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EXTENSION OF LINEAR FORMS
WITH STRICT DOMINATION ON
LOCALLY COMPACT CONES

BERND ANGER and JORN LEMBCKE

Introduction.

In [1] and [2], we have studied extension theorems for continuous linear
forms dominated by hypolinear functionals (i.e. sublinear functionals which
may attain the value + 00), defined on convex cones. The result can be stated in
terms of lower semicontinuity of the largest hypolinear minorant of both the
linear and the hypolinear functional. Unfortunately, continuity of the linear
form and lower semicontinuity of the hypolinear domination functional do not
guarantee the existence of a dominated (continuous) linear extension, even in a
finite dimensional setting. However, an extension is possible, if the domination
is strict (outside the origin) and the subspace is assumed to be finite
dimensional [1,2.11]. In general, this last assumption cannot be dropped (cf.
1.6). The main argument used in the proof of [1,2.11] is the fact that a finite
dimensional locally convex Hausdorff space is the cone generated by a compact
pseudo-base (cf. 1.3), namely a unit sphere.

It turns out that convex cones with a compact pseudo-base are locally
compact. Hustad [9] has proved that continuous linear forms on closed
subspaces, strictly positive with respect to a locally compact convex cone,
admit a positive continuous linear extension (cf. 3.3). Here the domination
functional (0 on the negative cone) rather than the linear form has a locally
compact domain.

Our main theorem 2.1 allows a unified treatment of both results. It deals
with the existence of a continuous linear form, simultaneously strictly
dominated by a finite number of hypolinear functionals, the domains of all but
one being locally compact. As an immediate consequence, we get the following
generalization of Hustad’s theorem (cf. 2.6): A continuous linear form on a
closed subspace of a locally convex space E which is strictly dominated by a
lower semicontinuous hypolinear functional, defined on a locally compact
convex cone @, admits a dominated continuous linear extension to E, which is
strictly dominated outside Q N —Q if Q is closed.
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Finally, we apply our results to prove a generalized version of Boboc’s affine
sandwich theorem for extended convex functions [6] as well as separation
theorems for convex cones, including a result recently obtained by Bair and
Gwinner [3].

1. Preliminaries.

Let P be a convex cone in a real vector space E (i.e. R, P={ix : 120, x € P}
<P and P+PcP). A mapping p: P —» R=[—o00,00] is called a hypolinear
functional if p does not attain the value —oo and if p is positively
homogeneous and subadditive (cf. [1, 1.1]). A numerical function f: 4 — R
defined on a subset A4 of E is said to be p-dominated if f (x) < p(x) for x € ANP.
fis said to be strictly p-dominated on B AN P if f(x)<p(x) for x € B.

Unless otherwise stated, a locally convex (topological vector) space is not
assumed to be Hausdorff.

We will use the following results of [1]:

1.1. For a family (p;);c; of hypolinear functionals p; defined on convex subcones
P, of a locally convex space E, there exists a continuous linear form on E which is
dominated by each p; (i € ) iff the largest hypolinear functional on E dominated
by each p; exists and is lower semicontinuous at the origin ([1, § 1]).

Lower semicontinuity of hypolinear functionals is characterized by the
following approximation theorem ([1, 3.4]):

1.2. If PcE is a convex cone and A is a subset of P with 0 € A, then a
hypolinear functional p: P — R is lower semicontinuous at every point of A iff
the upper envelope of all p-dominated continuous linear forms on E coincides with
pon A.

A subset K of a topological space E will be called quasicompact if each open
cover of K has a finite subcover. K is locally quasicompact, if each point in K
has a quasicompact neighbourhood in K. K will be called (locally) compact, if it
is (locally) quasicompact and Hausdorff. If E is a topological vector space, each
point of a locally quasicompact subset K = E admits a fundamental system of
quasicompact neighbourhoods in K.

1.3. DeFINITION. Let Q be a convex cone in a topological vector space E. A
subset B<Q is called a pseudo-base of Q if 0¢ B and R,B=0Q.

