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ON CONFIGURATIONS IN 3-SPACE
WITHOUT ELEMENTARY PLANES AND
ON THE NUMBER OF ORDINARY PLANES

STEN HANSEN

1. Introduction.

In the article [1] Bonnice and Kelly give an interesting example of a class of
configurations in ordered projective 3-space not containing elementary planes,
[1, p. 46], (i.e. planes containing exactly three points of the configuration). As
proved by Motzkin for 3-space [4, p. 454] and by myself in general for d-space
[2], any configuration of a finite point set not having all its points lying in one
(d—1)-plane must contain at least one ordinary (d-—1)-plane, ie. a (d—1)-
plane, such that all but one of the points of the configuration in the (d—1)-
plane are contained in one (d —2)-plane.

The term configuration is used here in the sense defined in [2, p. 176].

Already Motzkin in [4, p. 452] observed, that there are configurations in 3-
space without elementary planes, for example configurations consisting of
points placed exclusively on two skew lines with at least 3 points on each line.
Obviously there are no elementary planes. Further he noted that the Desargues
configuration in 3-space with 10 points is also without elementary planes. As
mentioned Bonnice and Kelly give a further class of examples.

The first aim of the present paper is to give still more examples of
configurations in 3-space not containing elementary planes.

In the same article Bonnice and Kelly develop a method for estimating a
lower bound on the number of ordinary planes for configurations with n
points, and they prove, that this number must be at least 7 -n, and that if the
condition, that there is no elementary plane in the configuration, be added,
then the number of ordinary planes must be at least 2n.

The second aim of the present paper is to give some improvement of these
results.
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2. Configurations in 3-space without elementary planes.

The Bonnice-Kelly example, which can be regarded as a generalized
Desargues configuration, is as follows:

Consider in ordinary 3-space (completed with a plane at infinity) a prism
whose bases are oddsided regular polygons. Let the number of sides be p. Take
the 2 p vertices of the prism, the p points at infinity which are the intersections
of the p pairs of parallel polygon sides and the plane at infinity, and the point
common to all the sidelines of the prism and the plane at infinity. The
configuration thus constructed has no elementary planes. For p=3 the
configuration is the Desargues configuration.

We shall now give some further examples as promised:

2.1. As in the example just described we start with a prism in E, whose
parallel bases are regular polygons with p=4k, k € Z, vertices. Let {P;} and
{Q:}, i=1,2,...,p, be the respective vertex sets of these polygons labelled in
cyclic order in such a way that the lines P,Q, are sidelines of the prism.

Let B; be the point at infinity on the line P,P;,, and let A; be the point at
infinity on the line P;_, P, ,, all indices on the vertices taken mod p and on the
line at infinity mod p/2. Note, that a line P;4; or P, ,,A4; has precisely the
point P;, resp. P;,,,, in common with the P-polygon. Such lines will be °
labelled “tangents” to the polygons. Take the points P, Q;, A;, B; and adjoin to
this collection the center, 0, of the P-polygon, the center, C, of the prism and
the point, D, at infinity common to the lines P,Q,.

This collection of 3-p+3 points defines a configuration I'= (', Iy, I',) of
points, lines and planes such that no plane in I', is elementary. This can be seen
as follows:

Obviously there is no elementary plane containing D. The same applies to C,
since these two points play projectively symmetric roles.

There can be no elementary planes through any B,, since all ordinary lines
through B; pass through C or D.

Planes containing any A, can only be elementary, if they contain exactly two
ordinary lines through A, and as lines through C or D are excluded, these
should be lines P;4; and Q;A4,. This is true, since line 04, contains P,, ,,. But
two tangents through the same A, either belong to the same polygon, or they
span a plane containing C (e.g. 4;P; and A4,Q;,,,) or D (e.g. A;P; and A4,Q)),
and in neither case can the plane be elementary.

Planes not passing through C, D or any B, or A; must have two points either
from {Q, | i=1,...,p} or from {O}U{P, | i=1,...,p}, but as two such points
never span an ordinary line, such a plane cannot be elementary. This
concludes the proof.
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2.2. Now add to the configuration just described the center, T, of the polygon
Q; ... Q,. This new configuration with 3p+4 points has no elementary planes.

2.3. Take again the configuration from 2.1 for the case p=8, and remove the
points B, i=1,...,p/2, as well as 0. Again we have a configuration without
elementary planes. The number of points is $p+2.

We shall leave the proofs for 2.2 and 2.3 to the reader.

D

Fig. 1.

