h(4) plays the
role of the moment with respect to the function ¢t — (tA—1)/(t+ 1), t >0. More
precisely we use a variant of M. Riesz’ method for the extension of positive
linear functionals (cf. [1, sect. 2.6]):

LEMMA 2. Let G < F be two linear spaces, n a seminormon F, K a conein F, | a
linear functional on G. If
) I(g) = n(g+k), geG, kekK
then there exists a linear extension L of | to F such that

) L(k) 20 for keK, L(f)<n(f)for feF.

Proor. By (4) holds
I(g) < infn(g+k), geG,
keK

where the last expression is a seminorm. But then the Hahn-Banach theorem
ensures the existence of an extension L such that

L(f) £ infn(f+k), feF.
keK
In particular L(f)<n(f) and, taking f= —k, L(—k)<0, that is, L(k)=0.

Proor oF LOWNER'Ss THEOREM. One readily verifies that every function (2)
obeys (3) (integrate with respect to du). Conversely, let h satisfy (3) for every n.
Referring to Lemma 2, let

G = {g(t) = Z aj'//,ql(t), th, with z aj=0}

finite

th—1
h =",
where ¥, (1) T
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F = C[0,00] (continuous functions on [0, 00], in particular
does f(c0)=lim f(t) exist),
t— 00

n(f) = sup|f(@)l,
t20
K = the non-negative functions in F,

I: G- R:Y aph; =Y a;h(d) .

The important observation is now that there exist functions g, in G such that
go()=1, t=0. For instance, this is the case with

g = c(Yr—¥,)

for A’ (large), A" (small) and c¢>O0 suitably chosen. Apart from the trivial case
when h is constant, we may arrange that I(g,)>0. Multiplying h by a
convenient factor we may even assume that /(g,)=1. Now by means of (3), the
positivity of [ on G, (4) is readily verified:

If gmax <0, then

I(gd < 0 5 n(g+k), kek;
if gmax=0, then g<g.a480 SO that

1(8) = gmax!(80) = 8max = (g+k)max = n(g+k)’ keK.

Then Lemma 2 yields the existence of an extension L. As a bounded positive
functional on C[0, c0] it can be written

L(f) = L S (©du(t)+af () ,

where du is a bounded positive measure on [0, 00), a=0. Applying /=L to g
=y,—y; € G we get

h()—h(1) = I(g) = L(g) = L¥)—LW¥,).
Hence, since ,(00)=4 and by putting b=h(1)— L(y,),

h(d) = j V() du(t)+al+b.
0
This proves the theorem.

(From the theory of Pick functions (cf. [3, ch II] one knows that the
representation (2) is unique. The moment problem we considered in the proof
thus is determinate).

Before proving Lemma 1 we reformulate the definitions of M, and P,
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For M, we note that in (3)

LY I 1\ 4 1 A
;a"t+&j_;a"<<t+?>t+if? < );a’wz

since 3 a;=0. Hence h € M,, if and only if, for q; € R, 4;>0,j=1,...,2n,

2n 2n

3) Z a; 20 for t >0, ) a; =0 implies ) a;h(d) = 0
1 1

T ’t+/1

Concerning P, let in (1) A and B have the (positive) eigenvalues «,,. . .,a, and
Bis- - ., B, respectively. Denote diagonalmatrices by

D, = diag (ay,...,a,), D, = diag(h(a,),...,h(x,)).

We may suppose the bases so chosen that A=D, Then B=Q'D,Q with Q
orthogonal. Hence

B £ A < x'Bx £ x'Ax, x € R" < (Qx)'Dy(Qx) £ x'D,x, x € R"

¢>Z(Qx Zxa,,xeR"

In the same way

h(B) £ h(A) <« Z (@x)?h(B) £ Z x?h(x;), x € R".
It is convenient here to use the notation of weighted [,-norms |x|,
= (X x?a;)'/2, writing ||x||; = (X x})"2. For matrices we use the norm

1Qlla,p = sup |Qxlls/lIxll, -
x%0

What we have shown is that h € P, if and only if

(1) Q orthogonal of type nxn, |Qll, ;<1 implies
Y (@x)?h(B) £ Y x?h(a), x € R".
1 1

REMARK. Since h is not supposed to be positive, we have avoided to write
I lnay I gy Claiming positivity one gets close to the concept of interpolation
functions, introduced by Foias and Lions:

11,1 = 1, 1Qlle,p = 1 implies [|Qllsa,np = 1.

