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SK, FOR FINITE GROUP RINGS: II

ROBERT OLIVER*
Let = be a p-group, and let 4 be a p-ring: the ring of integers in some finite
extension F of the p-adic rationals Q,. Our goal is to study the groups
SK,(An) = Ker[K,(An) — K,(Fn)]
Wh (4An) = K,(An)/(A* x n2%) (where n®°=n/[n,n]), and
Wh' (An) = Wh (An)/SK,(4n) .

The main result is the following computation of SK, (A4n):

THEOREM 3. For any p-ring A and p-group =,
SK,(An) = H,(r)/HP(n),
where H2%(n) is the subgroup of H,(n) generated by all H,(g) for abelian g <.
In particular, this can be applied when computing SK, (Zn), shown by Wall
[10] to be the torsion subgroup of Wh (n). There are short exact sequences
0 — Cl, (Zn) > SK,(Zn) — SK,(Z,m) - 0

where Cl, (Zn) can be studied using K, (see [6]).
By a result of Wall’s [10], Wh' (4=) is torsion-free for any p-ring 4 and p-
group n. Hence

K,(Am) = SK,(Am) x A* x 1*® x Wh' (An)

is completely described (as an abstract group) by Theorem 3 and results in [8]
and [10]. Additional control over the structure of Wh' (A=) is given by:

THEOREM 2. For any unramified (over 2,) p-ring A and any p-group =, set

I(An) = Ker[An — A]; I(An) = I(An)/<{x—gxg™' | x e I(Am), gen) .

* The author was supported by a Sloan fellowship while part of this work was being done.
Received March 4, 1980.
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Then there is a short exact sequence (natural in n and A)

0 — Wh' (A1) L5 I(An) 2> n2* > 0,
where (X 4,g)=T1[g]™ ™ (Tr: A — Z,, the trace map).

One consequence of Theorem 2 is a simple formula for H*(Z,; Wh' (Z,7))
(Proposition 13) when = is a 2-group and Wh' (Z,7) has the involution induced
by g — g~ ! (answering a question of Wall’s in [11]).

Note that the formula for SK, (A=) in Theorem 3 is independant of the p-
ring A. If B/A is a totally ramified extension, the inclusion An < Bn induces an
isomorphism SK, (An)= SK, (Br). If, on the other hand, B/A is unramified, it is
the transfer map

trf: SK, (Bn) — SK, (An)

which is an isomorphism.

Interestingly enough, H,(n)/H2"(n) has already been studied by Neumann
[5], in relation to “cutting and pasting” (“Schneiden und Kleben”) groups
SK,(X) for topological spaces X. Upon combining his Theorem 2 with
Theorem 3 here, one gets the amusing formulation

SK,(Am) = SK,(Bm).

A skerch of the organization of the paper now follows. In Section 1,
generators and a partial set of relations are constructed for

Ker [SK, (A7) — SK,(Am)]

when 1 - Z, - % — n— 1 is a short exact sequence of p-groups. They
suffice, for instance, to show that SK,(4An)=0 when n has a normal abelian
subgroup with cyclic quotient. Combining this with results in [6] gives a
formula for SK,(Z[Z, x n]) for any odd n and any dihedral, quaternionic, or
semidihedral 2-group .

Section 2 deals with the construction of the exact sequence

0 — Wh' (An) L5 I(Am) 2> 7%® — 0
of Theorem 2. I' is defined by composing the p-adic logarithm

log: Wh' (An) —» I(An)®@Q

with a linear automorphism of I(An)®Q.
This is then used in Section 3 to calculate SK, (An). For any extension

log-odt->n->1
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of p-groups, subgroups ¢, Sg,<e are defined: g, =0 N[#, %], and
0, =<z€o | z=ghg 'h~!, some g,he ).

The exact sequence of Theorem 2 (applied to g, %, and n) is combined with
some diagram chasing to produce a natural isomorphism

Coker [SK, (A7) — SK,(Am)] = go/0, -

H,(n)/H%(n) is then shown to be the “universal” g,/g, for extensions of =,
yielding a natural surjection

O 4t SK;(Am) — Hy(n)/H () .

Finally, @ ,, is shown to be an isomorphism for all A and =.

This is applied in Section 4 to calculate SK,(An) in a number of cases.
“Minimal” p-groups © with SK,(An)#+0 are constructed: these occur for |r|
=64 if p=2, or |n|=p* if p is odd. Relations

SK,(A[m, x1,]) = SK,(An,)@®SK, (4n,), SK,(A[n2Z,]) = SK, (4n)

(mQZ, the wreath product) are also shown.

In a later paper, these results will be applied and extended to get similar
formulas for SK, (An) when = is an arbitrary finite group (and A4 still a p-ring).
In particular, the results here in Section 2 apply to show that SK,(An) is
generated by induction from elementary subgroups of . Combining that with
Theorem 1 in [6] will show that induction from elementary subgroups also
holds for SK, (Zn).

Some final comments on notation. G><H always denotes a semidirect
product where G is normal. By a commutator will always be meant a group
element of the form ghg~'h~'; not an arbitrary product of such elements,
Brackets { > are used for “subgroup generated by”. And “Tr” is used to denote
trace maps, “trf” to denote transfer maps.

ACKNOWLEDGEMENT. I would like to thank the Math. Department at M.LT.,
and especially Frank Peterson and Ed Miller, for their hospitality while much
of this work was being done. I also thank the referee for his many helpful
comments.

The following lemma, consisting of results of Wall and Swan, is the starting
point for studying K 1(2,,7'5)1

LemMMA 1. Let A be any Zp—order in a finite-dimensional semisimple Qp-
algebra, and J =W any two-sided ideal.
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(i) For any n, Ker[GL, (J) — K,(W,J)] is closed in GL, (J) (in the p-adic
topology). In particular,
K,(U,J) = lim K, (U/p"W,J/(J N p"W)) .
K, (U,J) is the product of a pro-p-group with a group of order prime to p, and so

K,(¥U,J), can be regarded as a Zp-module.
(ii) If J has finite index in A, then

tka, (K, (%,J)) = rks, (K, () = ks (Z(2),
where Z(N) denotes the center of A.
Proor. (i) See Theorem 10 (and its proof) in [9]. The relative case follows
from the absolute case by definition:
K,(%,J) = Ker[K,(B) — K, ()]

for some p-adic order B A x A.
(ii) Let M2A be a maximal order, and Z (M) its center. By ([8], Theorem
8.10 and Proposition 8.11), the maps

K,(U,J) - K, () — K, (W) — K,(Z())
all have torsion kernel and cokernel; and the p-adic logarithm shows that
K,(Z(M)) and Z(M) have the same rank (see [10], Proposition 1.6).
Now let = be a p-group, and A a p-ring with maximal ideal p,. By
[1, Corollary XI.1.4], An is a local ring with maximal ideal
My ={) Agi € An | Y Aepy) = Ker[An %> A — Afp,].

In particular, any element not in M, is a unit; so matrices over An are
diagonalizable, and Wh (A4n) is generated by units.
Let

I = I(An) = Ker[e: An — A]

denote the augmentation ideal. Consider the exponential and logarithmic
functions

Exp (x) = 1+x+x2/214+x3/31+...
Log(1+y) = y—y*2+y3/3—...

for any x,y € I for which the series converge. They are clearly inverses where
defined. There will be reason to distinguish two types of function: Exp and Log
will be used to denote the functions between (subgroups of) I(An) and
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1+1(An), and exp and log to denote induced homomorphisms involving
subgroups of K, (Am,I).
For any A and =, set

I(Am) = I(Am)/conjugation = I(An)/{x—gxg ! I xel, gemn)

(dividing out by the subgroup generated by such x—gxg~!). I(An) can be
regarded as the free A-module with basis

{1-g;| i=1,...,k}.
where g,. . ., g, are conjugagy class representatives for non-identity elements

gEeEM

ProrosiTION 2. Let A be a p-ring, = a p-group, and I=I1(An). Then the
exponential map induces an isomorphism

exp: pl(An) — K, (Amn,pl) .
ProOF. Let {e=go,g,,. - .,8:} be conjugagy class representatives for =, and
{A,..., 4} a Z,-basis for A. The set
{1+pA(1—g)l1sis], 15j<k}

is easily seen to generate (1+ pl(An))/(1+p"I(An)) (mod commutators) for
any n; so by Lemma 1 (i) it generates K, (A4n, pI). Since

K,(Am,pl)x (1+pA) = K,(A4=,p),

K, (Am, pI) has rank kl by Lemma 1 (ii); and so the above set must be a Z‘,-
basis. In particular, K, (Ar, pl) is torsion free.
Now consider the composite

E: pI B2, 14pI — K, (An,pl).
Exp is a bijection (with Log as inverse), so E is onto. For any x € pl,

IELRRICIE. N,

lim (1+p"x)"?" = lim [1+x

= Exp (x).
For any x,y € pl and n2>1,
(1+p"x)(1+p"y) = 14+p"(x+y) (mod p>")
(1+p"x) (14 p"y)"'”" = (1+p"(x+y))"/"" (modp") in K,(Am,pl)

(using here that K, (Am, pI) is torsion free); and in the limit
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E(x)-E(y) = E(x+y) .
So E is a homomorphism, and thus induces an epimorphism
exp: pI(An) - K, (Am, pI) .