In order better to assess the symmetrical nature of the described
configurations we will consider them in another projection: Let the plane
containing {Q,. .., Q,} be the plane at infinity, and let C and D be placed as top
points of a double pyramid with the polygon P,,.. ., P, as the common base.
Then the Qs become intersections between the plane at infinity and the
sidelines of the pyramids. The points A; are intersections between the plane at
infinity and those polygon diagonals, which are not parallel to any of the
polygon sides, and the points B; are intersections between the plane at infinity
and the polygon sides and those diagonals, which are parallel to them. O is the
center of the double pyramid, and T is the intersection of its axis and the plane
at infinity.

In connection with the case p=4 we shall make some further observations.
Consider the figure in fig. 2. This configuration, I', can be viewed as consisting
of two parts, namely a cube P, ... P,Q, ... Q, with its center C and the 3
points D, B, and B,, where its edge lines intersect the plane at infinity, added,
and an octahedron, M;N; M,N,OT, inscribed in the cube with the 6 points A,
Ay E\, E,, F, and F,, where its edge lines intersect the plane at infinity, added.

We call each of these parts a “basic system”, and we note, that any basic
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system can be construed in several ways as an octahedron with 6 points added
as well as a cube with 4 points added as above. If in a given projection a basic
system is pictured in the cubic way, then the complementary system in the
same projection is pictured in the octahedronic way.

We shall not here discuss the structure of the configuration in detail, but we
will name some properties, which might be of importance for the study of
elementary planes:

All points in the total system play analogous roles. The same applies to the
points of each basic system alone. All the points of one basic system sit in
equivalent positions in relation to the other basic system.

Let us for a moment consider the lines of the configuration through a point
of the configuration. We need only consider lines through one point, say D, and
we easily observe the following:

The lines of I'; through D are of 3 types: 1) 4-point-lines so as DOCT
containing one pair of points from one of the basic systems and one pair from
the other so situated, that the two pairs separate each other on the line:
DC || OT. 2) 3-point-lines so as DP,Q, containing points exclusively from one
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basic system, and 3) ordinary lines so as DA, containing a point from each
basic system.

It follows from these observations, that we can determine, to which of the
two basic systems any given point, X, belongs, by considering the line DX and
the position of X on DX. If for instance DX is a line of type 1), containing the
points D, X, Y and U, then X belongs to the same system as D, if DX || YU and
to the other, if DY || XU or DU | X Y.

From this we conclude, that the total system can be divided into two basic
systems in one way only.

2.4. The configuration described has no elementary planes. This follows from
the fact, that if any such plane did exists, it would contain 3 points of I,
spanning 3 ordinary lines, and thus at least one of these lines would contain
two points from the same basic system. This however establishes a
contradiction to the observations above.

Obviously the examples 2.1. and 2.2. for the case p=4 can be obtained by
adding 3 or 4 points to a basic system.

For instance if we take the system, which on figure 2. is pictured in the cubic
way, and add the points 4,, A, and O, we have 2.1,, and if we further add T, we
have 2.2.

We shall now in 2.5. and 2.6. give two further examples of configurations
without elementary planes. In both cases we will leave the verification to the
reader.
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2.5. Take a basic system. Add the points of any 3-point-line from the
complementary basic system. The resulting configuration is without elementary
planes.

All configurations created in this way are isomorphic, since all 3-point-lines
from the complementary system clearly play similar roles relative to the given
basic system.

2.6. In order to explain our next example we will make an examination of the
planes of a basic system. Obviously there are two types: elementary planes, of
which there are 3 through any point, and 6-point-planes containing a complete
quadrangle with 2 diagonal points. There are, through each point, 6 of these
planes. To see this, look for instance at the center of the cube in a basic system
pictured in the cubic way.

All the elementary planes play similar roles in relation to the basic system,
and the same applies to all the 6-point-planes.

All points on a 6-point-plane play similar roles in relation to the whole point
set on the 6-point-plane.

Any 6-point-plane can be construed as the union of (the point sets on) 4 3-
point-lines, which all play similar roles in relation to the 6-point-plane.

1

Fig. 4. Another picture of 2.5.
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Now for our example: take a basic system and add 6 points from one 6-
point-plane from the complementary system. Again the resulting system is
without elementary planes and all such systems are isomorphic.

2.7. In our next example, we shall consider a regular icosahedron.

A
Fig.5.
Take the regular icosahedron, add to its 12 points its center, and add further

the 15 points where the 30 edges, pairwise parallel, meet the plane at infinity.
The resulting configuration of 28 points has no elementary planes.