The following lemma generalizes a result in Kothe [11, § 25.4]:
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1.4 LEMMa. Let Q +{0} be a convex cone in a topological vector space E. If Q
has a quasicompact pseudo-base, then Q is locally quasicompact. Conversely, if 0
admits a compact neighbourhood in Q, then Q is Hausdorff and has a compact
pseudo-base. If, moreover, E is Hausdorff, then Q is closed.

Proor. Suppose that B is a quasicompact pseudo-base of Q. Then there
exists a closed circled neighbourhood U of 0 in E not meeting B. For x € Q
there is 4> 0 such that x € AU. As AU N Q is contained in the quasicompact set
{ub:0=u=<4, be B}, AUNQ is a quasicompact neighbourhood of x in Q.

Conversely, suppose that 0 has a compact neighbourhood in Q. Therefore,
there exists a closed circled neighbourhood U of 0 in E such that UNQ is
compact. Then it is easy to see (and well-known) that Q is Hausdorff. Let U*
denote the boundary of U. Then B=U*NQ is a compact pseudo-base of Q. In
fact, for x € Q, the cone R, x is closed in Q, hence R . xN U N Q is compact and,
therefore, if x 0, then sup{420: Ax € U} =u>0 is finite and ux € B.

To prove that Q is closed if E is Hausdorff, consider a compact pseudo-base
B of Q and an open circled neighbourhood U of 0 in E not meeting B. Let
x € Q and 1>0 be such that x € AU. As

AUNQ <« K = {ub: 0su=s4i, be B},

every neighbourhood of x meets the compact set K, hence x e K=K cQ.

1.5 ReMARks. (1) Without separation assumption, a nontrivial locally
quasicompact convex cone need not have a quasicompact pseudo-base nor is it
necessarily closed (cf. 2.9 (2)).

(2) If E is a locally convex Hausdorff space and Q {0} is a locally compact
convex cone in E which is proper (i.e. QN —Q={0}), it is easily seen that Q
even admits a compact base, i.e. a pseudo-base which is the intersection of Q
with a closed hyperplane (cf. [11, § 25.4]).

If Q is not assumed to be proper, QN —Q is a locally compact, hence finite
dimensional subspace of E. Therefore, QN —Q admits a topological
supplement T, closed in E. As Klee [10, 2.3] remarked, this leads to the
decomposition Q=0 N —Q + S with the proper closed (hence locally compact)
convex subcone S=Q N T of Q. Therefore, if S+ {0}, S admits a compact base
B, hence there exists a continuous linear form g on T with B< {g=1}. Defining
h(x+y)=g() (xe QN —-Q, ye T) if S*{0}, and h=0 if S={0}, we get a
continuous linear form h defined on E which is positive on Q and strictly
positive on @\ (— Q). This result has also been proved by Klee [10, 2.2] using a
separation theorem.

In [1, 2.11] we proved in particular that in a locally convex space E every
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(continuous) linear form which is defined on a finite dimensional subspace of E
and strictly dominated (outside the origin) by a lower semicontinuous
hypolinear functional p (defined on E) admits a p-dominated continuous linear
extension to E. The following example shows that this result is no longer true if
the subspace is assumed to be closed but not finite dimensional. Other
examples of this kind are given in 2.9, 2.10 and [8, p. 405].

