A CLASS OF SYMMETRIC 2-BASES

TORLEIV KLØVE

A set $A = \{a_1 < a_2 < \ldots < a_k\}$ of positive integers is called a 2-basis for n if every positive integer $\leq n$ either belongs to A or is the sum of two elements of A (not necessarily distinct). E.g. $\{1, 3, 4\}$ is a 2-basis for 8. The 2-range of A, denoted by $n_2(A)$, is the largest n for which A is a 2-basis. Further, the extremal 2-range, $n_2(k)$, is the maximal value of $n_2(A)$ for A a k-element set.

It is clear that $n_2(A) \le 2a_k$. If $n_2(A) = 2a_k$, A is called restricted, $n_2^*(k)$ is the maximal value of $n_2(A)$ for A a restricted k-element set. Finally, a set $A = \{a_1 < \ldots < a_k\}$ is symmetric if $a_i + a_{k-1} = a_k$ for 0 < i < k.

Rohrbach [6] proved that $0.25k^2 \le n_2^*(k) \le n_2(k)$ and

$$n_2(k) \le 0.4992k^2$$
 for $k \gg 0$,
 $n_2^*(k) \le 0.4654k^2$ for $k \gg 0$.

He conjectured that both $n_2(k)$ and $n_2^*(k)$ are asymptotic to $0.25k^2$. For $n_2(k)$ this was refuted by Hämmerer and Hofmeister [1] who proved that $n_2(k) \ge \frac{5}{18}k^2$. This was improved by Mrose [5] who proved that $n_2(k) \ge \frac{2}{7}k^2$. A simpler construction which gives the same bound was given by Kløve and Mossige [3]. The upper bounds have been improved by Klotz [2] who showed that $n_2(k) \le 0.4802k^2$ for $k \gg 0$ and Moser, Pounder and Riddell [4] who showed

$$n_2^*(k) < 0.424346k^2$$
 for $k \gg 0$.

For a more detailed survey, see Wagstaff [7].

In this paper I show the following.

THEOREM. For $k \ge 1$ we have

$$n_2^*(k) \ge \frac{6}{23}k^2 + O(k)$$
.

We prove the theorem by constructing a set of k elements which has the stated 2-range.

We use the following notations: Let a, b and c be integers, c > 0.

Received January 31, 1980.

Then

$$[a(0)a] = \{a\},$$

$$[a(c)b] = \{a+ic \mid 0 \le i \le (b-a)/c\}, \quad \text{if } b \ge a \text{ and } c \mid (b-a)$$

$$= \emptyset \qquad \qquad \text{if } b < a.$$

$$[a,b] = [a(1)b].$$

Let x, y and z be integers where $y \ge x \ge 1$ and let

$$\begin{split} S_1(z) &= \left[z, z + x - 1\right], \\ S_2(z) &= \left[z + x - 1(x)z + yx - 1\right], \\ S_3(z) &= \left[z + yx - 1, z + yx + x - 2\right], \\ T(z) &= S_1(z) \cup S_2(z) \cup S_3(z), \\ B(z, d) &= \left[z(d)z + d^2\right]. \end{split}$$

If U and V are any sets of integers, then

$$U+V = U \cup V \cup \{u+v \mid u \in U, v \in V\}.$$

With this notation $n_2(A)$ is the maximal n such that $[1, n] \subset A + A$.

LEMMA 1. For any integer z we have

$$T(0) + T(z) \supset [z, z + 2yx + 2x - 4]$$
.

PROOF. We divide the proof of lemma 1 into four parts, the verification of which is straightforward:

$$\begin{split} [z,z+2x-2] &\subset S_1(0) + S_1(z) \;, \\ [z+2x-1,z+yx+x-2] &\subset S_1(0) + S_2(z) \;, \\ [z+yx+x-2,z+2yx+x-3] &\subset S_2(0) + S_3(z) \;, \\ [z+2yx+x-2,z+2yx+2x-4] &\subset S_3(0) + S_3(z) \;. \end{split}$$

LEMMA 2. For any integer z we have

$$T(0) + B(z, x-1) \supset [z, z+yx+x^2-x-1]$$
.

