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ACTIONS OF FINITE GROUPS ON C*-ALGEBRAS

MARC A. RIEFFEL

Let A be a C*-algebra, and let G be a locally compact group acting as
automorphisms of 4 via the homomorphism a of G into Aut (4). Then there
are two algebras commonly associated with this situation, namely the fixed
point subalgebra A%, and the crossed product algebra 4 x , G. In recent years
considerable progress has been made in understanding the relations between A
and these algebras when G is Abelian, notably by D. Olesen and G. K.
Pedersen (see [22, 23, 25] and references therein). In particular, they have
investigated the question of when the crossed product will be simple or prime.
However, in the case of non-Abelian groups much less in understood except in
special cases [36, 5], though important progress has been made recently [11,
12]. The purpose of this paper is to show that at least in the case of finite
groups, fairly detailed information can be obtained. This is done principally by
showing, in Section 1, that a technique involving generalized notions of outer
automorphisms, which has recently been introduced in the study of purely
algebraic crossed products [9, 19, 20], works especially well for C*-algebras.
In Sections 2 and 3 this technique is then applied to discuss when crossed
products will be prime or simple. In Section 4 the technique is applied to show
that if A, or A%, or A x,G is type I, then the other two algebras are also. In
Section 5 the same kind of results are obtained for the property of being
liminal, or of having a T, primitive ideal space. These applications should be a
good indication of how the technique can be used to answer other questions in
the finite group case.

Undoubtedly many of the results of this paper can be generalized to the
setting of crossed products twisted by cocycles [36], much as in [20], but I
have not carried this out. In fact, the most general natural setting for many of
these results may well be the C*-algebraic bundles of Fell [7, 8] over finite
groups, just as in the purely algebraic case it may well be the algebraic bundles
of Fell over finite groups [6] or the Clifford systems of Dade [2], though a few
of the results may even generalize to the setting of normal subrings [32].

In the case of Abelian groups the principal tool has been the Connes
spectrum [5, 21, 22, 25]. It is a very interesting open question as to how the
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Connes spectrum should best be defined in the non-Abelian case. But in
whatever way it is defined and used, the results will have to be compatible with
those obtained here, so that the present paper may provide some guidance in
working on this question.

The research reported here was carried out while I was visiting at the
University of Copenhagen. I would like to thank the members of the
Mathematics Institute there, especially Dorte Olesen and Gert K. Pedersen, for
their very warm hospitality. I am also indebted to Dorte Olesen and Gert K.
Pedersen for stimulating mathematical conversations, and to Seren Jendrup
for bringing much of the purely algebraic literature to my attention.

1. Partly-inner automorphisms.

Let A be a C*-algebra. When A does not have an identity element,
experience shows that in the place of inner automorphisms of A one should
consider the generalized inner automorphisms, which are those obtained by
conjugating with unitaries from the double centralizer algebra, M(4), of 4 [1,
25]. (By “automorphism” we will always mean “*-automorphism”.) In fact, it
will be useful for us to consider automorphisms « having the property that the
restriction of a to some non-zero a-invariant ideal of A4 is generalized inner.
(“Ideal” will always mean “two-sided ideal”.) We will call such automorphisms
partly inner, and call automorphisms which are not partly inner, purely outer. It
is a trivial matter to check that the set of partly inner automorphisms is closed
under taking inverses and under conjugating by arbitrary automorphisms. But
in general it is not closed under products. However, the subset consisting of
those partly inner automorphisms o« for which the ideal on which « is
generalized inner can be chosen to be essential (i.e. has non-zero intersection
with every proper ideal of A) will be closed under products and so is a normal
subgroup of the automorphism group of A. (One can go further and take norm
limits of these, which leads to considering the C*-algebra M*(A) of [4, 24],
which is an analogue of the ring of left quotients of [9, 19, 20], but we will have
no need for this.) In particular, if A4 is prime, then the set of all partly inner
automorphisms is a normal subgroup.

Now let G be a (discrete) group and let o be a homomorphism of G into the
group of automorphisms of 4. The crossed product A x , G can be defined [34,
25] as the completion, for an appropriate C*-norm, of the purely algebraic
crossed product, C,(G, A), consisting of the functions of finite support from G
to A with product defined by

(f*g)®) = 3 {f(n,(g(s™'0) : s€G}.

In this section we would like to study (closed, two-sided) ideals in 4 x ,G. But
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such ideals can be elusive. In particular, there is no reason why such an ideal
must contain any non-zero elements of C (G, 4). But the technique in [9, 19,
20] for algebraic crossed products, which we would like to adapt to C*-
algebras, depends crucially on the fact that ideals there will contain functions
of finite support. For this reason this technique seems to give information for
C*-crossed products only in the case of finite groups, where the C*-crossed
product coincides, as an algebra, with the algebraic crossed product. However,
to make clear that the difficulty is with the existence of elements of finite
support in ideals, and not with whether elements of G have finite order, we will
describe the technique in terms of an arbitrary discrete group G, but for the
algebra C (G, A).