In a natural way, using weighted /,-norms, the interpolation functions of type p
are defined. Foias-Lions gave for p2>1 sufficient conditions and for p=2, by
means of Léwner’s theorem, a complete characterization of the interpolation-
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functions. In the remaining cases, except for p=<1, p=oo, such a
characterization is not known. (Cf. [2, sect. 5.4] and the references given there).

ProoF oF LEMMA 1. Starting with the inclusion M, < P,, we use the fact that
the expression 4/(t+ 4) in (3’) appears in the solution of an extremal problem:

. A
(6) =ln£ (x(2)+t"lle) = x2 m, x e R
(Schwarz’ inequality). For x € R" define

K;(t,x) = inf |xol3+¢7Ix, 03 ¢>0

x=x9+x;

(Peetre’s K-functional, known from interpolation theory). Then by (6)

) K, (t,x) = int Y 3+t Maxd) = Y, inf+ (2, +t71Ax3)
xX=xo+x; 1 1 Xi=XoiT Xy
n A
t—3 2 !
; i t+ 4

Now let h € M, and, in verifying (1'), let Q be a matrix obeying ||Qx|, = x|,
Qxlls=lxll,, x € R™ Then for every partition x =x,+ x,

1@xolly +2711Qxsllp < lIxolly +27 Ixyll, >0

Taking infimum we obtain
Kg(t,0x) < K,(t,x), t>0.
Hence, by (7),

B - %
Z(Q)zHﬁ ; P t>0.

Since the sums of the coefficients are equal, 3" (@x)?=Y x?, (3') applies and
yields

; (Qx)Zh(B) = zi: x?h(x), xeR".
By this (1) is verified, that is, h € P,.

In verifying P,,, <=M, we consider the converse problem: Interpreting
Y ah/(t+4)20, t>0 as K;(t,y) S K, (t,x), t>0 (for suitable a, B, x, y), does
this last inequality guarantee the existence of a matrix Q with y=Qx such that
(1) applies (for some n). If so, the problem would be solved. In a particular case
such a Q exists, and this turns out to be enough to settle also the general case.
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Put
2n

w0 =[] «+2)

with distinct 4,,...,4,,>0, arbitrarily chosen, fixed from now on. Let Pol (n)
denote the linear space of polynomials of degree at most n. By

@) _ &
"0 = 3T

is defined a linear bijection
(8) Pol 2n—1) » R?*": p > a = a(p)

where thus a;=a;(p)=p(—4)/n'(—4)A;. The relation Y a;=0 corresponds
to p(0)=0. It follows that (3') is equivalent to
(3" pe Pol(2n—1), p(t) 2 0 for t > 0, p(0) = 0 implies

2n

S a(ph(2) 2 0

1

The polynomials in question here can be written (cf. [1, p. 77])

p(t) = tqi()+43(t), 44,9, € Pol(n—1), q,(0) = 0.

Hence, because of the linearity of (8), in verifying (3”) it suffices to consider the
two cases (i) p(t)=tq?(t), g € Pol (n—1) and (ii) p(t) =4¢*(t), q € Pol (n—1), q(0)
=0. Thereby it will be convenient to rewrite 4,,...,4,, as f;<a; <...<p,
<a,. One observes that then

(=) >0 n(-o) <0 i=1...,n.

(i) Let p(t)=tq*(t), q € Pol (n—1). Then

tq* (1) ; o
) n() —Z 2t+ﬁ. Zx t+a;
with
a0y  oy= 9B A

(@' (=B’
Verifying (3") we thus have to show that

(= (o))"

(11) 3 y2h(B)+Y, x?h(x) = 0
1 1

To do this, we note that by (10) are defined two linear bijections
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R" - Pol (n—1): x> ¢q
Pol(n—1) > R": g+ y.
Their composite thus is a linear bijection
Q:R" > R" x> y.
Taking t=0 in (9) we obtain
=Y y}+Y x} =0, thatis, Q is orthogonal .
1 1

Multiplying (9) by ¢t and letting t — 0o we obtain

—Zy B; +2x @, 20, thatis, [Q],, <1
Hence, if h obeys (1),
¥ (@uh(p) < 3. xPhe
By this (11) is verified. (Observe that in this part we actually only used that

h € P,. This fact will be of importance in parts (ii) and (iii)).
(i) Let p(t)=q>(t), q € Pol (n—1), q(0)=0. Then

O Bi <
(12) n) ;y‘;ﬁﬁ, ;x2t+a
with
a(=B) (=)

X = ———————>,  i=1,...,n.