1.6. ExampLE (cf. [1, 1.6]). Let I and J = I be different countable sets. Choose
E=R® and F=RY), respectively, to be the direct sum of |I| and |J| copies of the
real line. Endow E with the finest locally convex topology. Then F, considered
to be a subspace of E, is closed in E. Define the hypolinear functional p on E by

pe) = = ¥ Vi  for x=()es, %20 (),

i,kel
i*k

and p(x)=o00, else. By [1, 1.6(3)], p is lower semicontinuous. For j € J, choose
a;<0 such that 3, ; (1—a)~'=1. By [1, 1.6(2)], the mapping

b (xj)je.l Land ZJ a;X; ((xj)je.l € F)

is a continuous linear form on F such that

f(x) < p(x) for x e F\{0}.
Let us prove that f does not admit any p-dominated linear extension to E. In
fact, any linear extension g of f to E is of the form
8: (xi)iel — ZI X

for some o; € R (i € I\ J). If g were p-dominated, we would have «; <0 for all
ieland Y;o;(1—a) '<1, contradicting

1= (1-a)! < ZI (1—a)t.

jelJ

2. Main results.
2.1. THEOREM. For i=0,. . .,n let Q, be a convex cone in a locally convex space
E and let q; be a hypolinear functional on Q; which is lower semicontinuous at

every point of Q;N _23=° Q;. Assume Q, to be closed and Q,,...,Q, to be

locally quasicompact. D Hote by L the linear subspace

L= {x € ‘C]o (@N=-0): g;(x)=—g;(—x) for 0=i,j<n, Q:,QJ¢W}
.¢70}
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and suppose that

Z 4:y) > 0 for (yo,...,yn) € H O\ L with z yi=0.
i=0 i=0 =0

Then there exists a continuous linear form on E which is simultaneously
dominated by qq,. . .,q, and strictly dominated by q; on Q;\ (—Q,) for every i=0
with Q; locally quasicompact and closed. If E is Hausdorff, it is sufficient to
assume the cones to be only weakly locally compact rather than locally compact.

Proor. (1) Let us first prove the theorem for a Hausdorff space E with
Q4. -, Q, locally compact.
(i) Assume in addition that

M=

@) >0 for (Vo,...,y,) € [!) 0.\ {(,...,0)} with iio % =0.

i=0
IfQ,=...=0Q,={0}, the theorem reduces to our result [1, 1.8]. Therefore, we
may assume Q=0Q, X ... x Q,=+{0}. Then Q is a locally compact convex cone
in E" and r: ExQ — R, defined by

rpy) = qo(yo— é y;) + ; %)

for y=(yg,. ..,y € ExQ with y,—37_,y, € Qp, and by r(y)=o00, else, is a
hypolinear functional, lower semicontinuous at every point of {0} x Q.

By 1.4, Q has a compact pseudo-base B. As r is strictly positive and lower
semicontinuous on {0} x B, we have ¢=infr({0} x B)>0. By 1.5 (2), there exists
a continuous linear form h on E" such that Q <{h20} and Q\ (— Q)= {h>0}.
In addition, we may assume sup h(B)<e. Define r': ExQ — R by

y = (.VO" . ’yn) - r(y)'-h(yl" . "yn) .

Then r' is a hypolinear functional on E x Q which is dominated by r and lower
semicontinuous at every point of {0} x Q. Moreover, r’ is strictly positive on {0}
x B. Hence, for y € {0} x B, there exists an open circled neighbourhood V, of 0
in E such that

r@z)>0 forze(y+V3*)N(ExQ).

By the compactness of {0} x B, there is a finite set Y = {0} x B such that {0} x B
cU,y(r+V3*"). Then V=0, yV, is a circled neighbourhood of 0 in E such
that
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() >0 for ye VxB.

This inequality also holds for y € Vx {Ab : 1 <A< 00, b € B}, as r' is positively
homogeneous and V is circled. On the other hand,

K ={ib: 05i<1,beB)

is compact with ¥ (y)20> —1 for y € {0} x K. Therefore, arguing as above, one
can find a neighbourhood W of 0 in E such that

ry) > -1 for ye WxK.
Hence, for the neighbourhood U=V N W of 0 in E, we have
riy) > -1 ifyeUxQ.
This proves that the mapping p’: E — R, defined by
x = inf {r'(x,y,,.. .,yn) 1 i € Qs i=1,...,n},

is bounded below on the neighbourhood U of 0. It is easy to see that p’ is a
hypolinear functional, hence, by [1, 1.8], there exists a p’-dominated
continuous linear form f on E. As

p:x > inf{r(x,yy,. ...y, : ¥ € Qui=1,...,n} (x€E)

is the largest hypolinear minorant of qq,. . .,q, (cf. [1, 1.5]), and since p'<p, p’
and hence f is simultaneously dominated by gqq,...,q,, Moreover, for i
=1,...,nand x € Q;\ (—Q,), we have

fR) =P =7 <r@ =qx),

where y=(y,...,y,) With yo=y,=x and y;=0, else.