Let P, denote the set of t € G such that «, is partly inner, so that P, is a
subset of G closed under taking inverses and conjugating by elements of G, but
need not be closed under products. The main theorem of this section is an
analogue of results in [9, 19, 20], such as Proposition 2 of [9].

1.1 THEOREM. Let I be a non-zero ideal in C.(G, A). Then I contains a non-zero
element supported on P,,.

Proor. We begin by imitating the proof of, for example, Proposition 2 of
[9]. Let f be any non-zero element of I whose support has minimal cardinality
among the supports of all non-zero elements of I. Since I is closed under
translation, we may assume that the support of f contains the identity element,
e, of G. We show that f is supported on P,.

For ¢ € A let ¢4, be the function with value ¢ at e and zero elsewhere. It is
easily seen that (cd,) * fand f * (cd,) have support contained in the support of f.
It follows that if a,,...,qa,, b,,...,b, are elements of A4, and if

g = Z (a;i0,)* f*(bd,)

then g has support contained in the support of f. Since g € I and f'has minimal
support, it follows that either g=0 or the support of g coincides with that of f.
In other words, if t is in the support of f, then g(t)=0 iff g(e)=0. Computing
these quantities, we find that

Y axb, =0 iff Y aye(b) =0,

where x =f(e) and y=f(t). Let us fix ¢, and so x and y, but let the a; and b, vary.
If AxA and AyA denote the algebraic ideals generated by x and y, and if we try
to define a linear map, T, from AxA to AyA by

T(Y, aixb;) = ), aya(b),

where a=ua,, then we see from the above computation that T is well-defined
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and injective. It is clear that T is also surjective, and that T(ac)=aT/(c), T(ca)
=T(c)a(a) for all a € A, ¢ € AxA.

It is at this point that the purely algebraic argument ends. To proceed
further, we must use the special properties of C*-algebras. Our goal is to show
that from T, which is probably highly discontinuous, we can obtain a unitary
double centralizer on some ideal of 4, conjugation by which will coincide with
o on this ideal. Accordingly, let J and K denote the closures of AxA and AyA,
so that J and K are themselves C*-algebras. Now G. K. Pedersen showed that
any C*-algebra contains a minimal dense hereditary ideal, which was later
shown by K. B. Laursen and A. M. Sinclair to be minimal among all dense
ideals (for all of which see [25]). Let J, and K, denote the Pedersen ideals of J
and K. By the Laursen-Sinclair result, J, £ Ax4 and K,< AyA. In particular,
T is defined on J,,

We would like to find a non-zero a-invariant ideal in J,,, since it will turn out
that on such we can show that T is actually a double centralizer. To find such
an ideal we will need to manipulate with J, and K, and their images under
powers of a. For this purpose we need to use the fact [26] that Pedersen ideals,
and also closed ideals, are algebraic ideals, as defined in [26], so that the
product of any two such ideals is their intersection [26], and hence does not
depend on the order in which the product is taken. We also use the fact that the
product of the closures of two ideals is the closure of their product.

Let L=T(J,)~, which is clearly a non-zero closed ideal. Then actually

L =Ty = T(UAxA)™ = (JoT(AxA)~ = JK

(which can be seen to be essential in both J and K). Furthermore, for any
integer n we have

a"(L)L

(«"(L)T (o)™ = T(a"(L)o)~
T(Joo"(L)™ = (TWUo)" "' (L))~
= La"*'(L) = «"* (L)L .

Setting n=0, — 1, we find that L is a-invariant. Let L, be the Pedersen ideal of
L, so that L, is also a-invariant. Since L= J N K, it follows that L, = J, N K, so
that L, is in the domain of both T and T~'. Furthermore T(Lo)=T(L,Lo)
=LoT(Lo)S Lo, and similarly T~ '(Lo)S L,. It follows that T is an invert-
ible operator on L.

Define an operator, S, on L, by S(c)=T(a"'(c)) for any ¢ € L,. Note the
need for L, to be a-invariant. Then

S(ca) = T(a"(ca)) = S(c)a,
cSd) = cT(a ' (d) = T(ca™'(d)) = T(c)d,
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for a € A, ¢,d € L,. This says, in particular, that the pair (S, T) is a double
centralizer on L,. Furthermore, from the invertibility of T it is easily seen that
the double centralizer is invertible.

