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A CLASS OF SYMMETRIC 2-BASES

TORLEIV KLGVE

A set A={a,<a,<...<a,} of positive integers is called a 2-basis for n if
every positive integer <n either belongs to 4 or is the sum of two elements of A
(not necessarily distinct). E.g. {1, 3, 4} is a 2-basis for 8. The 2-range of A4,
denoted by n,(A), is the largest n for which 4 is a 2-basis. Further, the
extremal 2-range, n,(k), is the maximal value of n,(A4) for A a k-element set.

It is clear that n,(A)<2a,. If n,(4)=2a,, A is called restricted, n¥ (k) is the
maximal value of n,(A4) for A a restricted k-element set. Finally, a set A=
{a,<...<a} is symmetric if a;+a,_;=a, for 0<i<k.

Rohrbach [6] proved that 0.25k* <n¥(k)<n,(k) and

ny(k) < 0.4992k*  for k>0,
n¥(k) < 0.4654k* for k>0.

He conjectured that both n, (k) and n¥ (k) are asymptotic to 0.25k%. For n, (k)
this was refuted by Hiammerer and Hofmeister [1] who proved that n, (k)
>5%k? This was improved by Mrose [5] who proved that n,(k)=%k% A
simpler construction which gives the same bound was given by Kleve and
Mossige [3]. The upper bounds have been improved by Klotz [2] who showed
that n,(k)<0.4802k* for k>0 and Moser, Pounder and Riddell [4] who
showed

n¥(k) < 0.424346k* for k>0.

For a more detailed survey, see Wagstaff [7].
In this paper I show the following.

THeOREM. For k=1 we have

n¥(k) 2 k2 +0(k) .

We prove the theorem by constructing a set of k elements which has the
stated 2-range.
We use the following notations: Let a, b and ¢ be integers, ¢>0.
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Then
[a()a] = {a}
[a(c)b] = {a+ic| 0<gis(b—a)c}, ifbzaandc|(b—a)
= if b<a.
[a,b] = [a(1)b] .
Let x, y and z be integers where y=x=1 and let
$.(2) = [z,z+x—-1],
S,(z) = [z+x—1(x)z+yx—1],
S3(2) = [z+yx—1,z4+yx+x-2],
T(z) = S,;(2) U S,(2) U S5(2),
B(z,d) = [z(d)z+d*] .
If U and V are any sets of integers, then
U+V=UUVU{u+v| ueUveV}.

With this notation n,(A4) is the maximal n such that [1,n]<= A4 + A.

LeMMA 1. For any integer z we have
TO)+T(2) o [z,z+2yx+2x—4] .

Proor. We divide the proof of lemma 1 into four parts, the verification of

which is straightforward:
[z,z+2x—-2] < S,(0)+S,(2),

[z+2x—1,z4+yx+x—-2] = §,(0)+S,(2),
[z+yx+x—2,z42yx+x—3] < S,(0)+S5(2),
[z+2yx+x—2,z+2yx+2x—4] < S;5(0)+S;(2) .

LEMMA 2. For any integer z we have

T0)+B(z,x—1) o [z,z+yx+x*—x—1].

Proor. We divide the proof of lemma 2 into three parts:
[z,z+x?*—x] = $,(0)+B(z,x—1),
[z4x>—x,z+yx—1] < §,(0)+B(z,x—1),
[z+yx,z+yx+x*—x—1] = §3(0)+B(z,x—1) .
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The first and last of these are straightforward. To prove the second, let u €
[z+x?>—x,z+yx—1]. Then u=z+Ix—m where ] Sm<x and x<I<y. Hence

u=((l-m+x—1)+(z+m—-1)(x—1)) € S,(0)+ B(z,x—1) .

LemMma 3. Let x,y and | be positive integers, y=2x=1 and 1=1. Let u;=2yx
+2x—=3+i(yx+x2—x) for i=0,1,...,1 Let

A= TOUTwU U Bluyx—1)—{0} .
i=0

Then Al = (I+4)x+2y—5
and ny(4) = 2((+3)yx+Ix>— (1-3)x-5).

Proor. Since |T(z)|=2x+y—2, |B(z,x—1)|=x, and the sets defining A are
disjoint,

Al = 2(2x+y—2)+Ix—1 = (I+4)x+2y-5.

By lemmata 1 and 2,
[1,uy—1] = T(0)+ T(0)
[upu;ry—1] = TO)+B(u,x—1) for i=0,1,...,1—1
[w,w] = T(O)+ T (w)

where w=u;+yx+x—2=(I+3)yx+Ix*— (I—3)—5 is the largest element of A.
Since A4 is symmetric (which may easily be checked), it is well known that [1, w]
<A+ A implies that n,(A4)=2w. The proof is easy: let b € [0,w], then b=0,
be A, or b=a,+a, where a,,a, € A. Hence 2w—b=w+w,w+ (w—b), or
(w—a;)+ (w—a,) respectively. Since 4 is symmetric, w—a € A when a € A.
Hence 2w—b € A+ A. This completes the proof of lemma 3.

We can now prove the theorem. Let k> 19 be given. In lemma 3 let [=9 and
x be the integer with the opposite parity of k which is closest to (k+4)/23.
Finally let y=4(k—13x+5). Then |4|=k. Further, if x= ((k+4)/23)+6, then
o<1,

_ 5k 63 13

6, 48 , 134
y=3tze—70 and m) = K4k (1380+ )

23 23 23

This proves the theorem. A closer look at the expression for n,(A4) shows that
n,(A)2s5k* for k=46. Using other bases we can show that n¥(k)>Fk? for
k=45 as well. Hence this is true for all k.
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For any positive value of I, if x is close to (I+3)k/(21>+10/+24) and y is
chosen such that |4|=k, then we get

+6l+9

A = ey

k2+0(k) .
The coefficient for k? takes its largest value for [=9.

The construction used in [3] to prove that n,(k)>2k? is closely related to
the construction in this paper. In the notation of lemma 3, if A=T(0)

U B(ug, x — 1)U B(u,, x — 1), where x is close to k/7 and y close to 3k/7 we get
n,(A)=2%k*+ 0 (k).
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