If, in addition, Q, is locally compact, then f can be chosen to be strictly
dominated by g, on Q,\ (—Q,), too: This follows by application of the
preceding result to the closed cone {0} and the n+1 locally compact cones
QO" R Qn'

(i) Let us now consider the case of a general exceptional set L in the
Hausdorff space E. First note that L is a linear subspace of E. In fact, for I
={i:05ign, Q;+{0}}, M=N,;(Q;N—Q,) is a subspace of E. L is a
subspace of M as obviously —L=L<M, R,LcL, and for x,ye L, i,jel

gi(x+y) £ () +q;(») = —qi(=x)—qi(—=y) £ —q;(—x—Y)

§ q-(x+.V) [}
hence
qi(x+y) = ¢:(x)+q,(0) = —q;(=x)—q;(=y) = —q;(—(x+Y),

which proves that x+y € L.
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We may again assume that IN{1,...,n}+ . Then, by 1.4, M is locally
compact, hence M and L are finite dimensional. Therefore, L has a closed
topological supplement G in E. Replacing E by G, all cones by their
intersections with G, and all hypolinear functionals by their corresponding
restrictions, the assumptions of (i) are satisfied for G instead of E since L=L
and LNG={0}. Therefore, there exists a continuous linear form g on G
simultaneously dominated by g,...,q, and strictly dominated by g; on
0:NGN\ (—0Q;NG) for i € {0,...,n} with Q; locally compact.

By the definition of L, the mapping I: y — —gq;(—y) is a (continuous) linear
form on L, independent of i € I. Therefore, the linear form f on E defined by

fx+y) = gx)+1(y) (xeG,yel),

is continuous. If x+y e Q; (ie I, xe G,y € L),thenx e Q;NGasye Lc —Q,
Hence

fx+y) = gx)—aqi(=y) £ ¢;(X)—qi(=y) £ qi(x+y).

As Q;={0} for i ¢ I, f is dominated by each g; (i=0,...,n). Suppose i € I, Q;
locally compact and x+y e Q;\ (— Q) withxe G,ye L. Asye Q; N —Q,, we
have x € Q; NG\ (—Q;NG), hence

fx+y) = gx)—qi(—y) < qi(x)—qi(—=y) £ qi(x+y).

This proves the strict domination conditions for f.

(2) Now assume E to be Hausdorff and Q,,. . .,Q, weakly locally compact.
(In view of lemma 1.4, a locally compact convex cone in E is always weakly
locally compact.) Note that, as a closed convex set, Q, is weakly closed.
Therefore, if we assume Q,,. . ., Q, to be weakly locally compact, by (i) and (ii),
it is sufficient to remark that the lower semicontinuity conditions for the g; are
also satisfied with respect to the weak topology on E. This follows from the
approximation theorem (cf. 1.2).

(3) For the case of a general locally convex space E (not necessarily assumed
to be Hausdorff), let N ={—0§. Then the quotient space H=E/N is a locally
convex Hausdorff space. Denote by n: E — H the (linear and continuous)
canonical mapping x — x=x+N.

We will use the following two lemmas, the proof of which will be given after
the end of the proof of the theorem.

2.2. LEMMA. (1) A subset A of E is open (closed) iff n~* (n(A4))=A and n(A) is
open (closed) in H.

(2) If P is a locally quasicompact convex cone in E, then n(P) is a locally
compact convex cone in H.