Now double centralizers on Pedersen ideals have been extensively studied by
A. J. Lazar and D. C. Taylor [17]. As they indicate, if I'(L,) denotes the set of
double centralizers on L,, then it is easily seen that under the evident
operations I'(L,) is a *-algebra in which L, sits as an essential ideal. We will
also need the fairly deep theorem 5.42 of [17], which states that the center of
I'(Ly) can be identified in a natural way with the algebra of all continuous
complex-valued functions (bounded or not) on L, the primitive ideal space
of L.

Viewing L, as an ideal in I'(L,), we will find it convenient to denote the
double centralizer (S, T) simply by w. Thus w is an invertible element of I'(L,),
and T(c)=cw for c € Ly,. Then the relation T(cd)=T(c)a(d) beomes cdw
=cwa(d). Since this is true for all ¢ € L, it follows that dw=wa(d) for all
d € L. Since w is invertible, this becomes a(d)=w "~ 'dw, so that « is generalized
inner in a sense appropriate for Pedersen ideals. Now because o is a *-
homomorphism,

wld*w = (w™ldw)* = whd*w* !

for all d € Ly, so that d*ww*=ww*d*. It follows easily that ww* is in the
center of I'(L,), and so corresponds to an invertible function on L~ which is
easily seen to be positive. Thus v= (ww*) ™% exists in the center of I'(L,). Let u*
=pw. Then u*=u""! so that u is unitary, and also a(d)=udu* for all d € L,.
From the fact that u is unitary it is easily seen that, as a double centralizer, u is
norm continuous on L,, and so extends to a unitary double centralizer on L.
By continuity we then have a(a)=uau* for all a € L, so that a is partly inner.
Since a was a, for any t in the support of f, this concludes the proof of Theorem
1.1.

We remark that from Proposition 4.5 of [23] it immediately follows that if A
is a type I C*-algebra, then an automorphism a of A4 is partly inner iff the fixed-
point set for the action of o on A~ has non-empty interior. This fact can be
combined with Theorem 1.1 to give interesting applications. As an elementary
application, for which 4.5 of [23] is not really needed, let A be the C*-algebra
of continuous functions on the circle, and let the group of integers, Z, act on 4
by powers of some fixéd irrational rotation. Then C.(Z, A) will be simple, in
analogy with the corresponding fact for the C*-crossed product [36].

Math. Scand. 47 — 11
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2. Prime crossed products.

In this section we use the results of the previous section to give a fairly
complete analysis of how the crossed product of a C*-algebra with a finite
group can be prime. In this analysis we will use without reference the standard
facts contained in [3] concerning primitive ideal spaces of C*-algebras.
Throughout this section G will denote a finite group which acts on a C*-
algebra A, the action being denoted by a.

To begin with, in order for 4 x , G to be prime it is necessary for 4 to be G-
prime, in the sense that any two non-zero G-invariant ideals must have non-
zero intersection. This is because G-invariant ideals of 4 give ideals in the
crossed product in an evident way. So we suppose from now on that A is
G-prime.

Now the action of G on A4 permutes the ideals of A4, and, in particular, gives
an action of G as homeomorphisms of the primitive ideal space, A", of A with
the Jacobson topology. The assumption that 4 is G-prime then becomes the
assumption that every G-invariant open subset of 4~ is dense. In working with
this we will, for ease of notation, write tJ instead of o,(J)fort e Gand J € A"

It is a well-known open problem as to whether prime ideals of non-separable
C*-algebras must be primitive. To avoid the difficulties which this would cause
us here, we assume (only through the next proposition) that the Jacobson
topology on A is second countable (as it will be if 4 is separable or simple).
Accordingly, let {U,} be a countable base for the topology of 4™. Since 4 is G-
prime, GU, must be dense in A for each n. But 4™ is a Baire space, and so
N GU, is dense, containing at least one point, say J. Since J € GU, for all n, it
follows that GJ meets each U,, so that GJ is dense in 4 . Since G/J is finite (and
primitive ideals are prime), this means that for each K € A~ there exists t € G
such that K2tJ. Note however that if J2tJ for some ¢t € G, then, applying ¢
successively, we find that J2tJ2¢"J for all n=>1. Since G is finite, t"J =J for
some n, so that J=tJ. From this it follows that if sJ2tJ for s,t € G, then
sJ=tJ.

Now let J,,...,J, be an enumeration of the distinct elements of GJ. Then
Ji2J; only if i=j, and NJ;=0. Let I;=N{J;: j#*i}, so that I.I;=0 if ij.
Then J;2I;, since otherwise J;2J; for some i%j. Thus I;#+0, and also
J;NI; e (I). But Ji:NI;=NJ;=0, so that I, is prime as an algebra. It is also
clear that G permutes the I}, so that if L= @I, then L is a G-invariant ideal.
Since A is G-prime, it follows that L is an essential ideal in A. The above
analysis can be summerized as follows:

2.1. ProPOSITION. Let A be G-prime and assume that A  is second countable.
Then there is an (essential) G-invariant ideal L in A which is the sum of
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orthogonal ideals which are permuted transitively among each other by the action
of G, and each of which is a prime C*-algebra.