2.8. Consider a regular dodecahedron. Add also here its center and the 15
points, where the 30 edges meet the plane at infinity. The resulting
configuration with 35 points has no elementary planes.

The proofs for 2.7 and 2.8 are quite long, so we shall omit them.

3. On the number of ordinary planes in 3-space.

We shall in the following again consider a configuration in ordered
projective 3-space with the property, that the points of the configuration do
not belong to one plane. The set of points from the configuration will be named
Iy, the set of lines belonging to the configuration, i.e. the lines spanned by
points of I',, will be named I';, and the set of planes will be named I',. The
configuration itself will be called I'. Points, lines, planes from I' will usually be
denoted A,, B; etc. or similar, where i denotes the dimension.

It is our aim to prove the following two theorems:



188 STEN HANSEN

THEOREM 3.1. The number of ordinary planes of a non-planar configuration
with n points is at least %-n.

THEOREM 3.2. The number of ordinary planes in a non-planar configuration
with n points in which all the ordinary planes are non-elementary is at least £ n.

DEeFINITION 3.3. A plane A, of I', is called a “first-met plane” for the point 4,
of Iy, if there exists a point P in A,, but not in any other plane of I',, such that
one of the open segments AP intersects no plane of I';.

A, is said to be first-met “in P”.

The lines of I'; contained in A4, divide A, in 2-cells. A4, is said to be first-met
for A, “in the cell ,” of A,, if and only if A, is first-met in a point P of (the
interior of) §,.

Note, that we cannot exclude the possibility, that A4, is first-met for A, in
more than one of its cells.

It will be convenient to adopt some of the terminology of [1] and [3]. In
particular the concept of polyhedral residence of a point 4, of I'y is useful. This
concept is defined [1; p. 47] in the following way: The set of planes of I'; not
containing A4, will generally partition the space into polyhedral domains. The
polyhedral residence of A, is that polyhedral domain which contains A, The
only cases in which such a partitioning is not affected are: 1) I'y is subset of two
skew lines, and 2) all points of I', with one exception are on a plane. The
theorems are easily checked in these special cases [1, p. 52], so henceforth we
will assume that each point A4, of I'; has a polyhedral residence, which we will
denote 2(A,).

DeriniTION 3.4. If A, is an ordinary plane of I', with all its points of I,
except one, Ay, on a line A, then A, is called “the leader on A, for 4,”, and 4,
is “the follower on A, for A4,”.

Note, that if A, is elementary, then each vertex of the triangle formed by the
three points of I'y in A4, is a leader on A, for the opposite side line, and each
side line is the follower on A, for the opposite vertex.

We will associate ordinary planes and points of I'y to each other by the
following definitions:

DErFINITION 3.5. An ordinary plane A4, is an “association plane” for a point
A of I'y if either:

1) A, is an ordinary face plane of #(4,), or

2) A, is a leader on A,, whose follower 4; on A, is in a non-ordinary face
plane of 2(A,).
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In both cases the face plane mentioned is said to “give rise to” the
association of A,.

If 1) holds, A, is called a “neighbour” or “neighbour plane” for 4,, and if 2)
holds, A4, is called a “member” for A,.

DEeFINITION 3.6. A point A, of I'y is an “association point” for a plane 4, of
I'y, if and only if 4, is an association plane for A4, If A, is neighbour for A,, 4,
is called “neighbour” or “neighbour point” for A4,.

Now let m(A4,) be the number of members for A, [(4,) the number of
neighbour planes for 4, and o(4,) the number of association planes for A,.
Then of course o(A4y)=m(Ay)+1(Ay). In the same way the number of
association points for 4, shall be named o(4,).

DeriNiTION 3.7. The number 0(A,) shall be called “the order” or “association
order” for the point A, of I'y. The number o0(A4,) shall in the same way be
called the “order” or “association order” for the plane A, of I',.

Note. The use of the term order is slightly at variance with its use in [3].

SuBTHEOREM 3.8. If A, is a non-ordinary plane of I', and 6, is a 2-cell [2, p.
176] in the partitioning of A, by lines of I', in A,, then there is a line from I', in
A, which has nothing in common with 9,.