Math. Scand. 47 — 17 !
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2.3. LEMMA. Let p: P — R be a hypolinear functional on a convex cone P in E,
lower semicontinuous at 0. Then

p: X inf p(y) (%€ n(P)
yexnNP

is a hypolinear functional on n(P).
If p is lower semicontinuous at x € P, then p is lower semicontinuous at
x=mn(x), and p(x)=p(x).

As 7 is linear, by 2.2, Qo =n(Q,) is a closed and, for i € {0,...,n} with Q,
locally quasicompact, each Q,=n(Q,) is a locally compact convex cone in H.
Note that

,Qtn“z Qj=n<Qin —Z Qj>
i=0 ji=0
JEA] Jj¥Fi
since ! (n(Qo)) = Qo, by 2.2. Therefore, by 2.3, §; is lower semicontinuous at
every point of

Qin _~=io Qj (i=0,...,n).

J*i

Since QiCZ(T} (ie. Q;={0})iff Qic@, the corresponding exceptional set in
H is

Ly = {x € ﬂl (Qiﬂ "Qi) D gi(X)=—q;(—X%) for i,j e I},
where I={i: 0<i<n, Q;¢{0}}. Let us prove that
Y G0) >0  for (.. .¥m € [] O \Ly™*" with ¥ 3, =0.
i=0 i=0 i=0

This is obvious, if I has at most one element, since 0 € L. Otherwise, each g,
(i € I) is lower semicontinuous at every point of L, hence n(L)< Ly, by 2.3, and
n(L)cLy. As n~1(n(Q,))=Qo, there exists (yo,. . .,¥,) € [Tl=0 Q:\ L"*! with

i=0y;=0 and =(y)=y; hence §;(y)=q;(y) by 2.3, and therefore 37, ¢;(y)
=21=04:(y)>0.

By (1), there exists a continuous linear form f on H such that f'is dominated
simultaneously by go,. . ., g, strictly on Q;\ (= Q) for i € {0,...,n} with Q,
locally quasicompact. Then f=fon is a continuous linear form on E such that

) = f(%) S (%) £ qi(x) for xe @ (i=0,...,n).

Moreover, if 0<i<n and Q, is locally quasicompact and closed, we have Q,
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=n"'(n(Q,) and hence n(Q;\ (—Q))=0;\ (—Q). This implies the strict
domination condition for f.

Proor oF LEMMA 2.2. (1) If AcE is open or closed then A+ N < A, hence
n~!(n(A))=A. Therefore, (1) follows from the definition of the quotient
topology.

(2) As = is linear, n(P) is a convex cone. For x € P there is a closed
neighbourhood U in E such that UNP is quasicompact, hence n(U N P) is
compact. By (1), U=n"'(n(U)), therefore n(U)Nn(P)=n(U N P) is a compact
neighbourhood of n(x) in n(P).

PrrOF OF LEMMA 2.3. If p is lower semicontinuous at x € P and p(x)> a, then
there exist § € R and an open neighbourhood U of x in E such that p(y)> >«
for y e UNP. Hence p(Z)=p>a for z € n(U)Nn(P), as

yezNPca(n(U)NP=UNP implies p(y) > B.

Obviously, p is positively homogeneous. As p is lower semicontinuous at 0, p is
bounded below in some neighbourhood of 0, hence p(x)> — oo for x € n(P). It
is easy to see that p is subadditive.

2.4. ReMARK. In particular, 2.1 implies (for n=1, Qo ={0}, go=0, Q, = —Q,
q,=0) the following generalization of remark 1.5 (2): For every closed
[weakly] locally quasicompact convex cone Q in a locally convex [Hausdorff]
space E there exists a continuous linear form on E, positive on Q and strictly

positive on @\ (— Q). This result will be extended considerably in proposition
33.