In order to apply this result to analyse the primeness of crossed products, we
note first that if an algebra B contains an essential ideal I, then B is prime if
and only if I is. Furthermore:

2.2. PROPOSITION. Let I be an essential G-invariant ideal of A. Then I x ,G is
an essential ideal in A x ,G.

Proor. A simple computation shows that if f€ A x ,G and if f*(I x ,G)=0,
then f=0.

Thus, with notation as in Proposition 2.1, A x , G will be prime iff L x , G is
prime. And so, in some sense, we have reduced the question to the case in
which A4 is a sum of orthogonal ideals which as C*-algebras are prime, and
which are permuted transitively among each other by the action of G. Such a
system of transitively permuted orthogonal ideals is a very special case of the
situation treated in theorem 17 of [12], and that theorem gives the following
result in our special case. We include a sketch of a proof for the reader’s
convenience.

2.3. PROPOSITION. Suppose that A is the sum of orthogonal ideals which are
permuted transitively by the action of G. Let I be one of these ideals, and let H be
the subgroup of elements of G which carry I into itself, so that H acts on 1. Then
Ax,G is Morita equivalent to 1 x  H.

SKETCH OF PROOF. We define an equivalence bimodule X (i.e. “imprimitivity
bimodule” as in Definition 6.10 of [29]) between A x ,G and I x , H as follows.
Let X be the vector space of those functions ¢ from G into A such that
@(t) € a,(I) for t € G. Define a right action of I x ,H on X by

(@o)(t) = Y {P(tpoy(@(p™") : p € H}
for ® € X and ¢ € I x . H, and define an I x , H-valued inner product <, >g, by
(D, ¥)p(p) = X {o0(P™)*¥(t7'p) : teG}
for &, ¥ € X and p € H. Define a left action of Ax,G on X by
(DO = XS (6)o(P(s7'0) ¢ t e G

for fe Ax,G and ® € X, and define an 4 x , G-valued inner product, , > on
X by
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(8, ¥)5(t) = ¥ {9 (P(719)%) : s € G}

for @, ¥ € X. Then with these definitions it is straightforward to verify that X
becomes an equivalence bimodule. The crucial place at which one uses the fact
that H is the full stability subgroup of I is in verifying the identity

(D, V)0 = &(V,0)5.
Specifically, one first calculates that
(KD, ¥ye0)(t) = Y. {(D()o, (¥ (r )", (0(r~ 1)) : 1,5 € G} .

But o, (6(r~'t)) € «,(I), so terms of the sum can be non-zero only if ®(s) € «,(I),
that is, if s € tH. Thus we can replace the summation over s by one over tp as p
runs over H. Once this is done, it is easy to continue the calculation to obtain
DY, 0>5(0).

We remark that as a special case of Theorem 2.13 of [13], one can actually
show that

Ax,G = (Ix,HOM

where n is the cardinality of G/H and M, is the algebra of n x n matrices. But
in general there will be no natural isomorphism —isomorphisms depend
on a choice of coset representatives for H in G—so that calculations become
slightly more complicated.

Anyway, Morita equivalence gives a natural isomorphism between the
lattices of ideals (Theorem 3.1 of [31]), and in particular preserves primeness.
Thus we have reduced the question of the primeness of G x , A to that of I
x ,H, where now I itself is prime. It is to this situation that we can apply
Theorem 1.1 to obtain a result similar to Proposition 2.6 of [20]. Let us change
our notation to that of the first section, so that we now assume that G acts on
A and that A is prime. We need to know when A x , G is prime. Let N=P,, the
normal subgroup of G consisting of those ¢ for which a, is partly inner. As seen
in the first section, any non-zero ideal of 4 x , G will have non-zero intersection
with 4 x  N. Thus if A x, N is prime, so is A x , G. But the converse need not
be true, for the ideals of A4 x , N which arise as intersections of A x , N with
ideals of A x ,G are of a special kind. This is true when N is any normal
subgroup of G. Specifically, if I is an ideal of A x ,G and if J=1N (4 x,N),
then it is clear that J will be invariant under conjugation by elements of G
(viewed as unitaries in the double centralizer algebra of A x , G). Put in other
words, G acts as a group of automorphisms of Ax,N, where the
automorphism, f,, corresponding to t € G is defined by

