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ON THE FUNDAMENTAL GROUP
OF A SPACE OF SECTIONS

L. L. LARMORE and E. THOMAS*

Introduction.

Let p: E — X be a fibration over a connected C.W. complex X, with fiber F.
Suppose that p has a section, s, and denote by I' (=I"(E)) the space of all
sections of p. A general problem is to compute 7, (', s) for k=0. In this paper
we calculate =, (I, s) if F=S" or P", n=2, dim X <n, provided p is the spherical
or projective fibration associated with a real vector bundle. In principal we can
also compute (depending on knowledge of twisted cohomotopy) =, (I, s) if
F=8"or P"and dim X £2n—k— 1, provided p comes from a real vector bundle.

If the fibration is trivial, then E=F x X and s is simply given by a map f:
X — F;thus n,(I',s)==n,(A#, f), where .# is the space of all maps from X to F.
An interesting special case is F =S2, X a closed surface X. In a recent paper [6]
V. Hansen calculated =,(.#, f) in this case, up to a group extension. We
generalize his results (in particular we compute the group extension, thus
solving Problem 1 in [6]) by calculating =, (I, s), where E is the sphere bundle
of a 3-plane bundle ¢ over Z. The section s induces a splitting £ =n@e' (¢
=trivial i-plane bundle), where 7 is an oriented bundle if £ is. In this case we
denote by x(n) € H%(Z; Z) the Euler class of 5. Also, if X is oriented, we let
A,B;e H'(X;Z) (15iLg=genusX) denote the generators obtained by
regarding 2 as the connected sum of g copies of S* x S*. We orient these so that
A;U B;=a0, the generator of H*(Z; Z), for 1<i<g. We write H'(Z; Z)=2Z%,
and let (for any integer e) &, , be the group given by the central extension

0> Z/eZ > R, ,— Z* >0

determined by the “commutator map” (see [11]) c: Z22®Z?* — Z/eZ as
follows:

c(A,B)=2€Z/eZ, 1<Sisg
c(4,B) =0 ifi%j
c(4A4) = c(B,B) =0, 1<ij<g.
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Our result is:

THEOREM 1. Let ¢ be an oriented 3-plane bundle over an oriented surface X of
genus g, with ¢ =n@®¢', where the trivial line subbundle is given by a section s.
Suppose that y(n)=ea, for e € Z. Then n,(I',5)=%, ..

REMARK 1. A similar, but somewhat more complicated, result is given in
section 1 for the case ¢ a non-orientable 3-plane bundle.

REMARK 2. If ¢ is the trivial bundle then s is given by a map f from X to S2,
which in turn is classified up to homotopy by an integer d, the degree of the
map. In this case the exact sequence in Theorem 1 coincides with the sequence
given in Theorem 1 of [6]. In that sequence the left-hand group is Z/2dZ. The
“2” arises in the following way, from the point of view of our more general
result: In the universal fibration

$? -4 BSO(2) - BSO(3),

the restriction of the universal 2-plane bundle on B SO(2) is the tangent bundle,
7, of §2. Since x(t)=20 € H*(S?; Z), we see that if the section s is regarded as a
map iof, with f: £ — $2, then x(n)=2d, where d=degree f.

Note that Theorem 1 enables us to determine when =, (I', s) is abelian (and
so answer the question raised in [6]), namely the group is abelian precisely
when the commutator ¢=0. Thus we obtain:

CoOROLLARY 1. The group =,(I,s), in Theorem 1, is abelian if and only if, e
=+1o0r +2, or X=52

Suppose now that X is a non-orientable surface. We then have (again
answering a question raised in [6]):

THEOREM 2. Let & be an oriented 3-plane bundle over a non-orientable surface
Z, and let the oriented 2-plane subbundle n be determined by a section s. Then,

(i) =, ([,5)=H'(Z; Z)®Z/2Z, if x(n)=0,
(i) =, (I, 5)=H"(Z; Z), if x(n)*0.

In particular, case (i) holds if & is trivial.