(E(gxg~')=E(x) for ge n and x € pl, since Exp (gxg~')=g Exp(x)-g~!).
Both groups are free of rank ki, so exp is an isomorphism.

From this we get

PROPOSITION 3. Let A be a p-ring, and ©t a p-group. For any x € 1(An), Log (1
+ x) converges in 1(An)®Q. The resulting map
Log: 1+I(An) —» I(AT)®Q

is a homomorphism, and induces an injection

log: Wh' (A7) —» I(AT)®Q .

In particular, for u € 1+1(An), [u] lies in SK,(An)< Wh (An) if and only if
Log (u)=0 (in 1(A7)®Q).

Proor. A/p[n] being a finite local ring [1, Corollary XI.1.4], any proper
ideal is nilpotent. In particular, I (An)* < pAn for some k, and then convergence
of Log (1 + x) follows directly. Furthermore, this says that (1+x)?" € 1+ pl for
any x € I and p">k; and since

1 .
Log(1+x) = ?Log (1+x)?

by algebra, Proposition 2 shows that the induced map is a homomorphism to
I(An)®Q. Wh' (An) is torsion free by [10, Theorem 4.1], and thus injects by
Proposition 2.

The following simple arithmetic facts are shown here for future reference.
LEMMA 4. (i) Let A be a p-ring, p < A the maximal ideal, A= A/p the residue

field, and © the composite
A—> AILF

Then Ker (t)={A—4?| A € A}.
(i) Let z € Z, be a generator; then in Z[Z,],

(1-2? = —p(1—-2) (modp(1-2)?).

P
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Proor. (i) Define y: A — A by Y(4)=1—A7; and let ¥ be its reduction in A4.
For any r=1, 1€ 4, and pu e p’,

YA+p) = Yy +pu—pAP~tou— ... —pP = YA +pu (modp™t);

and from this it easily follows that Im () is a union of cosets of p. In the
residue field we have

Ker () = {A=1"} = F,, and Troy(4) = Tr(A—4?) = 0

(4 and 4” being Galois conjugate). So Im () =Ker [Tr: 4 — F,] by counting;
and hence Im (y)=Ker (7).
(ii) This is trivial for p=2. If p is odd, just note that

1=[1-(1-2)) =1-p(l—-x)—(1-2)" (modp(1-2)?).
(My thanks to the referee for pointing out this much shorter proof).
One more technical lemma is needed before starting the computation of
SK,.

LEMMA 5. Let A be a p-ring, &t a p-group, z € &t a central element of order p,
and set n="/z. Then

(i) The sequence
1+ (1—-2)A% — Wh (A7) > Wh (4An) —» 0

is exact.
(ii) Let &: At — A denote the augmentation map, and let ©: A — F, be as
above. Then the logarithm map

Log: 14+ (1 -2)A% — (1 -2z)A7
is defined, and has image
Log(1+(1-2)4%) = {(1-2)¢ | & € AR, toe(§)=0} .

Proor. (i) The map A% — Am is a surjection of local rings, and hence
induces a surjection on K, ([1, Corollary I11.2.9]). All elements in 1+ (1 —z)47#
are units (again because A7 is local), and so the natural map

14 (1 —2)A% — K,(Af, (1 —2)AR)
is onto ([1, Theorem V.9.1]). Hence the exactness of
1+ (1-2)A% — K,(A7) —» K (An) - 0

follows from the exact sequence for an ideal. Exactness of the corresponding
sequence with Whitehead groups follows immediately.
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(i) Since p(1—2)| (1 —2)? (Lemma 4), it follows that n!(1 —z)| (1 —2)" for all
n1. In particular, Log (1 + (1 —z)&) converges in (1 —z)A7 for any ¢ € A% (z
being central). Furthermore, for any & € I(A7), the series

(1-2z)? (1-2)°
TR

Exp ((1—2)¢) = 1+(1—2)¢+ E+...

converges in 1+ (1 —2)A7 (£" — 0 as n — oo: see the proof of Proposition 3.)

It follows that

Log (14 (1—-2)A%) 2 (1-2)I(A7) .
For any A € A,
Log(1+4(1—2) = (1-2)(A—4?) (mod (1 —2)?)
by Lemma 4. Since 1+ A(1—2) is central, this shows that
Log (1+ (1 —2z)A%) = {(1—2)¢ | & e AR, e(&)=A— AP, some 4 € A}
= {(1-2)¢| 10e(&)=0} (Lemma 4).

From now until Theorem 1, we consider a fixed p-ring 4 and a fixed

extension
l1-Z,»>7- %5 n—>1

of p-groups. Let z € Ker («) be a generator: note that z is central in #. The goal
now is to study

Ker [SK, (A7) — SK,(A)] .
Define subsets ¥ <n and Z=a~ ' (¥)=#:
¥ = #(#2) = {gen| the elements in ™ 'g are conjugate} ,

and
P =PRz2)={get I g is conjugate to zg} .

Note that ¥+ ¢ if and only if z is a commutator.
Let A/p[¥#]1< A/p[n] denote the subgroup of linear combinations of
elements in &, and set

A/p[L] = A/p[&]/conjugation, A/p[n] = A/p[rn]/conjugation .
Let a,: A% — A/p[n] be the obvious projection.
PROPOSITION 6. Define

C = {0, (E—&") e A/pln] | &e A, [1+(1-2)E]=1 in Wh (A7)} .
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Then C= A/p[¥] and is a subgroup. Furthermore, there is a short exact
sequence

0— C — Ker [A/p[#] = F,] 2> Ker[SK, (A7) — SK,(Am)] — 0;
where for any ¢ € Ker [A/p[#] — F,] and any lifting to & € A[Z],

Q(8) = [Log™* ((1-2)8)] e SK, (A7) .

Proor. Define subgroups ScT< 1+ (1 —z)Af:
T = Ker[1+4 (1 —2)A% — Wh' (47)]

S = Ker[1+(1—-2)47% - Wh (A7)] .
By Lemma 5(i), there is a short exact sequence

1+ (1—2)A7
L1td—24n

0
S

— Wh (A7) > Wh(4An) - 0.

It follows that
Ker[SK,(A%) — SK,(An)] = Ker[SK,(A%) — Wh (4An)]
Ker [Wh (47) —» Wh (Ax)® Wh' (47)]

14

14

Ker [L"L—(IT"Z—)@- — Wh (A7) — Wh' (Ar”r)]

T/S .

By Proposition 3,
T= {uel+(1—2)A7 | Log()=0 in I(47)}
= {ue 1+ (1—2)A7 | Log(w)=(1—-2)¢, ¢ a sum of elements
ig(g € &) and A(g—hgh™") (g, h e ®)}.
We first show that
SN (1+(1—2yA8) = TN (1+ (1 —zy A7)
for r=2, by downwards induction. Note that p(1—2)| (1—-2)?, so
SN (1+(1—2PA7) = TN (1+ (1 —z)PAR)

by Proposition 2 (K,(A#, pI) is torsion free and thus injects into Wh' (A7)).
Now assume 2<r<p-—1; then
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Log(1+(1—-2)¢) = (1—-2)¢ (mod (1-2)*1),

and it thus suffices to check that 1+ (1—2z)"¢ is a product of commutators
(mod (1—2z)"**) when

&= 2(g—hgh™") gheR) or E=Iig(ge?).
In the first case:

[h,1-1(1-2)g]

1+A(1—zy(g—hgh ™ )(1-2(1—-2yg)~!
14A(1 =2 (g—hgh™?) (mod (1—z)*").