(ﬂ!(f))(s) = a:(f(t_‘St)) .
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Thus we can talk about G-invariant ideals in 4 x,N. Then the intersection
with A x , N of any ideal of 4 x , G will be G-invariant. Suppose conversely that
J is a G-invariant ideal of 4 x , N. Because 4 is already contained in 4 x , N in
the form of functions supported at the identity element of N, it is easily seen
that (4 x ,G)J =J(A4 x,G). (That is, J is (4 x , G)-invariant, as defined in 2.1 of
[32]. In fact, A x,N will be a normal subalgebra of 4 x,G in the spirit of
[32], though not according to the specific definitions given there.) Thus the
two-sided ideal in 4 x , G generated by J is just (4 x , G)J. But again, since 4 is
contained in A4 x,N, this is just the span of the 6,xJ for t € G. Now the
elements of J are supported on N, so that those of J,*J are supported on the
coset tN. From this it is clear that the intersection of (4 x ,G)J with 4 x ,N is
just J again. Thus:

2.4. PrOPOSITION. Let N be some normal subgroup of G, so that G acts as a
group of automorphisms of A x ,N. Then the ideals of A x ,N which occur as
intersections with A x ,N of ideals of A x ,G are exactly the G-invariant ideals
of Ax,N.

Combining this with Theorem 1.1, we obtain:

2.5. PROPOSITION. Let A be prime and let N=P, Then A x,G is prime iff
A X N is G-prime.

We remark next that if L is a C*-algebra, then any automorphism, a, of L
lifts uniquely in an evident way to an automorphism of M (L), which we still
denote by a. If L is an essential ideal in a C*-algebra A, so that A< M (L), and
if o is the restriction to L of an automorphism a of A4, then a on A will agree
with the restriction to A of o on M(L). If « now denotes an action of G on A,
and if L is a G-invariant essential ideal of A, then « lifts to an action a of G on
M(L) which on A< M(L) agrees with the original action. The proof of the
following is trivial.

2.6. ProposITION. Let L be a G-invariant essential ideal of A. Then A is G-
prime iff L is G-prime.

2.7. PROPOSITION. Let L be a G-invariant essential ideal of A, so that G acts on
M(L), and let N be a normal subgroup of G, so that G acts on M(L) x ,N and on
Ax,N. Then Ax,N is G-prime iff M(L)x ,N is G-prime.

ProOOF. L x,N is a G-invariant essential ideal of both 4 x,N and M(L)
x, N, so we can apply Proposition 2.6 twice.

Combining this with Proposition 2.5 we obtain:
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2.8. PROPOSITION. Let A be prime, and let N=P,. Let L be a G-invariant ideal
of A on which N acts by generalized inner automorphisms, so that N acts by inner
automorphisms on M(L). Then A x ,G is prime iff M(L)x ,N is G-prime.

Now crossed products by actions given by inner automorphisms are well-
known to have a fairly simple description. Perhaps the most general statement
of this in the literature is Theorem 18 of [12]. What we must do here is to
understand how the G-action relates to this description. For ease of notation
we will denote M (L) by A. Thus we assume that 4 is a prime algebra with
identity element on which G acts, and that N is a normal subgroup which acts
by inner automorphisms on 4. We ask when 4 x , N will be G-prime. Now for
each t € N let u, be a unitary in A4 such that a,(a)=u*au, for a € A. Let C be
the subspace of 4 x , N having as basis the u,d,. Since uu, is a scalar multiple of
u, for s,t € N, it is clear that C is a C*-subalgebra of 4 x , N. Furthermore, for
ac A

(ud)a = ua,(a)d, = u(urau)d, = a(ud,) ,

so each u,0, commutes with 4 in A x , N. Thus C is in the commutant of 4 in 4
x . N. Finally, since the u,J, clearly form an A-basis for A x , N, it is clear that
A®C=A x,N, the isomorphism being given by a®h — (ad,)xh for a € A,
h € C. Since the center of A4 is the scalars, it follows that C is exactly the
commutant of 4 in 4 x,N. (Compare with Lemma 2.3 of [20].)

Now A4 is G-invariant in 4 x , N, and so C must be also. Actually this can
easily be seen directly, using the fact that a,(u,) will be a scalar multiple of u,,,-1
forr € G,t € N. It follows that under the isomorphism with A® C the action of
G on A x N is just the product of its actions on 4 and C.

Let I be a G-invariant ideal in A x ,N. Since C is a finite-dimensional C*-
algebra, it is generated by its minimal projections. Choose a minimal
projection, p, such that pIp=0. Then pIp in A® C will look like M ®p where M
is some ideal of A. Since A4 is prime, M will contain a non-zero G-invariant
ideal, say J, so that J@p < I. But if K is the G-invariant ideal in C generated by
p, it follows that JQ K =I. We have thus shown:

2.9 LEMMA. Every G-invariant ideal 1 of Ax N contains an ideal of form
J®K where J and K are G-invariant ideals of A and C respectively.

