SUR LES SOUS-ESPACES DE $l_p \hat{\otimes} l_q$

C. SAMUEL

Résumé.

On démontre que si X est un sous-espace fermé de dimension infinie de $l_p \hat{\otimes} l_q$ alors X contient un sous-espace complémenté isomorphe à l_r avec r=p ou r=q ou r=1/(1/p+1/q-1) si p'>q ou un sous-espace isomorphe à c_0 si $p' \leq q$.

Introduction.

Une application linéaire T d'un espace de Banach E dans un espace de Banach F est un plongement s'il existe deux réels $0 < a \le b$ tels que pour tout $x \in E$

$$a||x|| \le ||T(x)|| \le b||x||$$
.

Un plongement surjectif est un isomorphisme.

Soient E et F deux espaces de Banach, la norme ε sur $E \otimes F$ est définie par:

$$\|u\|_{\varepsilon} = \sup\{|(\Phi \otimes \Psi)(u)| ; \Phi \in E', \|\Phi\| \leq 1 \text{ et } \Psi \in F', \|\Psi\| \leq 1\},$$

nous notons $E \otimes F$ le complété de $E \otimes F$ muni de la norme ε . Le symbole l_{∞} notera ici l'espace des suites de scalaires qui converge vers 0 muni de la norme sup. (habituellement noté c_0). Nous avons caractérisé dans [4] les valeurs du réel r pour lesquelles l_r est isomorphe à un sous-espace de $l_p \otimes l_q$; le but de ce travail est de démontrer que tout sous-espace fermé de dimension infinie de $l_p \otimes l_q$ contient un sous-espace complémenté dans $l_p \otimes l_q$ et isomorphe à l_r pour les mêmes valeurs de r. Etant donné une famille $(x_i)_{i \in I}$ d'éléments d'un espace de Banach E nous notons $[x_i]_{i \in I}$ le sous-espace fermé de E engendré par $(x_i)_{i \in I}$

Sous-espaces de $l_p \hat{\otimes} l_q$.

Rappelons la présentation de $l_p \hat{\otimes} l_q$ utilisée dans [4]. Notons pour

$$1 \le p < \infty \quad \operatorname{sl}_p(l_q) = \{x = (x_n)_n ; \ \forall n, x_n \in l_q \text{ et}$$

$$\forall \varphi \in (l_q)' \sum_{n=1}^{\infty} |\varphi(x_n)|^p < +\infty\}$$

Reçu le 4. septembre, 1979.

248 C. SAMUEL

$$p = \infty \qquad \text{sl}_{\infty}(l_q) = \left\{ x = (x_n)_n \; ; \; \forall \, n, x_n \in l_q \text{ et} \right.$$

$$\forall \, \varphi \in (l_q)' \lim_{n \to \infty} \varphi(x_n) = 0 \right\} \,,$$

Nous définissons alors une structure d'espace de Banach sur $\operatorname{sl}_p(l_q)$ en posant pour $x = (x_n)_n \in \operatorname{sl}_n(l_q)$

$$\|x\| = \sup \left\{ \left(\sum_{n=1}^{\infty} |\varphi(x_n)|^p \right)^{1/p} ; \varphi \in (l_q)' \text{ et } \|\varphi\| \leq 1 \right\} \quad \text{ si } 1 \leq p < \infty$$

et

$$||x|| = \sup \{ |\varphi(x_n)| : n = 1, 2, \dots \text{ et } \varphi \in (l_q)' \text{ et } ||\varphi|| \le 1 \}$$
 si $p = \infty$

Nous notons, pour chaque entier n, U_n : $l_q \to l_q$ l'opérateur qui à $\xi = (\xi_i)_i \in l_q$ associe $U_n(\xi) = (\zeta_i)_i$ avec $\zeta_i = \xi_i$ si $1 \le i \le n$ et $\zeta_i = 0$ si i > n; nous notons, pour chaque entier n, P_n : $\mathrm{sl}_p(l_q) \to \mathrm{sl}_p(l_q)$ l'opérateur qui à $x = (x_i)_i \in \mathrm{sl}_p(l_q)$ associe $P_n(x) = (y_i)_i$ avec $x_i = y_i$ si $1 \le i \le n$ et $y_i = 0$ si i > n; nous notons aussi pour chaque entier m, Q_m : $\mathrm{sl}_p(l_q) \to \mathrm{sl}_p(l_q)$ l'opérateur qui à $x = (x_i)_i \in \mathrm{sl}_p(l_q)$ associe $Q_m(x) = (U_m(x_i))_i$. Il est démontré dans [4] que $l_p \hat{\otimes} l_q$ est isométrique à $\{x \in \mathrm{sl}_p(l_q) : x = \lim_{n \to \infty} P_n(x)\}$. Il est clair que, pour chaque paire d'entiers n et m, $P_n \circ Q_m = Q_m \circ P_n$ et que $Q_m(l_p \hat{\otimes} l_q) \subset l_p \hat{\otimes} l_q$.