2.5. COROLLARY. Let P and Q be convex cones in a locally convex [ Hausdorff]
space E such that P is closed and Q is [weakly] locally quasicompact. Let p and q
be hypolinear functionals on P and Q, respectively, which are lower
semicontinuous at every point of PN Q. If

—q() = py) foryePNQ

and
—q(y) < p(y) for ye PNQN\{xe —(PNQ) : p(—x)=—q(—x)},
then there exists a continuous linear form g on E such that —q is g-dominated

(strictly on Q\ (—Q), if Q is closed) and g is p-dominated (strictly on P\ (— P),
if P is [weakly] locally quasicompact).
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Proor. In theorem 2.1, choose n=1, Qy=P, @, =—0Q, go=p, and define
q,: @, — R to be the hypolinear functional ¢,: x + g(—x). Observe that p(y)
+q()>0 for y e PNQ if y does not belong to the exceptional set L of the
theorem. In fact, for

L'={xePN-PNQN—-Q : p(—x)=—q(—x)}
and y € L'\ L with p(y)+q(y)=0 we get
p0) = —q0) = q(=y) = —p(-y) = p0)

in contradiction to y ¢ L. As a linear form on E is g,-dominated iff it
dominates — g, the result follows from 2.1.

2.6. COROLLARY. Let p be a hypolinear functional on a conveX cone P in a
locally convex [Hausdorff] space E and let f be a p-dominated continuous linear
form on a subspace F of E. Suppose that F is closed and P is [weakly] locally
quasicompact, or P is closed and F is locally quasicompact. If p is lower
semicontinuous at every point of PN F and if

fO <p@y) for ye PNF\{xePN—PNF: —p(—x)=p(x)},

then f can be extended to a p-dominated continuous linear form on E, which is
strictly p-dominated on P\ (—P) if P is [weakly] locally quasicompact and
closed.

Proor. In theorem 2.1, choose n=1 and Q,=F, Q; =P, qo=f, q, =p in the
first and Qo=P, Q,=F, qo=p, 9, =f in the second case. Note that {x € PN
—PNF : —p(—x)=p(x)} is contained in the exceptional set L of the theorem
and that every f~dominated linear form on E is an extension of f.

2.7. REMARKS. (1) If in corollary 2.6 we assume F P, it can be shown that
the continuity of f follows from the other assumptions. As every finite
dimensional locally convex space is locally quasicompact, corollary 2.6
contains our theorem 2.11 in [1].

(2) The case of a one-dimensional subspace F is of particular interest: As an
immediate consequence we get the approximation theorem [1, 3.4] for
hypolinear functionals (cf. 1.2), important applications of which can be found
in Lembcke’s note [12] on Bauer’s refined version [4] of the Choquet-Deny
theorem and in an article of Bauer and Donner [5] on Korovkin theorems in
€0 (X).

The following two examples show that corollary 2.6 (and hence 2.5 and 2.1)
are no longer true if P is not assumed to be closed, even if E is finite
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dimensional. In the first example E is in addition a Hausdorff space, in the
second P and F are both locally compact, but not closed. Moreover, the second
example also disproves 2.6 if F is not assumed to be closed.

2.8. ExampLEs. (1) Let E=R? and choose f=0 on F=R x {0}. Let P be the
convex cone

{(x,x)) € E: x,>0, x,>0} U {(0,0)},

and define p: P — R by p((x,,x,))=—]/x;x,. Then PNF={(0,0)}, p is a
continuous hypolinear functional on P (cf. [1, 1.6]), but there is no p-
dominated linear extension g of fto E (otherwise, for A>0, g((0, 1))=g((4,0))
+8((0, 1) =g((4 1) £p((2, 1)= = /3.

(2) Denote by R, the real numbers endowed with the coarsest topology. Let
E=R xR, P=R(1,1), F={0} xR, define p: P - R by p(x)=0 (x € P) and
f:F— R by f(0,y)=y (yeR). Then f is obviously p-dominated and
continuous. Furthermore, PN F={(0,0)}, but the only p-dominated linear
extension of fto E is g: (x,y) — y—x ((x,y) € E), which is not continuous.