From this lemma we immediately obtain the following analogue of
Proposition 2.6 of [20]:

2.10. ProPOSITION. Let A be prime with identity element, and let N =P,. Then
A X N is G-prime if and only if C is G-prime, or equivalently, G-simple.
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The algebra C is of the familiar type associated with projective
representations [32], namely, the group algebra of N twisted by a cocycle. The
action of G on C seems less familiar, but comes from the action of G on N
together with a function on Gx N with values in the circle and having
cocyclelike properties with respect to G, N and the cocycle on N. All this data
can be extracted from A and then examined independently of A4, to determine if
C is G-prime. It is easy to see that up to isomorphism this data does not
depend on the choice of the ideal L in Proposition 2.8. However, we will not
explicitly summarize all the results of this section, as the full statement is
somewhat cumbersome.

3. Simple crossed products.

In this section we make an analysis, similar to that of the previous section,
of how the crossed product of a C*-algebra by a finite group can be simple. We
also obtain some related results about the structure of crossed products when
the C*-algebra involved is simple.

To begin with, it is clear that in order for A x , G to be simple, it is necessary
for A to be G-simple, in the sense that A have no proper G-invariant ideals.
This means that A can have no proper open G-invariant subsets. Since A is a
T, space and orbits will be relatively discrete, it follows that A™ consists of
exactly one orbit. By the arguments preceeding Proposition 2.1 it follows that
A must be the sum of orthogonal simple ideals which are permuted transitively
among each other by the action of G. If I is one of these simple ideals and H
is its stability subgroup, then we can apply Proposition 2.3 to conclude that
A x ,Gis Morita equivalent to I x , H, so that A x , G is simple iff I x , H is. Thus
we must analyse the structure of a crossed product when the C*-algebra
involved is itself simple. For this, we again use the results of the first section.
Let us change our notation to that of the first section, so that now G acts on A4
and A is simple. Let N=P,, the normal subgroup of partly inner elements.
Then according to Theorem 1.1 any ideal of 4 x , G will meet A x , N in a non-
zero ideal, which will be G-invariant for the reasons given before Proposition
2.4. By Proposition 2.4 itself, it is clear that 4 x , G will be simple iff 4 x ;N is
G-simple. Since A is now simple, each element of N will act on A by a
generalized inner automorphism coming from a unitary in M(A). Then the
algebra C can be defined as after Proposition 2.8. It will be a subalgebra of
M(A) x N, but as in Section 2, it is easily seen that 4 x, N is isomorphic to
A®C, and that the action of G on 4 x , N is the product of its actions on 4 and
C. By Lemma 2.9 it then follows that the G-invariant ideals of Ax,N
correspond exactly to the G-invariant ideals of C. Since: C is a finite
dimensional C*-algebra, it is the direct sum of its G-simple ideals. Let
C,,...,C, be the G-simple ideals of C, and for each i let I;= (4 x,G)(A®C),
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which is a two-sided ideal by the arguments before Proposition 2.4. It is then
clear that the I; are orthogonal. Furthermore, each I; is a simple ideal, since
any proper ideal contained in I; must intersect Ax,N in a non-zero G-
invariant ideal contained in A®C,, and so equal to A®C,. Clearly the sum of
the I; contains A x , N, and so is 4 x,G. We summarize the above:

3.1. THEOREM. Suppose that A is simple, and let N=P, Then A >¥aG is the
finite sum of simple algebras. The number of simple algebras involved is the
number of G-simple ideals in C, where C is the commutant of Ain A x ,N (so that
the dimension of C is the order of N).

3.2. THEOREM. Let A be G-simple so that A is a sum of simple ideals which are
permuted transitively by G. Let B be one of these simple ideals and let H be the
stability subgroup of B. Let N be the normal subgroup of H consisting of elements
whose action on B is by generalized inner automorphisms. Let C be the
commutant of B in B x , N, so that H acts on C. Then A x , G is simple iff C is H-
simple.

Consider now the situation in which 4 need not be G-simple, but in which A4
is nevertheless the sum of a finite number of simple C*-algebras. Then 4 will be
the sum of algebras each of which is a sum of simple algebras which are
permuted transitively by G, and so to which the earlier analysis of this section
applies. Clearly A x,G will then be the sum of the corresponding crossed
products, and each of these crossed products is a sum of simple algebras.
Making only crude estimates, we obtain:

3.3. ProposSITION. Let A be the direct sum of n simple algebras. Then A x ,G is
the direct sum of no more than n|G| simple algebras, where |G| is the order of G.