Proor. Since the plane is not ordinary, it can contain at most one
“forkpoint”, i.e. a point of I'y on two lines of I'j, whose union contains all
points of I'y N A,. So there must be at least 3 non-forkpoints of I'y in the plane
forming the vertices of a proper triangle. Let o, be that domain of the triangle
which includes &,. Now if §, =ga,, all points of I'y apart from ¢,’s vertices must
lie on the extensions of ¢,’s sides, and they cannot be confined to one side line,
since the plane is not ordinary. Clearly any two such points taken from
different side lines must span a line as required. If on the other hand o,29,,
then there is a vertex of g,, not in J,, and as it is not a forkpoint, there must be
at least 3 lines of I'; through it, and thus at least one which is not a side line of
o,. This line meets our requirements.

For another proof see [1, p. 50].

Now the proof of the theorem will be based on the following subtheorem 3.9.,
which in turn is based on Lemma 2 of [2, p. 179], which asserts, that every first-
met plane for a point A, from I'y gives rise to an association plane of A4,. If
specifically the first-met plane, A,, is ordinary, then it is a neighbour for A4,
And if it is not ordinary, then subtheorem 3.8. guarantees a line A; of I'; in A4,,
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running outside a 2-cell §,, in which A, is first-met, and then lemma 2 [2, p. 179]
assures us that AyA, is an ordinary plane with A, as leader and with its
follower, A,, on A4,, i.e. AyA, is a member for 4,. Note, that if 4, gives rise to
an association of a member, 4,B,, of A,, where B, touches J,, 4, gives rise to
at least two members of A,.

SUBTHEOREM 3.9. The order of any given point A, of Iy, is either at least 4 or
A, has (exactly) 3 members.

Proor. First we make the following observation: If 4, is an association
plane for A4, given rise to by more than one face plane of #(A,), then 4,
must be a member of A4, and the follower, A, for 4, on A, must be the
intersection of two face planes, which must both be non-ordinary. Obviously
no third plane can give rise to the association of A4, in this case.

Now let p(A4,) be the number of face planes of 2(4,). It follows from the
observation just made, that

p(Ap)

o) 2 B

with equality only if 0(A4y) =m(A4y). So if p(4y)>6, 0(A,) =4, while if p(A4,)=6,
either 0(A4,)=4 or A, has 3 members.

This leaves the cases p(4,)=5 or p(4,)=4 to dispose of.

In case p(4,) =4, #(A,) is a tetrahedron, so all the faces are adjacent. As one
plane can cut away at most one edge of a tetrahedron, there can be at most one
pair of non-adjacent faces.

We cannot exclude the possibility, that a non-ordinary face plane of 2(A,)
gives rise only to such members of A,, for which the follower contains points
of the face of #(4,). (The face can contain more than one cell). So even when
two faces are adjacent, they can give rise to the same member, and we must
count the association only half for each of the face planes. But from the remark
made just before 3.9. it follows that in that case each of them gives rise to one
more member.

Thus all face planes count for at least one association (perhaps two half, if
the face plane is non-ordinary) except in case p(4,)=95, where at most two face
planes count for only one half each. It is now easy to see, that in any case we
have o(4,)24.

We now have a way of counting some of the ordinary planes of I",. However
the planes in this count are not necessarily pairwise different, so we must now
study the possibilities for repetitions in our count. That is, we must estimate
the maximal order of a plane A4, of I',, 0(A4,).
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First we make the following observation:

If A, is a line of I', in the plane A, of I',, then there are two planes, 4, and

5, which might collapse into one, both belonging to I', and containing A4,
and such, that 4, and A), resp. 4, and Aj, partition the space into two
components (wedges or projective halfspaces), one of which contains no points
of I'y. A, and A collapse into one, if and only if Iy is a subset of two planes.

We call the planes 4’ and A’ “tangential planes of 4, through 4,”. The two
planes are called a “tangential pair”.

Clearly all neighbour points of A, must lie in any tangential pair through
any line of I'y in A,.

SUBTHEOREM 3.10. An ordinary plane has at most 8 neighbour points.

ProoF. Let AY, i=1,2,3, be three non-collinear points of I'y in the ordinary
plane A,. Then for any i, j, the tangential pair of 4, through APAY, i+j,
contains all neighbour points of A,. A particular neighbour point is an
intersection point of three planes, one from each of these tangential pairs.
There are at most 23 =8 such points. This proves the subtheorem.

Note, that in case none of the tangential pairs collapse into one plane the
said set of 8 points, which are possible sites of neighbour points of 4,, are the
vertices of a projective cube such, that any two opposite face planes of the cube
intersect each other either in a line not in 4, or in one of the lines AP AY, i +].
The matter is discussed in detail by R. R. Rottenberg [5].

SUBTHEOREM 3.11. If an ordinary plane, A,, is not elementary, then the number
of neighbour points of A, is at most 6.