Instead of considering the sphere bundle associated to a vector bundle £ one
can instead take the associated projective bundle, P¢. A section of this bundle
gives a splitting £ =n@L, where L is a line bundle—in the next section we
show that without loss of generality we may take L to be &'. Our result is:
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THEOREM 3. Let & be an oriented 3-plane bundle over a surface X with a
splitting & =n@¢", and let s be the section of the projective bundle P¢ determined
by that trivial line subbundle. Suppose that y(n)+0. Then =n,(I',s) is given
precisely as in Theorem 1, if X is oriented, and precisely as in Theorem 2, if X is
non-orientable. On the other hand, suppose that x(n)=0. Then n,(I,s)=
R, oDZ/2Z if X is oriented, while n,(I',s)=H"(Z; Z)DZ2ZDZ/2Z if X is
non-orientable.

ReMARK 3. We have defined the group #, . by means of an extension. One
can equally give the group by generators and relations, namely:

R, . is the multiplicative group with generator a,f, 1<i<g, and 7,
subject to the relations:

ye = 15 [(xbﬁi] = ?2, 1§l§g,

all other pairs of generators commute.

In the above results the group =, (I, s) in general is non-abelian of infinite
order, however, one can give simple examples where the group is finite
and non-abelian. Thus, if n is an even integer greater than three, let
X=8""2Uye" ' If £ is any (n+ 1)-plane bundle over X, and s any section
of p: E=P¢ — X, then, by theorem 1.7:

n,(I,s) = S;, the symmetric group on 3 letters .

Moreover, we show that on the manifold P? x $? there is a P3-bundle E —
P? x §3, which has sections s, and s, such that

n,(I,s,) = Dg, the dihedral group of order 8,

n,(I',s;) = Qg, the quaternionic group of order 8.

Theorems 1, 2, and 3 follow from more general results stated in the next
section. Our method of proof is based on the following observation. As above,
let p: E — X be a fibration with fiber F, and with a section s. Define Q4E to be
the subspace of the space of free loops on E consisting of all fiber-wise loops,
ie.,

QXE = U Qp—l(x),
xeX

where s(x) is the basepoint in p~!(x). Then QxE — X is again a fibration, with
fiber QF and with a section w given by w(x)=constant loop at s(x). By using
the exponential law for mappings one readily shows that QI'(E)=T"(QxE), and
so by iteration we obtain:
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QI'E) =T(Q%E), nz=1.

Consequently, n,I"'(E)=n,I(Q%E). But the right-hand group is simply the
group of homotopy classes of sections of the fibration QYE — X and so can be
computed by a spectral sequence (see [13]). Note in particular that the
Postnikov invariants for the fibration Q4E — X can be obtained from those
for the fibration E — X simply by n-fold looping in the category of spaces
“over-and-under X”. In the remainder of the paper we exploit this point of
view to obtain our results.

In the final section (5) we comment briefly on prior work of Barratt, Federer,
Thom and R. Brown on homotopy groups of function spaces.

1. The main results: spherical case.

For theorems 1.1 through 1.3 below, we assume, as before, that X is a finite
dimensional C.W. complex, and p: E — X has fiber $". We also assume that E
=S¢, the total space of the S" bundle associated with a real vector bundle ¢
=¢m+1 and that a section s: X — E is given. Let I'=TI(&) be the space of all
such sections.

Now s determines a splitting £ =n"@e'. We set w;=w;(n), the ith Stiefel-
Whitney class of n, and y=x(n) € H*(X; Z[w,]) the Euler class of n. (Z[w,]
=integer sheaf over X twisted by w,.)

THEOREM 1.1. Let n=2, dim X £2. Then we have an exact sequence:
HO(X; Z[w,]) & H*(X; Z) 4> n,([,5) 2> H'(X; Z[w,]) - 0.
The following information is sufficient to determine n\(I',s) as an extension:

(i) AH*(X; Z) is central in n,(I,s).
(i) If gungremn(I,s) and if pgi=xi, pga=Xy then g,g,97'9;"
=1(2x, U x,).
(iii) Ifw,+0, let w, € H'(X; Z[w,]) be the (unique) element of that group of
order 2. Choose z € H*(X; Z) such that gz=w, (where g=reduction mod 2).
Then there exists « € n,(I',s) such that pco=w, and «* =i (W} +2).