In view of theorem 2.1 one might expect that the assumption in corollary 2.6
imposed on the subspace F to be locally quasicompact may be replaced by
requiring F to be generated by a locally quasicompact convex cone. The
following example shows that this conjecture is false, even if F is closed and E is
Hausdorff.

2.9 ExampLE. Consider € ([0,1]) with the uniform topology. Let
B={yed(0,1]): yO=1LYx)-yOI=slx—)l for x,y e [0,1]}.

Then B is convex and closed. Moreover, by Ascoli’s theorem, B is relatively
compact and hence compact. As 0 ¢ B, Q=R B is a locally compact convex
cone with (pseudo-) base B (cf. 1.4). Let F be the subspace of €([0,1])
generated by Q, and define ¢: [0,1] — R by g(x)=1/x (x+0) and ¢(0)=0.
Then ¢ ¢ F.

Let E=F®Rg be endowed with the direct sum topology of the Hausdorff
spaces F and Rg. Then F is closed and Q is a locally compact subcone of E. It is
easy to verify that

E, ={y€eE: y(x)20 for x e [0,1]}

is a closed convex cone, hence the hypolinear functional p on E, equal to 0 on
—E, and to oo, else, is lower semicontinuous. The Lebesgue integral

1
fYe L Y(x)dx (Y eF)
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is a strictly p-dominated continuous linear form on F. Let us prove that,
nevertheless, there is no p-dominated (i.e. positive) linear form (continuous or
not) on E extending f. First note that F consists of all Lipschitz continuous
functions on [0, 1]. Therefore, the function ¢,: [0,1] — R (n € N), defined by
¥, (x)=n%x for 0Sx<1/n and by y,(x)=¢(x) for 1/n<x<1, belong to F. For

n € N, we have
1

1
f('pn) g f - dx )
1n X
hence lim f(y,)=00. As ¥,<g for n € N, f does not admit a positive linear

extension to E.

In a final example we show that even in a Banach space E the compactness
condition imposed on F in corollary 2.6 cannot be replaced by weak
compactness of the unit ball of F (i.e. reflexivity).

2.10. ExaMpLE. Let E be a separable real Hilbert space with complete
orthonormal system {e, : n € N}. Let P and F be the closure of the subspaces
generated by {e,,: n € N} and by {b, : n € N}, respectively, where b,=e,,
+n"te,,_, for ne N.

Then the O-functional p on P is a (lower semi-) continuous (hypo-) linear
functional. There is a unique continuous linear form f on F such that f(b,)
=1/n for n e N. Obviously, f is strictly p-dominated on the empty set
PN F\ {0}. Suppose, g is a p-dominated continuous linear extension of f'to E.
Then for ne N

g(eZn—l) = nf(bn)_ng(eZu) ; nf(bn)—np(eZn) =1 ’

which contradicts the continuity of g. Therefore, there is no p-dominated
continuous linear extension of f to E.

3. Applications.

The following propositions 3.1 and 3.2 generalize known separation and
support properties for convex cones. Let us first give a new proof of a theorem
recently obtained by Bair and Gwinner [3, Théoréme 1] which generalizes a
result of Klee [10, 2.5] and, as an immediate consequence, implies a
separation theorem for convex cones (cf. [3, Théoréme 2]). Note that in the
Hausdorff case it is sufficient to assume one of the cones to be weakly locally
compact.

3.1. PropPoSITION. Let P and Q be closed convex cones in a locally convex
[Hausdorff] space E such that PN Q is a linear subspace of E. If Q is [weakly]
locally quasicompact, there exists a continuous linear form g on E such that
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Q < {g20}, 0\ (-0Q) = {g>0}, P < {g=0}
(and P\ (—P)c={g<O0} if P is [weakly] locally quasicompact).

Proor. In corollary 2.5, choose p=0 and ¢=0.