If g € #, choose h € # such that zg=hgh™!; then
[h1—-A(l—2z"'g] = 1+A(1-2)g(1-A(1—2)""'g)"!
1+A(1—2fg (mod (1—2)*1).

Thus, letting S T be the images of S, T in (1 + (1 —2)47)/(1 + (1 —2)* A7),
we have T/S=T/S. Now consider the induced map

1+(1-247F  (1-2)A#

Log:
OB I (1—2247  (l—2)A%

where
Log (1+(1-2)¢) = (1-2)(¢—¢&") (mod (1—2)%)

by Lemma 4. Both groups are isomorphic to 4/p[n] (under addition: note
again that (1—2z)?|p(1—2z)); so everything can be translated to the map

y: A/p[n] — A/p[n], (&) = ¢-¢P.

Let pr: A/p[n] — A/p[r] denote the projection. Then proy is a homomor-
phism, and regarding S and T as subgroups of 4/p[n] we have

T = (proy) '(4/p[#]) and C = proy(S).
In particular, C is a subgroup of 4/p[%]. Furthermore,

proy(T) = Ker[4/p[#] — F,]

by Lemma 4.
It remains to show that S§2Ker (proy). Upon writing proy as a composite

A/p[n] 2 A/p[n] > A/p[n],

we see that Ker (proy) is generated by elements A(g—hgh“j and by Z,c A/p.
ForreZ,

1+r(1-2) = z7"e S (mod (1-2)%);
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and as in earlier computations
14+4(1—2)(g—hgh™") = [h1-A(1-2)g] (mod (1—-2)?).
This shows that
Ker [SK, (A%) — SK,(Am)] = T/S = Ker[A4/p[#] — F,)/C .

Retracing the proof shows that the isomorphism is actually given by the map Q
defined above.

When & =, this gives immediately:

ProposiTioN 7. If z is not a commutator, then
SK, (A7) — SK,(An)
is one-to-one.

When &+, we want to find as many elements as possible in C. For
convenience, for g, h € «, set

{g’h} = [g_’h] €T

for any g € a7 'g and h e a™'h (the extension is central, so this is uniquely
defined).

LEMMA 8. Assume z is a commutator, and let C < A/p[F] be defined as above.
Then, for any 4 € A/p and ge &:

() AMg—gYeCifptk
(i) (A—AP)g e C
(i) A(g—h) € C if he & with {hg}=z.

Proof. Fix hen such that {h,g}=z By restricting to the subgroup
generated by g and h, we may assume = is abelian. In particular, & contains no
pth powers in this case.

For convenience, let C< A/p[n] be the subgroup generated by C, and
elements Ag for g ¢ &. Since C < A/p[¥], it will suffice to prove that the above
elements lie in €. Note that for any & € A/p[n], &° € C.

Fix ge a"'(g) and h e o~ (h).

(iii) We have [h,g]=z. So for any >0,

(g™'h1-2@E-h1 = 1+201-2)E—h[1-2@-h]""
= 1+t(1-)[AE-R' + 2@ -h*+A°(@-h*+...] (mod (1-2)).
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Dropping pth powers, this gives
tfAg—hy+A2@g—h*+...1eC (all t21).

Induction downwards shows that A(g—h)' € C for all t=1 (this holds trivially
when p|t). In particular, A(g—h) € C.

(i) Note that whenever p }k, {h™ g} ={h" gP**} =2z for some m. By (iii)
above,

§))] Ag(1—gP) = A(g*—h™—A(@g?**—h") e C for any k=0

(noting that Ag* € C when p|k). This in turn implies that

) Jg(1—gy = 2g(1—gy P(1-g?) e C for any r2p.
For any r=1:

(h1+A(1—-9)] = 1+A[(1—zg) = (1 =@ 11 +A(1-2)1""
=1+ [ i A(;)(l -8 ia —z)‘g‘][l —A1—=gy+A2(1-9*-...]
i=1
= 1+r(1-2)(1 -8y 1g[1=A(1 =gy + A2(1—9)* —...] (mod (1-2)?) .
Again dropping pth powers, this yields

(3) Ag(l—gy '—A%g(1—g* ' +1%g(1—g)* '~...eC when p}r.

Since A'g(1—g)"~! € C when ir—12p (by (2)), a downward induction now
gives

@) ig(l—gy' = ig(l—gy %(1-g)eC, any 2<r<p-1.

This in turn implies Ag*(1 —g) € € for 1<k<p—2 (by induction on k); and
hence

Ag=1gt=...=1g""! (mod?).

Combining this with (1) shows that i(g—g*) € C whenever p*k.
(ii) When r=1, (3) takes the form

ig—A%g(l—-g)+A%g(1—g—... eC.
By (2) and (4), all but two terms drop out, leaving
Ag+APg(l—gpP! = Ag+AP(g+g*+...+g”)eC.
Since 4Pg'=A?(g) (mod C) for 1<i<p-1, and 1?g? € C, this gives
(A-AngeC.

Since A/{4—AP}=Z, by Lemma 4, Propositions 6 and 7 and Lemma 8 now
give:
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THEOREM 1. Let 1 - Z, — & %> 1 — 1 be any extension of p-groups, let
z € Z, generate the kernel, and let A be any p-ring. Define

¥ =FRz)={gen | the elements in o~ '(g) are conjugate} .
Let ~ be the equivalence relation on & generated by:
g ~ h if g,h are conjugate ,
ifg =h (pfk), or
if [§,h] = z forany gea'(g), hea '(h).
Then Ker [SK,(AR) — SK,(An)]=~Z%, where
(@) k=0 if =g
) k = |F/~-1 ifL+F.

More precisely, if S+, let {go...,8} be ~-equivalence class
representatives in & lifted to &, and let A € A be any element with t1(1)#0 in F »
Then the elements

Exp (1(1_2)(80"81)), léi.s_r )
generate Ker [SK, (A7) — SK,(An)].

We end the section with an example, showing that Theorem 1 easily implies
SK,(An)=0 for many familiar p-groups =.

PROPOSITION 9. Assume = is a p-group, and g<an an abelian normal subgroup
such that n/g is cyclic. Then for any p-ring A, SK,(An)=0.

Proor. Choose z € ¢NZ(n) of order p, and set n'=n/z. We may assume
inductively that SK,(An’)=0. If z is not a commutator, we are done
(Proposition 7); otherwise let & and ~ be defined as before. Set ¢’ =g/z, fix
x € n' generating 7'/¢’, and define {g,h} (g,h € ') by

{g,h} = [g,h] en, any ghen covering g,h.

For any g € &, choose h € & such that {g, h} =z. Either gh’ or g'h lies in ¢’ for
some i (n'/o’ being cyclic); we may assume by symmetry that ghi=a e g¢'.
Writing h=>bx’ for some b € ¢’ we get

z = {g,h} = {gh',h} = {a,bx'} = {a,x'} = {ax,x’}
= {ax,x/(ax)™} = {x,x/(ax)™}}

since x/(ax)~/ € ¢'. So
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g~h~ghh=a~ax~xiax) 7 ~x in&,
the relation is transitive, and SK,(An)=0 by Theorem 1 (and the induction

hypothesis).

In particular, SK,(An)=0 for any 2-ring A when = is a dihedral,
quaternionic, or semidihedral 2-group. Combining this with results in [6]
gives:

COROLLARY. Let m be a dihedral, quaternionic, or semidihedral 2-group, n>1
an odd integer, and t(n) the number of divisors of n. Then

SK,(Z[Z,x 7)) = (Z,)™~ 1.
PROOF. Since n is odd, we can write Z,[Z,]=3 A4, a sum of 2-rings. Then

SK,(Z,[Z,xn]) = Y SK,(4[r]) = 0
by Proposition 9. Since SK 1(2,,[2,,>< n])=0 for odd p ([10, Theorem 9.1]),
SK,(Z[Z,x7]) = Cl, (Z[Z,x~n]) = Z{m~1
by Theorem 4 in [6].