REMARK. The class w, is the Euler class of the line bundle twisted by w,; also
w, =07, where 67 is the Bokstein homomorphism associated with the
coefficient sequence Z[w,] — Z[w,] — Z,. Note also that H*(X; Z[w,])=0
if w,; %0,
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We recall briefly the definition of twisted (stable) cohomotopy (see, for

example, [9]). If {* is any real k-plane bundle over a space X, and if 4 < X, we
define, for any integer i:

(X, A4; () = Lim [X,4; QYZY* 7Sy (S0)]x
N-oo

where Qy, Xy, Sx denote fiberwise looping, fiberwise based suspension, and
fiberwise two-point suspension, respectively. If {* and %/ are stably equivalent,
.then 7i(X, A; ) =n'(X, A; %). Now let £ =n@e, as above. Note that Sy (Sn)=E,
and therefore there is a homomorphism

nm(l,s) = [X; Q%E]ly —» o (X5 n) = 2" 74X 0).
THEOREM 1.2. Let dim X £2n—k—2. Then 1 is an isomorphism.

We omit the proof. See. for example [7, lemma 2.2].

As a special case, take k=1, n=3, dimX<n. Then by 12, n,(I,s)
~n""1(X ; n), and the latter can be computed by an exact sequence using [7].
Thus we have

CoROLLARY 1.3. Let n2 3, and dim X Sn. Then =, (', s) is commutative, and we
have an exact sequence:

H" 2(X; Z[w,]) %> H'(X; Z,) 4> my([,s5) 2> H (X5 Z[w,]) - 0
where 0= (Sq%+w, U)g.

Note that elements in H"(X ; Z,) all have order two. Thus by 4.1 in [12], the
following information suffices to determine 7, (I, s) as an extension:

If x e H* (X; Z[w,]) and 2x =0, choose z such that §"z=x. Then there
exists x € m,(I,s) such that py=x, and x?>=A(Sq®>+w,USq!'+w,U
+wiU)z.

The Projective case. For the rest of this section we assume that E= P&"*!
and that a section s: X — E is given. We further assume that s is the image
(under the identification E=S¢ — P¢) of a section §: X — E. This section §
then determines a splitting ¢ =n"@¢'. The assumption that § exists does not
result in any loss of generality, for any section s determines a splitting £ =n@®L,
where L is some line bundle. Since P((®L)=P¢&, we could have taken ¢®L
instead of ¢, and {®L=(n®L)®(LO®L)=(n@L)Ps".

As above, write w;=w;n, and x= (1) € H*(X; Z[w,]). Let I be the space of
sections of E; since E — E is a covering map, i: =, (I, §) — =, (I, s) is injective.
Restriction of each loop of sections of p: E —» X to the base-point of X
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determines a homomorphism q: =, (I, s) — n,(F)=Z,, and we clearly have an
exact sequence:

0— m, (5 & n,(I,s) 4> Z,.
We call elements of n, (I, s) odd or even, depending on their images under q. We
write both =, (I',s) and =, (T, 5) multiplicatively.
If n has a non-zero section, i.e., y =0, we write n={@¢!, i.e., E={@e% Then
S'~P! determines a homotopy of sections X x S' =X x P! =Pe?c P¢. Let
¢ € ny(I',s) be the element represented by this homotopy; note that # is odd.

We consider #? € n, (I, 5).
In either case, we have a diagram with exact row and column:

(L.1) H""2(X; Z[w,])

0

v

H™(X; m,,,8")
A

0 — n,(F,3) & (l,s) 2 Z,

p

H" "N (X Z[w,])

|

0

(Note that the column of diagram (1.1) is the exact sequence in the statement
of either theorem 1.1 or 1.3, since I" is the space of sections of a sphere bundle.)

THEOREM 1.4. Let n=2. Then m,(I,s) is determined by the following
information:

(i) n,(F,8)=mn,((E),3), which is given in Theorem 1.1.

(i) x=0 if and only if n,(,s)=mn,([,3).
The following four conditions apply when x=0.

(iii) iAH*(X; Z)<n, ([, 5) is central.

(iv) For each x € H'(X; Z[w,]), there exists g € n,(F',5) such that pg=x
and tg¢~'g=A(x>).

(v) If wy, =0, then #*=1.

(vi) If w, #0, then pz> =w,. In fact, by choosing z € H%*(X; Z) to be zero (see
1.1. (iii)), we may insist that ¢*>=cc.
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Consider now the case n>2. We state three theorems which suffice to
determine =, (I, s) for k=1, dim X £2n—k—-2.

THEOREM 1.5. Let k=2, and dimX <2n—k—2. Then m(T,s)=mn,(T,3)
=n""%(X; n).