That this bound cannot be improved in general can be seen by considering
trivial actions of commutative groups.

We can use Proposition 3.3 to obtain some information about fixed-point
algebras, once we recall the following observation of Rosenberg [33], which we
will also need later. (See also 2.2 of [18].)

3.4. PrOPOSITION. Let p denote the constant function on G with value |G| ™!, so
that p is a projection in M (A x , G). Then p(A x , G)p is naturally isomorphic to
AC. Thus A® is Morita equivalent to the ideal of Ax ,G generated by p.

3.5. COROLLARY. Let A be the direct sum of n simple algebras. Then AS is the
direct sum of no more than n|G| simple algebras.
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We remark that Corollary 3.5 was obtained by Kharchenko [14] in the
algebraic case, by quite different methods, and with a much worse bound. It
seems to me that the methods used above can also be used in the algebraic case
to obtain some kind of corresponding theorem with better bound, but I have
not checked the details.

In Section 5 we will need the converse of Corollary 3.5, so we give a proof
here. The algebraic case is treated in Theorem 4.3 of [10], but the proof there
depends on the existence of an identity element in A, so the proof given below
is fairly different.

3.6. PROPOSITION. Suppose that A is the direct sum of n simple algebras. Then
A is the direct sum of no more than n|G| simple algebras.

Proor. Recall [32] that if B is any subalgebra of A, then the ideal J of B is
said to be A-invariant if AJ=JA. Now for any G-invariant ideal I of A, the
ideal 1N AY of A® will contain an approximate identity for I, so that

AINAS) =1 = (IN A9A .

In particular, I N A% is A-invariant. Conversely, if J is any A-invariant ideal of
A, then AJ is a G-invariant ideal of A, and by averaging one sees that
(AJ)N (A% =J. We obtain in this way a bijection between the G-invariant
ideals of 4 and the A-invariant ideals of A®. Furthermore, if two A-invariant
ideals of AC are orthogonal, it is clear that the corresponding ideals of A will be
orthogonal.

Assume now that A is the direct sum of n simple algebras. Note then that if
J is an A-invariant ideal in A%, then the complementary ideal, say K, must also
be A-invariant, for an approximate identity in A¢ for 4 will decompose as
e, +f, with e, € J and f, € K, so that for a € 4, k € K we have

ak = lim (e,ak + f,ak) .

But e,,ak € (AJ)k=0, and the remainder is in K4, so that ak € KA. Note also
that the intersection of A-invariant ideals is also A-invariant. Thus A€ will be
the direct sum of no more than n minimal (non-zero) A-invariant ideals. Then
A will be the direct sum of the corresponding G-invariant ideals.

Thus it suffices to prove the proposition under the assumption that AS
contains no proper A-invariant ideals, that is, A contains no proper G-
invariant ideals and so is G-simple. But we saw at the beginning of this section
that in this case A is the sum of no more than |G| simple algebras.

We remark that by considering the action of G by left translation on the
algebra of functions on G with pointwise multiplication, we find that the bound
given in the above proposition is the best possible.
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4. Algebras of type 1.

We recall that a C*-algebra is said to be of type I (or postliminal, or GCR) if
its image under every irreducible *-representation contains the compact
operators [3]. The purpose of this section is to show how the results of Section
1 enable us to prove:

4.1. THEOREM. Let the finite group G act on the C*-algebra A, and let A® and
A x ,G denote the fixed point algebra and crossed product. Then the following
are equivalent:

1. A% is of type L
2. Ais of type 1.
3. Ax,G is of type 1.

The most difficult part of the proof is showing that 1) implies 2). This is not
surprising since this implication is false if G is only assumed to be compact. For
example, it is shown in [16, 23] that there are actions of the torus on simple
non type I algebras such that the fixed point algebra is one-dimensional (i.e.
ergodic actions). Nor is it true that 3) implies 2) if G is only assumed compact,
as shown by Takesaki in [35]. We remark also that the argument given below
for the fact that 3) implies 1) works also for compact groups, but Dorte Olesen
has pointed out to me that it seems to be unknown whether the reverse
implication is true for compact groups. The fact that 2) implies 3) is a special
case of Corollary 6.6 of [36] or Theorem 6.1 of [34], but we will indicate an
alternative proof below.

The fact that 3) implies 1) follows immediately from Proposition 3.4 together
with the fact that type I-ness is preserved under Morita equivalence
(Proposition 2.5 of [30] and Theorem 6.23 of [29]).

To show that 1) implies 2) we use the results of Section 1. Specifically, this is
done by combining them with Proposition 3.4 to prove:

4.2. LEMMA. Let the action on A of the finite group G be by purely outer
automorphisms. 1f AS is of type 1, then A contains a non-zero ideal of type 1.