Again consider the injection

log: Wh' (Am) — I(Am)®Q

described in Proposition 3. For any unramified (over Zp) p-ring A and any p-
group 7, define

¢ = @4 €Gal(4/2,): (1) = A7 (modp) for i € A;
@: [(Am) — I(An): () Ag) = Y o(A)gh;
and

I = I'y,: Wh' (An) > I(A)®Q: I'(u) = log (u)—%di(log u) .

Since @ is nilpotent (®™ =0 if p™ =exp (n)), an inverse can easily be constructed
to show that I' is one-to-one (and an isomorphism rationally).
We first check that I' is integral-valued and natural.

ProposiTioN 10. (i) I'(Wh' (Ar)) s I(An).
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(i) I' is natural with respect to maps induced by group homomorphisms and
Galois automorphisms of A. For any p-group 7 and any pair B2 A of unramified
p-rings, the squares

Wh' (An) L5 I1(Am) Wh' (Bn) L I(Bn)
lincl lincl ltrf lTr
Wh' (Br) -5 1(Bn) Wh' (An) 15 I(An)

commute.

Proor. (i) For any x € I(An),

r'(l1+x) [x—%x2+...]—[1<D(x)——l—¢(x2)+...]
p 2p

i (—1)”"“—1—[x""—-¢(x")] (mod I(An)) .
k=1 pk

To see this for p=2, note that

1 1 1 1
[;¢(x)+3—pd>(x3)+...] = —[;<D(x)+§—l;¢(x3)+...] (mod I(An)) .

So it suffices to show that pk|[xP*— ®(x¥)] for all k; or that

Pl =@ (xP" )]
(in I(An)) for all n>1 and x € I(An).
Write x=Y 4g;, and consider a typical term in x”":
'1.', <o ii,,gx, - 8ig (g=p") .

Letting Z . act by cyclically permuting the g/’s, we get a total of p"~' conjugate
terms, where p' is the number of cyclic permutations leaving each term

invariant. Then g; ... g; is a p'-power, and the sum of the conjugate terms has
the form

n—t

- p pll“l
p"~'AP'g? € 1(Am) <I = l_[l Aip 8 = Hl gi,>-
i= j=

If t =0, we are done. If £ >0, there is a corresponding term p" ‘7% 'g? " in the
expansion of x?""'. It remains only to show that

=1

PR = P e( g = ph (P )g” (mod ph) .

But p' [P~ (1" ")), since p|[4* — o (D)].
(i) Naturality with respect to group homomorphisms is clear. Naturality

Math. Scand. 47 — 14
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with respect to Galois automorphisms holds since they all commute with the
Frobenius automorphism ¢. If B2 4, then I' commutes with the inclusion
maps since @g|lA=0,.

In checking naturality with respect to the trace and transfer maps, first note
that @ commutes with the trace (since it commutes with Galois
automorphisms). It suffices therefore to show naturality of the logarithm; or
equivalently that the following diagram commutes:

pl (Br) 24, pI(Anm)
lexp lexp
Wh' (Bn) 45 Wh' (A7) .

Recalling that for b € B, Trp4(b) is the trace of the matrix for multiplication by
b as an A-linear map ([4, Theorem 1.5.3]); we get, for x € pI(Bn) and n>0,

trf (14 p"x) = 14 p"Trp/4(x) (mod p*").

Hence
trf (14+p")"" = (1+p"Trp 4 ()" (modp"),

and in the limit (the transfer being continuous)
trf (exp (x)) = exp (Trp4 (x)) .

The following lemma supplies the main induction step for proving Theorem
2. For later use, it is shown here for arbitrary p-rings.

LemMA 11. Let A be a p-ring, 1 - Z, - & — n — 1 an extension of p-
groups, and z € Z, a generator. Let

lg: Ker [Wh (47) —» Wh (4An)] — Ker [I(A7%) — I(An)]
be the map induced by the logarithm. Define
e: At —> A and 1:A—>F,

as in Lemma 4 and 5. Then
(i) if z is a commutator, 1g is onto.
(ii) if z is not a commutator, the sequence
Ker [Wh (47) — Wh (4n)] 25 Ker [1(A%) — I(Am)] - F,—0

is exact, where v((1 —2)¢) = tog(&).
Proor. First note that Ker [Wh (A7) — Wh (4n)] is generated by 1+ (1

—z)ARt by Lemma 5 (i). So Ig is integral valued by Lemma 5 (ii) and a well
defined homomorphism by Proposition 3. Furthermore,
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Im (Ig) = Im[1+ (1-2)A% 285 (1—z)An — Ker [I(47) — I(An)]] .
If z=[h, g], choose 1 € A with t(1)#0. Then
A(1—2z)g ¢ Log (1+ (1 —2)AR)

by Lemma 5, but 1(1 —2z)g=0 in I(A7). Since Im (Log) is a subgroup of index
p (Lemma 5), this shows that lg is onto.

If z is not a commutator, then g and zg are never conjugate for g € 7. It
follows that (1—z)¢ =0 in I(A#) if and only if £ is a sum of terms of the form

Ag—hgh™) and A(g+zg+...+2z°7g).

These both lie in Ker (z0¢), so v is well defined, and the above sequence is exact
by Lemma 5.

The following lemma in its full generality will not be needed until Section 3.

LEMMA 12. Let n be a p-group, and g<am a non-trivial normal subgroup
generated by commutators in n. Then g contains a commutator z € Z(r) of order
p. In particular, any non-abelian © contains a central commutator of order p.

Proor. Note that [g, h]"=[g",h] whenever [g,h] € Z(n); it thus suffices to
find some non-trivial central commutator in g¢. So we may assume ¢ & Z(n);
choose any

e + x' € Z(n/(eNZ(m)) N ¢/(eNZ(m));
and fix some x € = sitting over x'. Then x ¢ Z(n), and there is g € = with
e+ z=[xgleoNZ(n).

The last statement follows upon setting ¢ =[n, n].

We can now prove:

THEOREM 2. Let © be any p-group, A an unramified p-ring, and I'=T 4, as
defined above. Then the sequence

0 > Wh' (4n) L5 I(Am) 2> 7% - 0
is exact, where

o}, 4g) = [T (g™ *) e n2° (Tr=Tryz2).

ProoF. We first show that wol =0. It clearly suffices to do this when n=n?®
is abelian; and since I is natural with respect to the trace and transfer maps
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(Proposition 10), it suffices to do it when A=2p. Set I=1(An)=1(Ar), for
short.
First note that I?> = Ker (w):

w(Ag(1—a)(1—b)) = g*(ag) *(bg) *(abg)* = e

for e A, abgen.
For any u=1+3Y 4,g;,(1—a)(1—b) € 1 +I?,

= 1+ irgP(1—a)?(1—b)

1l

1+ o(A)gr(1—a?)(1-b?)
&(u) (mod pI?).

So u?/®(u) € 1+ pI?, and
I'(u) = log (u)— %fb(log (w) = %log (uP/@ () € I* < Ker (w)

(® commutes with log, since 7 is abelian). But 1+ I2 generates Wh (an), since
foruel+l,

u

1-Y 4,(1—g) (some A; € A, g; € n)
n[l—i(l— gl =J[01-(1-g) A = Hg‘ (mod 1+1?).

Exactness of the sequence

0 —» Wh' (An) — I(An) - 7®* — 0

can now be checked. Fix z € Z(r) of order p, and assume z is a commutator if ©
is not abelian. Assume inductively that the corresponding sequence for n’' =m/z
is exact. Since woI'=0, and the maps

Wh' (An) > WN (A7), I(An) — I(An), and 7®® — (')

are all surjective (Lemma 5(i)); it remains only to check exactness for the
corresponding sequence of kernels:

0 — Ker [Wh' (An) — Wh' (47')] L Ker [I(An) — I(A7)]
2o, Ker[#®® — (n)2*] —» 0.