Recall that if &/ is any vector bundle over a complex X, a Becker—Euler class
X2 € T (X; o) may be defined; it is represented by the North polar section
X — S(@e'). If dim X £2j—3, then y,a=0 < o« has a section.

THeoREM 1.6. Let dimX<=2n-3. If xmn=+0, then n, (I, s)=mn,(F,3)
=n""Y(X; n).

We now consider the case x,n7=0. Let n={""'@¢" be a splitting. As noted
above, this splitting determines an odd element # € n,(I',s). Let T, be the
antipodal map on the total space of the sphere bundle of {, and let (T;), be the
corresponding automorphism of 7n*(X; (). Recall 1:x,([,§)=a"""(X;n)
=n""1(X; {); and consider =, (I",5)cn,(T,s).

THeoreM 1.7. Let dim X <2n—3, x,n=0. Then the following information
suffices to determine n,(I',s) as an extension of Z, by =, (I, 3):

() =1 (1,0).
(ii) For any g € n, (3, 272~ =" ((T) . ().

The proofs of theorems 1.1, 1.4, 1.6 and 1.7 are given in the following
sections.

2. Proof of Theorem 1.1.

Let F=8",n=2. Now E 2 X is a fibration over-and-under X, i.e., an object
in the category &%, so n,(I',s)=[X; Q4E], where Qy is the fiberwise looping.
Our technique is to construct a Postnikov tower for E & X in this category,
and then compute [X; QyE] using the associated spectral sequence.

We consider n=2 first. Now n,82~n,S?~Z. If a loop in X, f: S! — X,
represents « € n, X, then a acts on =,S? by multiplication by 1 or —1,
depending on whether f*w, =0 or not. On the other hand, the action on 7,52
is always trivial. Thus, the first 2 stages of the relative Postnikov tower are as
follows:
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K(Z,3)x X 4> E,

14
K(Z.2,w,) = E, > K(Z,4)x X

where all spaces are fiber spaces over-and-under X, and all maps preserve the
over-and-under property [13]. The k-invariant 6 can be computed as follows.
The fundamental class 1, € H*(E,, X; Z[w,]) represents the Thom class
U e H*(E,X; Z[w,]), and U*=y,UU, thus 0*1,=y,U1;—12. We have an
exact sequence:
HO(X; Z[w,]) 2% HX(X; Z) 4> 7, (I,9) 2> H'(X: Z[w,]) - 0.

(Note that if w, +0, H°(X; Z[w,])=0)

By the twisted analogue of Theorem 1.1 of [11], AH?(X; Z,) is central. Let

c: HY(X; Z[w,])x HY(X; Z[w,]) — H*(X; Z)

be the alternating bilinear “commutator”, i.e.,

-1 -1, -1
c(x, %) = A 'z zpy 2y,

where pz, =x, and pz,=Xx,. By the twisted analogue of Theorem 2.1 of [11],
clxp,x) = (FH)710G*) 7 (x4, x5)

in the diagram:

H*(X xT,X; Z[w,]) <5 H* (X x (S, v §,),X; Z[w,])
=H'(X; Z[w,])®H" (X; Z[w,])
]
H*(X; Z) .
= H*(XxT,Xx (S, v S,); Z) L5 HY X xT,X; Z)

where §;=~S,=~S", and T=§, xS,, the torus. Let ¢,,0, be the fundamental
classes of S,,S,. Then

0(x,®0,+x,00,) = x U (x,®0,+x,00,)— (x,®0, +x,R0,)?
= —2x;, Ux,®0, Uo,
since dim X <3, and so 1.1 (ii) is proved.
If w, =0, we are done, since H' (X ; Z) is free. If w, +0, w, is the only torsion
element of H'(X; Z[w,]), and we recall the definition ®,w,

=A"12p"'w, € H*(X; Z). In the diagram below (by Theorem 3.2 of [12]),
D,w, = (j*)"160(i*)"'w, (where S=S'!cP?):
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H*(X x P, X; Z[w,]) > H*(X xS, X; Z[wy)

, = H'(X; Z[w,))

H*(X; Z) _
= HYX x P>, X xS;Z)4i5 HY(X xP%L X; Z).
Now w, =67, thus
i*T(1®e") = 6T(1®0) = W, ®0;
0(0T(1®eY)) = (x®1) U 6T(1®e")— (6T(1®e"))* .