LEMME. Soient $(n_k)_k$ et $(m_k)_k$ deux suites strictement croissantes d'entiers; on suppose que $n_0 = m_0 = 0$ et soit $(V_k)_k$ une suite normalisée de $l_p \hat{\otimes} l_q$ telle que pour tout entier k,

$$V_k = (P_{n_k} - P_{n_{k-1}})(V_k) = (Q_{m_k} - Q_{m_{k-1}})(V_k);$$

alors il existe une projection de norme 1 de $l_p \hat{\otimes} l_q$ sur $[V_k]_{k=1}^{\infty}$.

Soient r=1/(1/p+1/q-1) si p'>q ou $r=\infty$ si $p' \le q$. Nous avons établi dans [4] que $(V_k)_k$ est isométriquement équivalente à la base canonique de l_r . Nous déduisons alors en utilisant la remarque 1 de [2, p. 21] que pour tout $x \in l_p \hat{\otimes} l_a$,

(1)
$$\left(\sum_{k=1}^{\infty} \|(Q_{m_k} - Q_{m_{k-1}}) \circ (P_{n_k} - P_{n_{k-1}})(x)\|^r\right)^{1/r} \leq \|x\|.$$

Pour chaque entier k nous fixons $\varphi_k \in (l_p \hat{\otimes} l_q)'$ tel que

$$\|\varphi_k\| = \|V_k\| = \varphi_k(V_k) = 1$$

(théorème de Hahn-Banach); nous pouvons supposer en outre que pour tout entier k

(3)
$$\varphi_k = (P'_{n_k} - P'_{n_{k-1}})(\varphi_k) = (Q'_{m_k} - Q'_{m_{k-1}})(\varphi_k).$$

Pour chaque $x \in l_p \hat{\otimes} l_q$ nous déduisons de (1), (2) et (3) que $\sum_{k=1}^{\infty} |\varphi_k(x)|^r < \infty$; notons alors $P: l_p \hat{\otimes} l_q \to l_p \hat{\otimes} l_q$ l'application qui à $x \in l_p \hat{\otimes} l_q$ associe $P(x) = \sum_{k=1}^{\infty} \varphi_k(x) V_k$, il est immédiat de vérifier que P est une projection de norme 1 de $l_p \hat{\otimes} l_q$ sur $[V_k]_{k=1}^{\infty}$.

Théorème. Soit X un sous-espace fermé de dimension infinie de $l_p \hat{\otimes} l_q$; alors X contient un sous-espace complémenté dans $l_p \hat{\otimes} l_q$ isomorphe à l_r avec r=p ou r=q ou r=1/(1/p+1/q-1) si p'>q ou $r=\infty$ si $p'\leq q$.

Nous envisageons deux éventualités:

 1^{re} ÉVENTUALITÉ. Il existe un entier N et un sous-espace fermé Y de X de dimension infinie tel que $P_N|_Y$ ou $Q_N|_Y$ est un plongement. Nous ne perdons pas de la généralité en supposant qu'il existe un entier N tel que $P_N|_X$ est un plongement; d'après [3] il existe une projection Q de $P_N(l_p \hat{\otimes} l_q)$ sur un sous-espace de $P_N(X)$ isomorphe à l_q ; soit $R = (P_N|_X)^{-1} \circ Q \circ P_N$, il est immédiat de vérifier que R est une projection de $l_p \hat{\otimes} l_q$ sur un sous-espace de X isomorphe à l_q .