Clearly w, is onto (and we have seen that I'y is one-to-one).
For any { € An®Q, #((1-2)¢)=0 (2" =e and z is central). So I' is just the

map induced by the logarithm, and the composite
Ker [Wh (4n) — Wh (An)] £ Ker [Wh' (4n) — Wh' (4n)]
Lo, Ker[I(An) — I(An)]

is the map lg of Proposition 11. If n is abelian, then
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Im (Fo) 2 Im(Ig) = {(1-2)¢ | Tr(e(®) = 0 (modp)} = Ker ()

by Proposition 11 (note that w((1—2)&)=z~"¢¢) in this case). If = is non-
abelian, then z is a commutator, so I'yof is onto by Proposition 11, I, is an
isomorphism, and we are done.

One application of Theorem 2 is the following answer to a conjecture of
Wall’s, related to calculating L-groups ([11, Conjecture 5.1.3]).

PROPOSITION 13. Let n be a 2-group, and consider the involution on Wh' (Z,7)
induced by g — g~'. Then

Wh _ {lglen™|[e’1=¢}
HI(ZZ, Wh (zzn)) = {[g] I g conjugate to g~ 1>

(where for g € m, [g] denotes its class in n2®).

Proor. Give I(Z,n) and 7°° the obvious involutions, so that all maps in
the short exact sequence of Theorem 2:

0 Wh' (Z2,m) -1 1(Z,m) <> 72® > 0

are Z,-linear. Then

H'(Zy; 1(Zym) = 0

(the involution permutes a Z,-basis of 1(Z,7)); and so

H'(WN' (Z,m)) = Coker [H®(Z,; I(Z,m)) — H°(Z,; n*®)]

_ {glen|g1=¢)
~ <[gl| g conjugate g~'>

ExampLes. The only 2-groups n of order <32 with H*(Z,; Wh' (2,7))%0
are the two semidirect products

Zg><Z, = <a,b| a®=b*=¢, bab™'=a")
for r=3 or 5. For an arbitrary metacyclic 2-group

n = {ab | a¥"=e,b*" =a*, bab~ ' =a") ,
Proposition 13 applies to show that

H(Zy; Wh(2Z,m) =0  ifm=1,0r4}s orr=+1 (mod2"

114

Z, otherwise .
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3.

The results in Section 2 will now be applied to compute SK, (A=). This will
be based to a large extent on using the snake lemma exact sequence

Ker [Wh (47) — Wh (4n)] 2> Ker [Wh' (47) — Wh' (47)]
-2, Coker [SK,(A%) — SK,(Am)] — 0

to study Coker (SK,;) when & — = is a surjection of p-groups.

LeEMMA 14. Let 1 —» g — T — 7 — 1 be an extension of p-groups, such that ¢
is generated by commutators in &. Then for any unramified p-ring A, the induced
map

SK, (A7) — SK,(An)
is onto.
Proor. Lemma 12 (on the existence of central commutators) allows us to

reduce this to the case where ¢=Z . Let z € g be a generator, and consider the
maps

Ker [Wh (A7) — Wh (4n)] 2~ Ker[Wh' (4n) > Wh' (4m)]
Lo Ker[I(Af) — I(Am)] .

The composite is surjective by Proposition 11 (I'y=log in this case). By the
snake lemma,

Coker [SK, (A®) — SK,(An)] =~ Coker (f) = 0.

This can now be applied to the next proposition, which reduces the
computation of SK,(An) to the case when A is unramified over 2,,.

PROPOSITION 15. Let A < B be any totally ramified extension of p-rings. Then,
for any p-group m, the inclusion A< B induces an isomorphism

i,: SK,(Am) — SK,(Bnm) .

Proor. Replacing A, if necessary, by its maximal sub-p-ring unramified over
Zp, we may assume that it is unramified. Then A4/p is the residue field for both
A and B, so the map

K,(4/p[n]) = K,(B/p[n])

is split injective. Since



SK, FOR FINITE GROUP RINGS: II 215

SK,(An) ¢ K,(4/p[n]) and SK,(Bm) c K, (B/p[n])

(K, (Am, pI) and K (B, pI) being torsion free by Proposition 2), i, is injective.

In proving surjectivity, we may clearly assume that n is non-abelian. Let
zen be a central commutator of order p, and assume inductively the
proposition holds for n’'=mn/z. Since SK,(An) maps onto SK,(An’) (Lemma
14), it suffices to show that i, restricts to a surjection

io: Ker [SK,(Am) — SK,(An')] — Ker[SK,(Bn) — SK,(Bn)] .
Letting
14:A—F, and 15 B—F,

be the maps used in Section 1, note that 7,=1p|A: The inclusion ASB
induces an isomorphism of residue fields. So by Theorem 1, i; sends a
generating set for the first kernel onto a generating set for the second, and is
thus onto.

In particular, this result implies, for any p-ring A with residue field A and any
p-group 7, that SK, (An) is a subgroup of K, (An) depending only on 4 (not on
A itself).

We next apply Theorem 2 to compute

Coker [SK, (A7) — SK,(Am)]

when A is an unramified p-ring, and

) BLEN TN R |
an arbitrary extension of p-groups. Consider the diagram

0 — SK,(Ag) = Wh (dg) 1> I(40) 2> ¢** — 0

N

0 — SK,(An) » Wh (An) L I(An) 2> 2®° — 0

The rows are all exact by Theorem 2, and the composite in any column is zero.
A little diagram chasing shows that there is a well defined “boundary” map,
analogous to that in the snake lemma:

4 = [Wh (a)ol’;ﬁ‘ort)ow"]: Ker (12%) — Coker (a,) .
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Let %, denote the composite
%yt 00 = 0 N [R 7] — Ker[1%°: ¢2® — #2b]
-4, Coker[SK, (A7) — SK,(An)] .

PROPOSITION 16. Let 1 — ¢ — & %> 1 — 1 be an arbitrary extension of p-
groups, and set

e = ¢ N [#, 7]
0, = <z€g I z a commutator in T) .
Then for any unramified p-ring A, %, induces an isomorphism
%,: 0o/0; = Coker [SK, (A7) — SK,(An)]

which is natural with respect to maps between extensions.

PRroOF. %, is clearly natural, by construction. Consider the maps
SK (A7) 2> SK,(A[#/e,]) **> SK,(Am).

Since g, is generated by commutators. «, , is onto by Lemma 14. So %,|g, =0
by naturality, and %, factors through g/g,. Furthermore, «,, is one-to-one by
Proposition 7 (¢/¢, contains no commutators), and so it suffices (looking at
subextensions) to show that x, is an isomorphism when ¢=Z , and contains no
commutators.

Consider the diagram

Ker [Wh (A7) — Wh (An)] & Ker [1(A%) — 1(An)] 2> Z,—-0

1B Lid
0 — Ker [Wh' (47) — W’ (4n)] L Ker [I(47) — I(An)] -2
12 Ker [#% — 7] — 0
Coker [SK, (4%) — SK,(An)]
!
0

The first row is exact by Proposition 11, the second by Theorem 2, and the
column by the snake lemma. If g &£ [#, ] (so go =0, =1), then Ker (v)=Ker (w),
B is onto, and

2o/0; = 0 = Coker (f) = Coker [SK, (A7) — SK,(An)] .
If o< [#, 7], then go/e, =Z, and #*®x7?®. So

Coker [SK, (A®t) — SK,(An)] = Coker () = Z,,
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generated by dol ;}((1—z)¢) for any & € Af with t0e(£)=*0. In particular, we
may take =4/ for some A4 € A with Tr (1)= —1; and referring to the diagram
used to define %, we get

00T 7/ ((1=2)4) = A(w((1—2)4) = 4z"TW) = A(z).
So %, is also an isomorphism in this case.
In order to get a “universal” go/g, for extensions of a p-group n, we now
consider H,(n) using Hopf’s definition:
H,(m) = RN [F,F]/[R,F]

when n=F/R and F is free (see, e.g. [2, Section VI.9]). Given any central
extension

lopog—->T-%H o1,
choose a lifting v: F — & of the projection v: F — F/R=mn. Then
¥R e W(RF) =1,
and v induces a well defined map (independant pf v and V)
0*: H,(m) — ¢ .