Since ®,w,; has indeterminacy 2H?*(X; Z), it suffices to complete the
calculations modulo 2:

006T(1®e")

W, ®1) U (W, ®@e* +1®e?)— (w;®e' + 1®e?)?
= w,® +wi®e? = j* (W +w)®e?),

and hence 1.1 (iii) is proved. This concludes the proof of 1.1, by Theorem 1.3 of
[11].

3. Proof of Theorems 1.4, 1.5, 1.6 and 1.7.

Recall that E=P&"*t — X, E=S&"*! - X, §: X — E is a section which
determines a splitting £ =n@e!, and s: X — E is the composition X > E
— E. Let I', ' be the spaces of sections of E and E, respectively.

LemMA 3.1. Let dim X <2n—2. Then n has a section (which then determines a
splitting n={"""@¢") if and only if there exists an odd element of =, (T, 3).

Proor. In section 1 we showed how a splitting determines and odd element 7.
Suppose, conversely, that an odd ¢ exists. Now E=S¢=S(n@e')=Sx(Sn),
which has two canonical sections, § and §,, the section antipodal to 5. Now a
loop in I' based at s corresponds to a path in I* from § to §,, which is precisely a
section X — PySy(Sn)=PyE, where Py is the fiber-wise South-to-North path
construction (see, for example, [7]). We have an inclusion of fibrations over X:

Sn & PE
b

The fiber of PxE is of the homotopy of QS", and S" !'<=QS" induces
isomorphism in homotopy through dimension 2n—1. Thus obstructions to a
section of Sy — X must agree with obstructions to a section of PyE — X up
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through dimension 2n—2, and these latter obstructions are obviously all 0.
(Note that we have not established existence of a section t: X — Su such that

iot ~¢. This stronger result holds if dim X <2n—3, as the reader can verify.)
Note that by lemma 3.1, theorem 1.6 is proved, as is part (ii) of theorem 1.4.
For the proof of 1.7 and the remainder of 1.4, assume that we have a splitting
n=_""'®¢', thus determining, in the manner of section 1, a fixed odd
¢ € my(I',s). We thus have an exact sequence, for n>2:

(3.1) 1 - (85 n,(ls)4> Z,— 0.

LeMMA 3.2. The extension (3.1) is determined by the two data:

Q) 22 e n (T, 3).

(i) The automorphism “conjugation by ¢ on =, (T, 5).

We omit the proof of 3.2 which is well-known.
The following lemma will be needed to prove 1.7:

LEMMA 3.3. Let n22. Writing E=S((@¢?), let T,: E — E be the function
induced by multiplication by (— 1) on each vector of { and the identity on €*. Let
also T;: I’ — T denote the corresponding map on the space of sections. Then the
automorphism (T), on n, (T, ) is precisely conjugation by ¢.

PrOOF. Writing ¢ ={@¢?, we have E=S¢=S¢ »y Se? (xx =fiberwise join)
and T,=T, xx T,. For each 0<0 <, let R,: S¢ — S&? be rotation of each fiber
of Se?=X x §* by an angle 6. Then R,=T,, Ry=1, and ¢ is classified by the
composition

X x[0,1]-% Se? > P <« PE = E,

where o(x,t)=R,5x for all x € X, 0<t<1. If g € n ([, 3) is classified by a:
X x[0,1] — S{*yxSe?, let By: X x[0,1] — S{#x Se?, 0SO=<n be given by:

Rypx if 0st<1/3
0(x,t) = | (T,xxRoa(x,3t—1) if 1/3<¢<2/3
l R 3068% if 2/3<t<1.

Now B, is homotopic to (T;*x 1)a and B, classifies Zg#~', hence lemma 3.3
is proved.

PROOF OF THEOREM 1.7. Part (i) now follows, since 1: n, ([',3) — ="~ 1(X; {)
is clearly consistent with the action (Tp),:

Proor oF 1.7 (i): Let sq,5,: X — Sx(S{)=Sn be the South and North polar

Math. Scand. 47 — 16
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sections. As elements of n"~ (X ; {), 0 is classified by s, and y,{ is classified by
s,, by definition. The inclusion i: Sn < QxS yxSn=QxS¢ maps each a € (Sn)y to
the map ia: [0,1] — SxSn where iat =[a, 2t] or [sox,2 —2t]. Thus is, is simply
X x[0,1] » X x S'=S¢? =S¢, which classifies #2; this completes the proof.