3.2. ProposITION. Let F be a finite dimensional subspace of a locally convex
Hausdorff space E. If P is a closed convex cone in E such that P+ F+E (e.g. F
£ E and P proper) and PNF is a linear subspace, then there exists a closed
hyperplane in E containing F and supporting P.

ProoF. Let z € EX\ (P+F) and apply theorem 2.1 to

Q0=P,‘10=0,Q1=F,Q1=O,Q2= —R+Z+PnF’q2=0'
Then Lo>PNF and

{0oy1:2) € Qox Q1 X Q5 t Yo+y,+y,=0} = L.

Therefore, the assumptions of 2.1 are satisfied. Since —z € Q,\ (—Q,), there
exists a continuous linear f on E such that Pc{f<0}, Fc{f=0}, and
f(—2)<0, hence {f=0} is a closed hyperplane in E containing F and sup-
porting P.

The following extension theorem for positive linear forms generalizes a result
due to Hustad ([9, p. 64, cor.]).

3.3. ProPOSITION. Let E be a locally convex [ Hausdorff] space, preordered by
a [weakly] locally quasicompact convex cone E .. Then every positive continuous
linear form f, defined on a closed subspace F of E, which is strictly positive on
FNE,.\ (—E,), admits a positive and continuous linear extension to E, which is
strictly positive on E,.\ (—E,) if E, is closed.

Proor. Apply corollary 2.6 to the hypolinear functional p=0 on P=—E,.

As a further application of theorem 2.1 we will finally prove a slight
generalization of Boboc’s sandwich theorem for extended (i.e. ]— oo, 00]-
valued) convex functions ([6, lemme 2]), following the ideas that led to our
previous results [1, 4.4, 4.6].

3.4. ProrosiTION. Let K, and K, be convex subsets of a locally convex
[Hausdorff] space F and let k, and k, be extended convex functions on K, and
K,, respectively, lower semicontinuous at every point of K, N K,. Suppose that
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K, is [weakly] quasicompact, K, is closed and that k,,k, are locally bounded
below. If

—k,(x) < ky(x) for xe K, NK,,
then there exists a continuous affine function a on F such that

—k,(x) < a(x) for xe K, and a(x) < k,(x) for x € K, .

Proor. If K, N K, + &, the mapping x + k, (x)+k,(x) (x € K, N K,) attains
its (strictly positive) infimum. Hence, in any case, we may replace k, by k, —a
and k, by k, —a for some a>0 without changing the assumptions. Therefore,
it is sufficient to prove the existence of a continuous affine function a on F such
that

—ki(x) = a(x) (xeK;) and a(x) £ k(x) (xeK;).

Asin [1,4.2], define E=R x F, Py=R , ({1} x K;) and Q=R ({1} x K}). Then
Py, P=P, and Q are convex cones with P closed and Q locally quasicompact
(1.4). By [1, 4.2], the mappings

Po: (A, Ax) > Aky(x) (AeR,, xe K,)
and
q: (A Ax)— Ak,(x) (AeR,, xeK))

are hypolinear functionals on P, and Q, respectively. Define the hypolinear
functional p: P — R by p(x)=p,(x) for x € P, and by p(x)= oo for x € P\ P,,
Then p and g are lower semicontinuous at every point of PN Q ([1, 4.2]), as
P\ P, {0} x F implies

PNQ=P,NQ ={0 UR, ({1} xK, NK,).
Moreover, for y=(4,Ax) € P N Q\ {0} we have
PO)+q0) = Alky(x)+k;(0) > 0.
Hence, by corollary 2.5, there is a continuous linear form g on E with

-q0) =g0) veQ) and g0) =pO) GeP).

Therefore, the continuous affine function a: x +— g(1,x) on F has the required
properties.

Finally, if F is a Hausdorff space and K, cF is weakly compact, then {1}
x K, is weakly compact in E (cf. [7, ch. II, § 6. prop. 8]). Therefore, 2.5 may
also be applied to this situation.
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