Clearly, Im (6*)=90 N[#,®]. By naturality, * is seen to be the same as the
homomorphism 5£ in [7]; in particular, it is part of an exact sequence ([7,
Theorem V.2.2]):

e®7* 1> Hy(R) 22> Hy(m) 2 ¢ — A% — 7.

LemMA 17. Let m be a p-group.

(i) There is a central extension 1 - ¢ — f& %> 1 — 1 such that 6* is an
isomorphism.

(i) For any g<am there is an extension 1 — ¢ — & %> m — 1; such that
upon setting § =&~ (g), the subextension

lo06-o0>90—1

is central, and 6* is one-to-one.

Proor. (i) See Proposition V.5.1 in [7].
(ii) Set g=|n/gl, and regard = as a subgroup of the wreath product ?Z,
=g%>aZX,. Fix a central extension

l-—-»a—-»g'l-»Q—»l
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of p-groups such that §* is an isomorphism; and set
0=02Z) " and 7= () '(n
(as subgroups of ¢'¢{Z,). This gives extensions
log?>§g2>9—>1 and 1-d?>7F-%5 a1,

6 is the composite of 6* with the diagonal, and hence one-to-one.
Now define, for any p-group =,

H®(n) = Im[Y {H,(0) | o<n, o abelian} - H,(m)] .

Since H,(n)=A>(n) for n abelian, H3®(n) is just the subgroup generated by
elements

gnh=[gh]eHymn),
where g h e n, gh=hg, and g h are liftings to some free group. So for any
central extension

logo-n% -1
we get

6*(H3>(m)) = (g € 0| g a commutator in 7).
Now let

lopo-oi-% -1

be an arbitrary extension, and define
0 =0 N[A7], 0 =<g€e@ | g a commutator in )

as before. Then g/p, is central in #/g,([¢, #] S0,), and for any unramified p-
ring A there are maps

SK,(Am) —» Coker [SK, (A7) — SK,(Am)] <% go/0; «* H,(m)/H3(n) .

Define
0 4 SK, (Am) — H,(m)/H%(m)

to be the composite of these maps for any extension o« such that 6 is one-to-
one (so that §* is an isomorphism). Using the naturality of x, and taking
pullbacks of extension, one easily checks that @ ,, is well defined indepen-
dently of a. '
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ProposiTioN 18. Let A be an unramified p-ring and n a p-group. Then the
epimorphism

6 4n: SK,(A) — H,(m)/H5*(n)

is natural in m. If © 4; is an isomorphism for any p-group 7 surjecting onto m, then
© 4, is also an isomorphism.

Proor. Naturally follows from the naturality of x, and §* To check the last
statement, it suffices to show for any = that @ ,, is an isomorphism if and only
if there is some 7 surjecting onto 7 so that

SK, (A7) — SK,(An)

is the zero map.
If there is such an a: # —» =, then the surjection

H,(m)/H5*(r) — @o/0; = Coker [SK,(Af) — SK,(Am)] = SK,(Am)

(01 E00 = 0=Ker (o) as before) shows that @ ,, is an isomorphism. Conversely,
if @4, is an isomorphism, choose any central extension

logog->na-%5 -1
for which 6% is one-to-one; then
SK,(An) = H,(n)/H3®(n) = go/0; = Coker[a,: SK,(AR) — SK,(An)],

and so a,=0.

We now prove that @4, always is an isomorphism by studying
Coker [SK,(Ag) — SK,(An)]

when g<an with cyclic quotient. This involves two lemmas.

LEmMA 19. Let A be an unramified p-ring, and g<am p-groups with m/g cyclic.
Then the boundary map

0: Ker [Wh' (4g) = Wh' (4n)] — Coker [SK,(A4g) — SK,(An)]

(induced by the snake lemma) is onto.

Proor. This is clear if ¢ is abelian: SK,(An)=0 by Proposition 9. If not,
choose some central z € [g, ] which is a commutator in = (Lemma 12). Set '
=mn/z, g'=g/z, and assume the lemma holds for ¢'<an’.
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Consider the commutative diagram:

Ker[SK, (An) — SK,(An")]

In
Ker[Wh' (4g) - Wh' (471)] -2 Coker [SK,(40) — SK,(Am)] N
n | Coker[Wh (4g) — Wh (4n)]

Ker [Wh' (4¢") — Wh' (4n")] -&> Coker [SK,(4g’) — SK,(An)] — 0

where the rows are exact by the snake lemma (and the induction hypothesis).
We will show

(i) joonm = 0, (i) v, is onto, and
(iii) Ker (v,) € Im (n)+1Im (0) .

Surjectivity of 0 then follows by diagram chasing.

(i) Showing j,on=0 amounts to checking that every element in
Ker [SK,(An) —» SK,(An')] has the form 1+ (1—2z)¢ for some ¢ € Ag. By
Theorem 1, it is enough to show that every equivalence class in & =% (n,z)
contains elements of ¢'. Let a: ® — 7’ denote the projection. Then for any
g€ a (&), [g,h]=z for some h € =, all elements in

{algh’),a(gh) | i€ Z}
lie in the same equivalence class of &, and at least one of them is in g
(ii) Theorem 2 yields a commutative diagram
0 — Ker[Wh' (4g) —» Wh' (An)] — Ker[I(4g) — I(An)] — Ker[g*® — n2*]
l"l lVl l;
0 — Ker[Wh' (4¢') = Wh' (An)] — Ker[I(Ag))) — I(An)] — Ker[(¢)*® — ()] .

One easily sees that v, is onto, and so the same holds for v,.
(iii) Consider the following maps:
0—- SK,(4¢) — Wh(4g) — Wh'(40)— 0
AT
SK,(An) 0 — SK,(Ag) > Wh(4g) » Wh'(4g) —» 0

KA,

0— SK,(Anr) — Wh(4n) — Wh' (4n) - 0
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If z is a commutator in g, then f; and f*, are both onto (Lemma 14), the
sequence

Ker () > Coker (i;) =2 Coker (i})

is exact, and we are done.

If z is not a commutator in g, then Coker (f;)=Z, by Proposition 16.
Choose g € ¢ such that g and zg are conjugate in & (z is a commutator in 7); fix
A € A such that Tr (4)£0 (modp); and set

u = TI"1(A(1-2)g) e Wh' (4g) .
Lift u to & € Wh (Ag); then since f3(u)=0=1i;(u),
f2(i1) € SK,(AQ)), i,(i1) = 0(u) € SK,(An);

and f, (1) generates Coker (f;) by Proposition 16 and the definition of x,. Since
f>(i) and i, (%) map to the same element of SK,(An’), diagram chasing shows
that

Ker [v,: Coker (i;) — Coker (i})] = {Im (1),i,(#)> < Im (y)+1Im (7).
This gives in turn:
LemMA 20. Let g<am be p-groups with n/o=Z,. Then for any unramified
p-ring A,
Coker [SK, (4¢) — SK,(Am)] = Coker [H,(0)/H5*(e) = H,(m)/H ()] .

In particular, if SK,(A@)=0, then @ ., is an isomorphism.

Proor. Consider the following diagram:

0 — SK,(4g) — Wh (dg) - Wh' (4g) — 0

l ! l
0 — SK,(Am) — Wh (4n) - Wh' (Am) - 0.

By Lemma 19, there is an exact sequence
Ker [Wh (40) = Wh (4n)] £> Ker [Wh' (4g) = Wh' (4n)]
— Coker [SK,(Ag) —» SK,(An)] - 0.
The composite
Wh' (4g) = Wh' (An) 1 Wh' (4g)

is induced by tensoring with the bimodule ,,A4m 4,, and is hence the norm map
N for the action of n/g on Wh' (4g). In particular,
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Ker[Wh' (Ag) — Wh' (An)] = Ker (N).