Our application which yields the dihedral and quaternionic groups will
require the following computational interpretation of (Tp),:

LemMma 3.4. Let ¢* be any real vector bundle over any C.W. complex X, dim X
Sk+1. Let (T),: (X ; {) = n*(X; {) be the automorphism induced by the
antipodal map on each fiber of S{. Then, in the exact sequence (where w;=w;(,
and 0= (Sq®+w, U)o)

H*"Y(X; Z[w,]) & H*"'(X; Z,) 2> n(X; {) &> HY(X; Z[w,]) - 0
for any g € i*(X; {) such that pg=x, (T;),g=(—1)*g+A(w, Ugx).

Lemma 3.4 is needed only for the specific application, and its proof is fairly
lengthy. Hence we omit it. The proof utilizes the theory developed in § 4 of [8],
in a fairly straightforward way.

The remaining portion of this section is devoted to completing the proof of
Theorem 1.4 in the case y=0.

Part (iii) of 1.4 follows from the fact that AH2¢{X ; Z) is central in =, ([, §) (see
[11]), the fact that conjugation by ¢ is filtration preserving, and the fact that
7, P? acts trivially on n, P2 = Z. Part (v) follows from the fact that if w,{ =0, { is
a trivial line bundle. Then #?=1 because the universal example is X =pt.

To show part (iv) of theorem 1.4, we need lemma 3.5 below, a slight
generalization of theorem 2.5 of [10]. Suppose that B* = Bis a fixed fibration
over-and-under B, and let

K

B +— B*

be a fibration over B* and under B. (That is, K — B* — B are fibrations, and
B — K and B — B* are inclusions.) Now let L &2 B* be a fibration over-and-
under B* (hence, automatically, over B* and under B), and let y: K — L bea
map over B* and under B. Let

E

B — B*
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be the fiber of Y in the category of fibrations over B* and under B, and then
Qp«L 2 B* is the fiber of B — K in the category of fibrations over B*.

Let (X, X')and (Y, Y’) be C.W. pairs over B¥, and f: (X, X’) — (Y,Y’)amap
over B*. Let (M, M) be the mapping cylinder of f, also a pair over B*. Now
consider the diagram: (note that each object in the diagram has a distinguished
element, which we refer to as 0)

(3) [X,X'; Qp, L]gs
A
[Y,Y'; Elg LS [X,X'; Elg
[M,,M}; K]z [V, Y'; Klg L5 [X,X'; K]
] ']

(M, M;UXUY; L]gs L [M;, M}; L] & [V, Y'; L]pe
|
[XxI,X'xIUX x{0,1}; L]gs

114

Lemwma 3.5. (I) diagram (3) is commutative, and all rows and columns are exact.
(II) If x e [Y,Y'; K]g and f*x=0, yx=0; then

AT *n 7 = (j%)710G%) " 'x

under the obvious identification [X,X'; QgeL]p+=[X x I, X' xIUX
X {0, 1}, L]Bn.

We omit the proof, which is a straightforward generalization of that of
theorem 2.5 of [10].

Part (vi) of theorem 1.4 follows from lemma 3.5, where we let B=X, B*=
X xP®, K=X x P® (over B* by the identity and under B by inclusion),
L=K(Z,3,w,®1+1®u), the twisted Eilenberg-MacLane space over-and-
under X x P®, and ¢: K — L is a map with

Y*; = 6T(1Qu?) e H3(X x P™; Z[w, @1+ 1®u));

and where f: (X x§*, X) — (X x§', X) is the identity on X and the double
wrap-around on S!. (We consider the target copy of X x §* to be over X x P®
by inclusion, and under X by injection.) Diagram (3) becomes:
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HY(X; Z[w,]) % HX(X xS, X; Z[w,®1 + 1®00])

*=
T squaring
q

q

i*

HY (X xP* X, Z,)

H'(X xS',X;Z,) L5+ H' (X xS', X;Z,)
=0
v* v
H3 (X x P, X xS'; Z[w, @1 +1@u]) <5 H3(X x P, X; Z[w, @1 + 1@u]) 2> H3 (X xS, X; Z[w,®1 + 1®00])

HY(X; Z[w,])

where £ is the pushout in the diagram:
|

nl(fsg) c mny(l,s) -4 Z,

Pl

H'(X; Z[w,]) ¢ F—4 > Z, 5> H' (X xS', X; Z,).