PROOF. We divide the proof of lemma 2 into three parts:

$$\begin{split} [z,z+x^2-x] &\subset S_1(0)+B(z,x-1)\;,\\ [z+x^2-x,z+yx-1] &\subset S_2(0)+B(z,x-1)\;,\\ [z+yx,z+yx+x^2-x-1] &\subset S_3(0)+B(z,x-1)\;. \end{split}$$

The first and last of these are straightforward. To prove the second, let $u \in [z+x^2-x,z+yx-1]$. Then u=z+lx-m where $1 \le m \le x$ and $x \le l \le y$. Hence

$$u = ((l-m+1)x-1) + (z+(m-1)(x-1)) \in S_2(0) + B(z,x-1).$$

LEMMA 3. Let x, y and l be positive integers, $y \ge x \ge 1$ and $l \ge 1$. Let $u_i = 2yx + 2x - 3 + i(yx + x^2 - x)$ for i = 0, 1, ..., l. Let

$$A = T(0) \cup T(u_i) \cup \bigcup_{i=0}^{l-1} B(u_i, x-1) - \{0\}.$$

Then

$$|A| = (l+4)x + 2y - 5$$

and

$$n_2(A) = 2((l+3)yx + lx^2 - (l-3)x - 5)$$
.

PROOF. Since |T(z)| = 2x + y - 2, |B(z, x - 1)| = x, and the sets defining A are disjoint,

$$|A| = 2(2x+y-2)+lx-1 = (l+4)x+2y-5$$
.

By lemmata 1 and 2,

$$[1, u_0 - 1] \subset T(0) + T(0)$$

$$[u_i, u_{i+1} - 1] \subset T(0) + B(u_i, x - 1) \quad \text{for } i = 0, 1, \dots, l - 1$$

$$[u_i, w] \subset T(0) + T(u_i)$$

where $w = u_l + yx + x - 2 = (l+3)yx + lx^2 - (l-3) - 5$ is the largest element of A. Since A is symmetric (which may easily be checked), it is well known that $[1, w] \subset A + A$ implies that $n_2(A) = 2w$. The proof is easy: let $b \in [0, w]$, then b = 0, $b \in A$, or $b = a_1 + a_2$ where $a_1, a_2 \in A$. Hence 2w - b = w + w, w + (w - b), or $(w - a_1) + (w - a_2)$ respectively. Since A is symmetric, $w - a \in A$ when $a \in A$. Hence $2w - b \in A + A$. This completes the proof of lemma 3.

We can now prove the theorem. Let $k \ge 19$ be given. In lemma 3 let l = 9 and x be the integer with the opposite parity of k which is closest to (k+4)/23. Finally let $y = \frac{1}{2}(k-13x+5)$. Then |A| = k. Further, if $x = ((k+4)/23) + \theta$, then $|\theta| \le 1$,

$$y = \frac{5k}{23} + \frac{63}{46} - \frac{13}{2}\theta$$
 and $n_2(A) = \frac{6}{23}k^2 + \frac{48}{23}k - \left(138\theta^2 + \frac{134}{23}\right)$.

This proves the theorem. A closer look at the expression for $n_2(A)$ shows that $n_2(A) \ge \frac{6}{23}k^2$ for $k \ge 46$. Using other bases we can show that $n_2^*(k) > \frac{6}{23}k^2$ for $k \le 45$ as well. Hence this is true for all k.

For any positive value of l, if x is close to $(l+3)k/(2l^2+10l+24)$ and y is chosen such that |A|=k, then we get

$$n_2(A) \, = \, \frac{l^2 + 6l + 9}{4(l^2 + 5l + 12)} k^2 + O(k) \; .$$

The coefficient for k^2 takes its largest value for l=9.

The construction used in [3] to prove that $n_2(k) > \frac{2}{7}k^2$ is closely related to the construction in this paper. In the notation of lemma 3, if $A = T(0) \cup B(u_0, x-1) \cup B(u_1, x-1)$, where x is close to k/7 and y close to 3k/7 we get $n_2(A) = \frac{2}{7}k^2 + O(k)$.

REFERENCES

- N. Hämmerer and G. R. Hofmeister, Zu einer Vermutung von Rohrbach, J. reine angew. Math. 286/287 (1976), 239-247.
- W. Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. reine angew. Math. 238 (1969), 161-168.
- 3. T. Kløve and S. Mossige, Appendix to: S. Mossige, Algorithms for computing the h-range of the postage stamp problem, to appear.
- L. Moser, J. R. Pounder and J. Riddell, On the cardinality of h-bases for n, J. London Math. Soc. 44 (1969), 397-407.
- A. Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg 48 (1979), 118-124.
- 6. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), 1-30.
- S. S. Wagstaff, Additive h-bases for n, in: Number Theory, Carbondale 1979, ed. M. B. Nathanson, Lecture Notes in Mathematics 751, 302-321, Springer-Verlag, Berlin -Heidelberg - New York, 1979.

MATEMATISK INSTITUTT
N-5014 BERGEN-UNIVERSITETET
NOREG