Let x e ® be any element generating mn/¢ and let ¢ denote the action on
Wh' (Ag) induced by conjugation by x. Elements of the form a~'¢(a) for
a € Wh' (Ag) clearly lie in Im (f), and it follows that

Coker (B) =~ Coker [SK,(A4p) — SK,(Amn)]

is isomorphic to a subquotient of H'(n/¢; Wh' (Ag)) (n/¢ being cyclic). Since
@ 4, induces a surjection

Coker [SK,(4g) — SK,(4m)] — Coker [H,(0)/H3*(¢) —» H,(m)/H5*(m)] ,
we will be done upon showing that
Coker [H,(0)/H*®(@) = H,(m)/H3*(m)] = H'(n/o; Wh' (4¢))
(both groups being finite). L
First note that H! (n/g; I(Ag))=0: I(Ag) has a Zp-basis permuted by n/g. So
H' (n/o; WH' (4g)) = Coker [H°(n/o; I(Ag) —~ H°(n/o; ¢™)] .
On the other hand, the spectral sequence for g<am induces an exact sequence
Hj(n/0) %> H,(n/; ¢*) — Coker [H,(¢) > H,(m] — 0.
Identifying H, (n/o; 0®®) with H°(n/o; ¢®°), this gives
Coker [H,(0)/H3"(e) = H,(m)/H3*(m)] = HC(r/o; ¢*™)/J

for some J < HO(n/g; o).
Let x € n again denote an element generating n/g9. By comparison with the
spectral sequence for {x), we see that

Im (9) = <x?> € H'(n/g; ¢®) .
Similarly, for any g, h € g such that [gx, h] =e, a comparison with the spectral
sequence for {gx,h) shows that the image of
H,({gx,h)) = Hj(m) - H°(n/g; ¢*)/Im (3)
is generated by

[h] € H(n/o; 0®°)/Im (9) .

Since any rank-2 abelian subgroup of n not in g has this form,
J = ([h] € H°(n/e; ¢®) | h € o, h conjugate to xhx~' in @),
which is precisely the image of H%(n/g; I(Ag)) in H°(n/g; o).
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We have thus shown that @, is an isomorphism if either (i) @ ,; is an
isomorphism for some 7 surjecting onto =, or (ii) SK, (4g) =0 for some g<arn of
index p. Proving that @ ,, always is an isomorphism is now just a matter of
choosing the right inductive argument.

THEOREM 3. For any p-group n and unramified p-ring A,

O 4: SK,(Am) — H,(n)/H3"(n)

is an isomorphism.

Proor. Fix A, and let 2 be the family of all p-groups = such that @ ,; is an
isomorphism for any central extension # — n. We will show inductively that
2 contains all p-groups.

Let © be an arbitrary p-group, o<am a subgroup of index p, and assume
0 € 2. Now fix

(i) an extension 1 — ¢, — %, > 1 — 1, such that the subextension
lo0p— g™ -1 (§o=°7<;1(9))

is central and 6% is one-to-one (Lemma 17).
(ii) an arbitrary central extension 1 — ¢, — 7, I N
(iii) &: % — = the pullback of &, and #, over =
(iv) «: g — o the pullback of g, and g, =d&; (o) over g.

Then #/g=Z, and the extension
16002 90—1
is central. Furthermore,
6% H,(0) > 6 = 040,

is one-to-one, since 6™ is.
Consider the exact sequence ([7, V.2.2])

o®§™® 2> H,(0) * Hy(@) %> o,

where y(x®g)=xAg for xeo and geg ([7, V.2.1]). In particular,
Im (y) < H®(g). Since &° is one-to-one, ¢ € 2, and § is a central extension of g,

SK,(49) = H,(@/H@) = 0.

Thus, @ 4; is an isomorphism by Lemma 20. Since 7 maps onto #;, © 4; is also
an isomorphism (Proposition 18). But %, was an arbitrary central extension of
n, so m € @, and we are done.
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Combining this with Proposition 15 shows that for any p-group =, SK, (A7)
is independent of the choice of p-ring A. In the case of a totally ramified
extension B2 4, it was the inclusion which induced an isomorphism SK (An)
~SK,(Bn). If B/A is unramified, we now show that the transfer map induces
the isomorphism:

ProposITION 21. Let B2 A be p-rings, and m a p-group.
(i) If B and A are both unramified over Zp, then the triangle

SK, (Br)~_85-
duf SH,(m)/H5 (n)

SK, (AT Om
commutes.

(ii) If B/A is any unramified extension, then the transfer map
trf: SK, (Br) — SK,(An)

is an isomorphism.

Proor. (i) This reduces to showing, for any central extension
lop->a%> -1,

that the diagram used to define », commutes with the trace and transfer maps.
This is clear for the vertical maps (transfers with respect to ring extension
commute with maps induced by group homomorphisms). The diagram

0 — SK,(Bm) — Wh (Br) L I(Bn) 2> 7%® — 0
ltrf ltrf lTr lid
0 — SK,(An) - Wh (An) L5 I(An) 2> n*® — 0

commutes (and similarly for ¢ and 7) by Proposition 10 and the definition of w.
(ii) Let A, A and B,< B be the maximal sub-p-rings unramified over Zp
(so A/A, and B/B, are totally ramified). Consider the diagram

SK,(Byn) - SK,(Bn)

ltrf ltrf
SK,(Aom) -2 SK,(Am).

The inclusion maps are isomorphisms by Proposition 15, and the transfer
map for By/A, is isomorphic by Theorem 3 and (i) above. It remains only to
check that the square commutes; in other words that the natural map

p: An® 4,2 Bon — Bn
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(induced by multiplication) is an isomorphism. Let t € A be any generator of
its maximal ideal p, (and thus also a generator of pg). Then

{1,t,...,t°7'} (e=[A4: Ag]=[B: B,))

is an Agn-basis for An and a B,rn-basis for Br; and the result follows.

4.

Some specific examples of computing SK, (4n) will now be considered. They
are all fairly straightforward, so many of them are stated with sketchy proofs or
without proofs. Since SK, (4n) has been shown to be independent of A, most
results will be stated only for SK,(Z ).

The first lemma shows, among other things, that H,(n) need not be
calculated completely; it suffices to understand H,(n/Z(=n)). As before, for
commuting elements g, h € =, define

g Ah =[gh]eHyn)
for any liftings g,h of g, h to some free group covering n. Define
A(n) = {g A he Hy(n) l g hemn, gh=hg}.
Note that while this only is a subset of H,(m), it is closed under taking powers
((g A kY=g A ). The subgroup generated by A(m) is, of course, just H3%(n).
LemMA 22. (i) For any central extension 1 — ¢ — & 2> n — 1 of p-groups,
SK,(Z,%) = H,(®/H#) = Ker (6")/{A(n) N Ker (5%) .

(ii) A p-group m has the property that SK, (Zpﬁ)=0 for all central extensions
7t of m, if and only if A(n)=H,(n).

(iii) Let G be an abelian group, and n= G>Z ,» some semidirect product. Then
H,(nr)=R,®R,, where

R, = Im[H,(G) = H,(n)] = Hy(Z,; H,(G)),
and
R, ={xng | g€ G, xg=gx} = H\(Z,; G) (x € Z,. any generator) .
Proor. (i) Consider again the exact sequence of ([7, V.2.2]):
0@ > H, (%) > Hy(m) 2 o,
where y(x®g)=x A g for x € ¢ and g € # So Im (y) < H(%); and furthermore,
o, (H®(#R) = (g Ahe H,(n) | g, h lift to commuting elements of &)
= (A(m)NKer (6%)) .

Math. Scand. 47 — 15
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(ii) If A(m)=H,(n), the result follows directly from (i). If not, choose some
x € Hy(n)— A(n)

and fix a central extension 1 —» 9 —» ® %> © — 1 with 6* an isomorphism
(Lemma 17). Then by (i),

SK,(Z,[#/0*(x)]) + 0.
(This, applied to n= (Z?, is the idea behind Neumann’s example calculating
H, (n)/H(n) in [5]).
(iii) This can be done by first showing
H,(G>=Z) = Ho(Z; H,(G)®H,(Z; G),

using the obvious spectral sequence; and then applying the exact sequence ([7,
v.2.2]):

P'Z®(G=Z)® 1> Hy(G=<Z) — H,(G>Z,) -5 p'Z;

noting that 6=0.

In proposition 9, it was shown that SK, (an)=0 if 7 is a p-group having an
abelian normal subgroup with cyclic quotient. Some other examples where
SK,(Z,m)=0 follow:

PropoSITION 23. SK,(Z,m)=0 if n is a p-group and
@) In/Z(m)| <p?,

(i) n/Z(n) is abelian of rank <3,

(iii) =/o is abelian for some central cyclic g<am.