If the follower on A, contains more than three points of I'y, the number of
neighbour points of A, is at most 4.

ProoFr. Let A" be the leader of A,, while its follower contains the points 4§,
i=2,...,p. Now take any two points, A and A4Y, from the follower. Then the
three points, A, AY and AY, determine a cube as above. In case at least 7
vertices of this cube belong to Iy, they can be vertices of no other cube
determined by A" and two other points of the follower. This proves the first
part of the subtheorem. (All is trivial, if any pair collapses into one plane).

In case only 6 points of the cube belong to I'y, and provided they all lie on
three of the four cube edges through A", they can be vertices of three cubes
determined by A{" and two points of the follower. In this case the follower can
contain three points of I'y, A®, AS and A$Y. The three cubes are one for each
of the (3) pairs of points from this set. On figure 7 we have illustrated that by
marking the intersections of an arbitrary plane not through A" with the cube
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edges through 4" and with the “legs” on A, i.e. the lines connecting the leader
with the points of its follower.

[¢] 3 4
it ) AP

Fig. 7. The crosses are on the edges, where the six vertices of I, lie. The points AY are on the legs.
The dots are the three possible sites for (the intersection with) the fourth cube edge.

The second part of the subtheorem now follows immediately. We make no
use of the second part of 3.11 in this paper.

Our final subtheorem concerns the number of possible neighbour points of
an elementary plane, if that plane is also a member of one of its points:

SUBTHEOREM 3.12. If A, is an elementary plane which is a member for at least
one of its points A,, then A, has at most 6 neighbour points.

Proor. Let Ay, By, and C, be the three points of I'y in 4,. The neighbour
points of A, are a subset of the set of vertices of a projective cube. By a
projective transformation this cube can be taken into an euclidean cube, where
Ay is the center of the cube, while B, and C,, are points at infinity on two sets of
parallel edges.

By definition of member, there must through the line B,C, be a plane of
I',, B,, which is a first-met plane for A,. The two face planes of the cube
through B, and C, are a tangential pair through the line B,C,, so if such a B,
exists, it must be one of these face planes. If we suppose, that 4, has at least 7
neighbour points, these two opposite faces contain a pair of non-parallel
diagonals, whose end points are in I',. Now there is through each of these
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diagonals a set of two planes of I',, one through each end point of the other
diagonal. These two planes separate A, from the face plane containing their
intersection line. Thus no plane through B,C, is first-met for A, under the
assumption of 7 neighbour points, and the subtheorem is proved.

SUBTHEOREM 3.13. The order of an elementary plane is at most 9. The order of
a non-elementary, ordinary plane is at most 7.

Proor. If an elementary plane is not a member for any of its points, then the
order is at most 8. If it is member for any of its points, then the order is at most
6+3=09.

As a non-elementary plane can be member only for its leader and have at
most 6 neighbours, the order is at most 7.

ProoF oF THEOREM 3.1. The number of points in Iy is n. Let the number of
points of I'y, having 3 members be n,. Then because of subtheorem 3.9, there
must be n,=n—n, points of I', having the order at least 4. The number of
ordinary planes shall be called m.

Now we will count the number of pairs consisting of a point of I'y and one of
its members. Because of n’s definition that number must be at least n;-3. On
the other hand it must be at most m- 3, since for each ordinary plane there are
at most 3 of its points for which it is a member. Thus we have

4y n3<m3.

Then we will count the number of pairs consisting of a point of I'y and a
plane to which it is associated. That number must be at least n,-3+n,-4. On
the other hand it must be at most m-9, since the order for any ordinary plane
because of subtheorem 3.13 is at most 9. So we have:

) n-3+n,-4 <m9.
Now we obtain by dividing in (1) with 3 and adding (1) and (2):
n,-44+n,4 < m-10
and as n, +n,=n, we have:
Ihnsm.
That proves theorem 3.1.
PRrooOF OF THEOREM 3.2. We proceed in the same way as in the former proof.

With similar notation we have, since a non-elementary plane can be a member
only for its sole leader:

Math. Scand. 47 — 13
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3) ni:3<m
and further, because of subtheorem 3.13, we have:
4) ni-3+ny,4 = m-7.
Now we obtain:
(ny+ny)d < m%

and so

Hnsm.

That proves theorem 3.2.

Obviously the result just obtained can be further improved, if we assume
that there are no ordinary planes with less than 4 points of I', on its follower.
However, as there for the present is no strong motive for doing assumptions of
that sort, we shall refrain from stating such an improved result in a formal
theorem.
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