 $2^{\rm e}$ ÉVENTUALITÉ. Pour tout entier N et pour tout sous-espace fermé de dimension infinie Y de X, $P_N|_Y$ et $Q_N|_Y$ ne sont pas des plongements. Nous ne perdons pas de la généralité en supposant que X a une base normalisée $(x_n)_n$. Donnons-nous un réel $0 < \varepsilon < 1$ et soient deux réels $\varepsilon' > 0$ et $\varepsilon'' > 0$ que nous fixerons plus loin. Puisque pour toute paire d'entiers n et m,

 $P_n|_{[x_i]_{i=m}^\infty}$ n'est pas un plongement nous pouvons trouver par récurrence une suite base-bloc normalisée $(y_k)_k$ de $(x_k)_k$ et une suite strictement croissante d'entiers $(n_k)_k$, $n_0 = 0$, tels que pour tout entier k

$$||y_k - (P_{n_k} - P_{n_{k-1}})(y_k)|| \le \frac{\varepsilon'}{2^k}.$$

Nous notons $z_k = (P_{n_k} - P_{n_{k-1}})(y_k)$; pour $0 < \varepsilon'$ assez petit ne dépendant que des données (cf. [1]) $(z_k)_k$ est une suite base de $l_p \hat{\otimes} l_q$ telle que pour tout entier n, tout entier l et toute famille a_1, \ldots, a_n de scalaires

(1)
$$\left\| \sum_{i=1}^{n} a_{i} y_{i+1} - \sum_{i=1}^{n} a_{i} z_{i+1} \right\| \leq \frac{\varepsilon}{2^{l+1}} \left\| \sum_{i=1}^{n} a_{i} y_{i+1} \right\|.$$

Puisque pour toute paire d'entiers n et m, $Q_n|_{[y_i]_{i=m}^{\infty}}$ n'est pas un plongement nous pouvons trouver par récurrence, en utilisant (1), une suite-base bloc normalisée $(v_k)_k$ de $(z_k)_k$ et une suite strictement croissante d'entiers $(m_k)_k$ tels que $m_0 = 0$ et pour tout entier k

$$||v_k - (Q_{m_k} - Q_{m_{k-1}})(v_k)|| \le \frac{\varepsilon''}{2^k}$$
.

250 C. SAMUEL

Nous notons $w_k = (Q_{m_k} - Q_{m_{k-1}})(v_k)$; pour $0 < \varepsilon''$ assez petit ne dépendant que des données (cf. [1]) $(w_k)_k$ est une suite-base de $l_p \hat{\otimes} l_q$ telle que pour tout entier n et toute famille a_1, \ldots, a_n de scalaires

$$\left\| \sum_{i=1}^{n} a_i w_i - \sum_{i=1}^{n} a_i v_i \right\| \leq \frac{\varepsilon}{2} \left\| \sum_{i=1}^{n} a_i v_i \right\|.$$

En définitive, étant donné $0 < \varepsilon < 1$, il existe une suite-base $(w_k)_k$ de $l_p \hat{\otimes} l_q$, une suite-base $(u_k)_k$ de X et deux suites strictement croissantes d'entiers $(N_k)_k$ et $(M_k)_k$, $N_0 = M_0 = 0$, telles que pour tout entier k,

$$W_k = (P_{N_k} - P_{N_{k-1}})(w_k) = (Q_{M_k} - Q_{M_{k-1}})(w_k)$$

et pour tout entier n et toute famille a_1, \ldots, a_n de scalaires

$$\left\| \sum_{i=1}^n a_i w_i - \sum_{i=1}^n a_i u_i \right\| \le \varepsilon \left\| \sum_{i=1}^n a_i u_i \right\|.$$

On conclut alors en utilisante le lemme et la méthode de perturbation.

BIBLIOGRAPHIE

- C. Bessaga et A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- J. Lindenstrauss et L. Tzafriri, Classical Banach spaces 1 (Ergebnisse Mathematik 92), Springer-Verlag, Berlin - Heidelberg - New York, 1977.
- 3. A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- 4. C. Samuel, Sur la reproductibilité des espaces l_p, Math. Scand. 45 (1979), 103-117.

MATHÉMATIQUE-INFORMATIQUE ET C.N.R.S. (LA 225) FACULTÉ DES SCIENCES DE LUMINY 70, ROUTE LÉON LACHAMP 13288 - MARSEILLE CEDEX 2 FRANCE