Yi = W’ i (_“in'(““i))l/z’

Verifying (3”) we have to show that
(13) > yEh(B) =3 xth(w) = O
1 1

Arguing as in (i) one would need an orthogonal Q with [|Q|; ,<1. This is
however impossible, since p;<a; i=1,...,n. Instead we note that ¢*(¢)/=(t) is
the limit function as 6 — 0, w — 0o of

g0 o

—, O<Bi<...<,<W0.
t+0 n(t) t+ow A

To the latter function the (n+ 1)-dimensional version of (i) applies. Expanding
into partial fractions we get
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Xo———=— X ¢
t+6 () t+o Yt+6 &t ¢ i+

t () 6 S "B W
14 — 2 2 2 i 2
( ) +Zyl +y"+lt+(1),

with coefficients given by formulas analogous to (10). If h € P,,,, then by (i)
(15 —X3h(9) =3, Xih(@)+ Y (B + 774 h(w) 2 0.
1 1

Comparing now the rational functions in (12) and (14) it follows that, for i
=1,...,n,

Xi—=> X, yi—y asd6—0, 00— 00.
Moreover
2(—5
2T 9 567 50 since g(0)=0,
n(—0) w—9o
2(_
Vi = ® 9= _ O(1/w?, w — oo since degree g<n—1.

w—90 n(—w)
Hence, proving that

h
(16) lim 6%h() = lim “(T) =0 ifheP,,, n=12,. ..
-0 w—=o00 W
we obtain (13) as a limiting case of (15).
(iti) Verifying (16), since P,,, <P, n=1,2,. .., it suffices to consider h € P,.
By part (i), formula (11) applies with n=2, p(t)=t(t—c). It gives

(C"Bl)z (C'"ﬂz)2
—_— h — h 2
1) (By—B1)(oy = B1) (e — By) (1) (B2—B1)(By—ay) (@, — B2) (Ba)+
2
+ (c—a)* h(oy) + (c~a) h(ey) = 0.

(ay = B (B2 —oy) (o, — ) (= By) (o, — B (o, —y)

Choosing ¢c=f,=96/2, a, =9, f,=1/2, a,=1 we get
Sh(8) = 2(1-08)*h(1/2)+ 2—6)(1—268)h(1) .
It follows that

lim 62h(8) 2 0 .

-0

On the other hand, since h is non-decreasing,

lim 62h(8) < 0.

4—+0

Math. Scand. 47 — 18
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This settles the case 6 — 0 in (16). In the same way, choosing in (17) 8, =1, «,
=2, B,=w, a,=c=2w, the case w — 00 is treated.

REMARK. In lemma 1 the spaces P, and M, do not generally coincide. For
n=2 this is seen by the example

1-1/t for O0<t=1

t
h = i 2 =
(t) I 1/min (1,5%)ds {t—-l for 121

1
Being an indefinite integral of a function of the form 1/c2(s), where c is positive
and concave, by [3, p. 81, th. III] & belongs to P,. But looking at part (ii) of the
proof, taking n=2, p(t)=t?, B, small, a, large, a, and f, close to 1 one easily
construct an example where (3') is violated, that is h ¢ M,.

REMARK. A closer analysis shows that the matrix Q in part (i) of the proof is
the same as the one used by Lowner [4, § 1], cf. also Donoghue [3, ch. VI].

REFERENCES

1. N. 1. Akhiezer, The classical moment problem (english translation), Oliver and Boyd, Edinburgh
- London, 1965.

2. J. Bergh and J. Lofstrom, Interpolation spaces. An introduction, Grundlehren Math. Wissensch.
223, Springer-Verlag, Berlin - Heidelberg - New York, 1976

3. W. F. Donoghue, Jr. Monotone matrix functions and analytic continuation, Grundlehren Math.
Wissensch. 207, Springer-Verlag, Berlin - Heidelberg - New York 1974,

4. K. Lowner, Uber monotone Matrixfuncktionen, Math. Z. 38 (1934), 177-216.

MATEMATISKA INSTITUTIONEN
LUNDS TEKNISKA HOGSKOLA
FACK

22007 LUND, SWEDEN