@iv) |l <p*, or

(V) p=2 and |n|<32.

Proor. (i) This amounts to checking that A(n)=H,(n) if = is a p-group and
|n|<p3. This is easily seen if m is abelian; in the other cases one checks
(applying Lemma 22 (iii) for the first two):

Hy(m) = <a®Ab) = Z, if n =<(ab| a”’=bP=e¢ bab~'=a?*')
H,(n) = {d'b nc} = Z2
if © = <a,b,c| aP=bP=cP=[a,b]=[b,c]=e,[a,b]=c)
H,(Q(8)) = 0 (quaternionic group of order 8).
(i) A(m)=H,(n) if = is an abelian p-group of rank at most 3.

(ii) We prove this when ¢=Z . Set n' =7/, let a: m — 7’ be the projection.
and consider
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0 =0:Hyn)—> Z,.

Ker (8) is generated by elements of the form g, A h, —g, A h, (n is abelian, so
H,(n)=H3%(n')); and we must show any such element lines in
(Ker ()N A(n)). If (g, A hy)+0, then

g1 Ah—g Ahy =g A hlhiz“gilgz A hy

and d(g, A hyhb)=05(gig, A hy)=0 for some i. So we are done in this case, and
similarly if 6(g, A hy) 0. But if 5(g, A hy))=6(g, A h;)=0, then

g Ahi—g, Ahy = gigs 't A hih, € A(n) .

(iv) This is a special case of (i).

(v) Let © be a group of order 32, fix some Z,<1m, and set n'=n/Z,. If n’ is
abelian, then SK,(Z,m)=0 by (iii), and if 7’ is metacyclic then SK (2,m)=0by
Proposition 9. This leaves four possibilities for n’' (see [3, p. 349, Aufgabe 30]):

n =2Z,xD(@), Z,xQ(8), Z4;< D(8), or (Z,xZ,)~<Z,;

which are easily eliminated using either Lemma 22 (iii) or the Kiinneth
formula. (H,(n')=A(n') for all except n'~Z, x D(8); we come back to this
particular case in the next proposition).

Some minimal examples where SK l(2‘,11:)-4;0 will now be constructed:
ProposITION 24, (i) If p is odd, then there exist © with |n|=p> and SKl(an)

*0.
(i) There exist m with |n|=64 and SK,(Z,m)+0.

Proor. (i) First assume p>3, and set
n = (al,az,a3,x| a?=x?=[a,a]]=[a,,x]=e,
xa,x "' =a,a,, xa;x "' =a,a,) .
H,(n) = {ay Aag, a; Ax) = Z2  (Lemma 22 (iii))
A(m) = {aynazy ULa; AX) (ayAas=a; Aa,=0).
Using Lemma 17, construct 1 - Z, — % -> n — 1 such that
Ker (6%) = {a, A az+a; A X);

then SK,(Z,#)=Z, by Lemma 22 (i).
If p=3, set

n = {a,bx| a*=b°=x>=[a,b]=¢, xax~ ' =ab®, xbx"'=ab) .

Hy(m) = Canb, x Ab®) = Z3, A(n) = <anb)U<L{xab®).
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Choose 1 —> Z;—»>7-%>n— 1 with Ker(6=d{aanb+xAb3>; then
SK,(Z;m)=Z,.

(i) Set m=Z,xD(8), where D(8)=<a,b|a*=b*=(ab)*=e¢), and c
generates Z,. Then

H,(m)=Z3 with basis {a*> Ab, arc, bac)
A(r) = Hy(m)—{a* Ab+a nc}.
Choose 1 — Z2 — 7 -%» Z, x D(8) — 1 with Ker (69)=<a® A b+a A ¢); then
SK,(Z,m)=Z,.
Some more general relations between the SK, (Z »7) will now be shown. For
any n, @{Z, denotes the wreath product:
nZZp = nP>=<Z,,

where Z, acts by permuting the factors.

ProposITION 25. (i) For any p-groups m, and m,,
SK1(2p[n1 Xm,]) = SKl(zp[n1])®SK1(2p[n2]) .

(i) SK,(2,[mZ,])=SK,(Z,n) for any p-group .
(ii1) SKl(an)=0 if m is a p-Sylow subgroup in some symmetric group X,

Proor. (i) This follows immediately from the Kiinneth formula:
Hy(my x7y) = Hy(n,) @ H, (1) @ ni® @ nd°;
and

@ = (gAh| geny, hem) € H®(n xmy).

(ii) Let i: ® — n{Z, be inclusion onto one factor of n? (not the diagonal).
We prove only that the induced map

i : SKy(Z,m) — SK,(Z,[mZ,))

is onto (this is all that’s needed for part (iii)). Proving that i, is an isomorphism
requires a more detailed study of “wedges” in H,(nZ,).

Note first that the map H,(n?) - H,(n?Z,) induced by inclusion is onto:
E} , =EZ% ;=0 in the spectral sequence for nQZ,. Surjectivity of i, follows upon
decomposing it as a composite:

SKl(zpn) _%_) HO(zp; SKI(Zp[np])) - SKl(zp[nzzp]) .
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(iii) This follows immediately from (i) and (ii), p-Sylow subgroups of
symmetric groups being built up via products and wreath products.

The isomorphism @ 4;: SK, (An)= H,(n)/H%(n) is defined rather indirectly
in general. We end by showing that in the situation of Theorem 1, however, ©
can be described quite explicitly on the elements described there.

ProrosiTioN 26. Let 1 - Z, —» & -*> n — 1 be an extension of p-groups,
and z a generator of Ker (x). Define
(i) & ={gen | elements of o~ 'g are conjugate}
={gen | 8*(g A h)y=z, some he Z,(g)} .
(ii) x: & — H,(n)/(Ker (6*) N A(n)), where
x(2) = [g Ahl, any h € Z,(g) such that 6*(g A h)=z .

(iii) o, : H,(R)/H () — H,(m)/<{Ker (6N A(rn)) the map induced by o (an
injection by Lemma 22).

Then y factors through &/~ (the relation defined in Theorem 1); and for any
unramified p-ring A, g, h e a~ (), and A € A,

0 4z [Exp (A(1—2)(g— )] = Tr (2) ;" (x(ag) — x(h)) .

Proor. First note that y is well defined:
gAh—g Al = gnAhW) ! eKer (6% N A(n)
if %(gAh)=0d8*(gAl)=1z.

In a similar fashion, one checks that all elements in Im (x) have order p, and
that y factors through &/ ~.

Choose a central extension 1 — g, — & %+ & — 1 so that §%is a surjection
with kernel H2%(#%) (use Lemma 17). Set & =aod& and ¢ =Ker (&). The extension

| R A |

is central: [z,g] € 6*(H3(#))=1for any z € ¢ and g € 7. From Lemma 22 and
the naturality of J, & is seen to be a central extension inducing a commutative
square

H,(R)/H®#) —&— 0,
la‘ ) lincl
H,(m)/(Ker (69N A(m)) £ .

Lift g,h € # to g,h € , and set
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x = %x(xg), y = *(x(h)).

Note that g is conjugate to xg and h to yh in 7, and d(x)=&(y)=z.
Since SK,(AT)=0 (Lemma 22), @ 4; is defined as the composite

SK,(AR) < Wh (A7) « Wh (A7) 425 [(AR) — I(Ago)—2> 0o
& H(R/HP ) .
Exp (A(1 —z)(g— h)) lifts to
u = Exp[A(l-x)(g—1)—A(1—y)(h—xy~')] € Wh (47) .
Noting that I' ;z;(u)=log (1) (x and y having order p), we get
T p) = A(1-x)@—-D—A(1—y)(h—xy~")
= —Al=x)+A(1—-y)xy~! = Axy ' —1) e Im[I(4gy) — I(4A7)] .

Then
O (Exp (A(1-2)(g—h)) = (69 "o (A(xy™' - 1))
0%~ ((xy~ T )

Tr (A) oy ' (x(ag) — x(ah)) .

Using this formula, examples can be constructed to show that the upper
bound for the rank of

Ker[SK, (A7) — SK,(Am)]

given in Theorem 1 is not always the best possible.
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