Now gpZ=1®g0 € H' (X xS§*, X; Z,), 1®¢o=i*(1®u), and
Yr(1®u) = 8T(1®u%) = j*T(1®u?) = j*so™,

and 67 =w,. Hence p#>=w,, by lemma 3.5. The parenthetical remark that we
can insist that #2=¢ is based on the fact that if y,=0, BO(1)=P% is a
universal example for X, and 2H?(P®; Z)=0.

Finally, part (iv) of theorem 1.4 follows directly from an unstable version of
theorem 4.1 of [8], in a manner similar to the proof of lemma 3.5. But since this
unstable version is not given in that reference, we give a direct proof. We have a

commutative diagram with exact rows, where (T, acts on all groups
consistent with all maps:

HO(X; Z[w,]) &5 H*(X; Z) 2> n (5 =& H'(X; Z[w,]) = 0

| L | |

H°(X; Z[w,]) & H*(X; Z,) %> n'(X; () &> H'(X;Z[w,]) - 0

where 0=(Sq*+w,U)g. Now if x € H'(X; Z[w,]), choose g € 7, (I, 5) such
that pg=x. Then #g¢~'g=Ai¢px for some ¢x. By 3.5, gpx=w, Ugx=Sq' ox
= (0x)* =gx%. But Kerg=2H?*(X; Z)=1Ind ¢x; thus 1.4 (iv) follows.
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4. An example involving non-commutative groups of order 8.

We now take X = P? x §3, and denote by H the non-trivial line bundle over
X. Define ¢é=H@®¢e®, and let I' be the space of all sections of E=P¢ — X.
Denote by a® the unique non-trivial 5-plane bundle over S°; note that a’@e!
=%, o’ =a*@e!, since ;B O(4) — nsBO(5) is onto. Moreover, a* does not
admit a trivial section. We set n, = H®e* over X and n,=(H®e*) %o’ ie., a
bundle over X obtained by altering 1, on the top cell of X, using a®. Then ¢&
=1n,®e! =n,@¢', while 4-plane bundles {;, = HPe>® and {, = (HPe3) 4 o* exist
such that n, ={, @¢' and n,={,@®e'. Let s5,,s, be the two sections of E — X
determined by the two given splittings of £ Then:

THeoReM 4.1. (I) =, (I, s,)=Dyg, the dihedral group of order 8.
(I1) =, (I, s,)=Qg, the quaternionic group of order 8.

ProoF. By 1.3, n,(F,5,)=n,([,5,)=n*(X; H)=Z,, and fits into the exact
sequence:

02,5 n,(I,s)2Z,—>0.

By lemma 3.4, conjugation by / on Z, is the non-trivial automorphism. Thus, if
we let g=i (1mod4) € n,(I',s;), we have Zg=g3¢.

In case (I), #2=1 by 1.6, since ¢, has a section.

In case (II), #>=iy,, again by 1.6, where x, € n*(X; H) is the Becker-Euler
class of {,. But since x({,)=0, x, must be the image, under 4, of the secondary
obstruction to section of {,. This secondary obstruction is clearly 0 on (H@®ze%)
and non-zero on a*, hence is non-zero on {,. It follows that #2= g2

In either case, a simple algebraic argument finishes the proof.

5. Historical remarks.

Following early work of G. Whitehead, Hu, Borsuk, and J. C. Moore on
function spaces, Barratt [1], Federer [5], and Thom [14] gave fairly definitive
treatments of the properties of homotopy groups of such spaces (1955-56).
Barratt and Federer approached the problem via filtration of the domain space
by skeleta (Federer used an exact couple), while Thom utilized the Postnikov
decomposition of the range. Barratt gave a complete calculation of n, (Y%, x,),
where X and Y are CW complexes, X is (n—1)-connected and (n+1)-
dimensional, and x, is the constant map. In particular he computed the group
extension involved in an exact sequence giving the above group. R. Brown [3],
[4], in the early 1960’s, then studied function spaces from a semi-simplicial
point of view, incorporating and extending the work of Barratt and Thom.
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We note here that in our earlier paper [10], Proposition 3.3 is given by
Thom in [14], while Brown [3], [4] has results similar to Theorem 3.6.
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