PRrOOF. Let J be the ideal of 4 x , G which is Morita equivalent to A®. Then
J is of type I. But it follows from Theorem 1.1 that J will meet A in a non-zero
ideal, which must, of course, also be of type 1.

To prove, that 1) implies 2) we proceed first by induction on the order of G.
The implication is obvious if G has only one element. We now assume that the
implication is known to be true for all groups of order strictly less than that of



ACTIONS OF FINITE GROUPS ON C*-ALGEBRAS 171

G. Suppose G has a proper normal subgroup, N. Then it is easily verified that
AN is G-invariant, and that the action of G on AN drops to an action of G/N.
Furthermore (4Y)%/N=A4% which is of type I by assumption. From the
induction hypothesis, AY must then be of type 1. But then, again by the
induction hypothesis, A must be of type I as desired. Thus it remains to prove
the theorem in the case in which G is simple.

Suppose now that G is simple, and let « be an irreducible representation of A
with kernel J € A”. We must show that n(A4) contains the compact operators.
Let K= {tJ : t € G}, so that K is a G-invariant ideal in the kernel of =, and
let B=A/K. Then n drops to an irreducible representation of B, and m(A)
=n(B). Furthermore BS= 4%/(4° N K), which is of type I. Thus it suffices to
consider the case in which K=0. We assume that this is now true in A. Set I
=N {tJ : t € G, tJ+J}. Then, as in the discussion preceeding Proposition 2.1,
I is a prime algebra, and for any ¢ € G either tI=1 or tI is orthogonal to I.
Since I is not contained in J, it is clear that the restriction of n to I is
irreducable. Let H be the stability subgroup of I, and let a € I7. If 5,t € G and
sI=tl, then s 't € H so that a(a)=0,(a). From this it is easily seen that the
evident projection from A to I gives an isomorphism of A¢ with I, so that IH
is type I. Thus it suffices to consider the case in which A4 is prime and = is
faithful.

Now by assumption G is simple and A is prime, so that P, is either all of G
or just eg. That is, the action is either entirely purely outer or entirely partly
inner. Suppose first that it is entirely purely outer. Then according to Lemma
4.2, A will contain a non-zero type I ideal. Since = is faithful, its restrictions to I
will still be irreducible, and so n(I) will contain the compact operators. Thus
the proof is complete in this case.

Suppose instead that the action is entirely purely inner. As before, we can
find a G-invariant ideal on which each element of G acts as a generalized inner
automorphism. The fixed point algebra of this ideal will of course be type I
since A9 is. Since 7 is faithful, it suffices to show that the restriction of 7 to this
ideal contains the compact operators. Thus we can assume that, in fact, the
action of G on A is by generalized inner automorphisms.

Let E be the ideal in A x , G which is Morita equivalent to A%, and so is of
type I. Then E is an ideal in M(A4)x,G. But as in Section 2, M(4)x,G
~M(A)®C where C is the commutant of M(A) in M(A4)x,G. Since C is a
finite dimensional C*-algebra, it follows that M(A) contains a non-zero type I
ideal, and so 4 must also. This concludes the proof that 1) implies 2).

The fact that 2) implies 3) is an immediate consequence of the following
proposition, which will be needed in the next section. Since we will be working
with a number of automorphisms in the next paragraphs, we will denote fixed-
point subalgebras by superscripting with the automorphism involved.
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4.3. PROPOSITION. Let B denote the C*-algebra of all operators on the finite
dimensional Hilbert space L*(G), and let y denote the action of G on B by
conjugation by the action of right translation on L?*(G). Let a®y denote the
corresponding action on AQ B. Then A x , G is naturally isomorphic to the fixed-
point algebra (A® B)*®7,

We remark that this result (and the proof given below) holds also for
compact groups if B is taken to consist only of the compact operators. For
compact Abelian groups this is 5.3 of [15], though with different proof.

Proor. Let C(G) denote the C*-algebra of functions on G with pointwise
multiplication, and let 4 denote the action of G on C(G) by left translation. It is
well-known [28] and easily seen that C(G)x , G=B in a natural way. Let ¢
denote the action of G on C(G) or L?(G) by right translation. From the fact
that ¢ and 4 commute it is easily seen that y, when viewed on C(G) x ; G, just
corresponds to g acting on C(G). Let i denote the trivial representation of G on
A, so that the two actions a®g and i® 4 of G on A® C(G) commute. Then a®yg
lifts to an action on (A®C(G)) X ;; G. The latter is isomorphic to A®(C(G)
x ; G), and under this isomorphism a®g¢ becomes a®y. Now if ¢ and 7 are two
commuting actions of G on a C*-algebra D, so that D° is t-invariant, and also
G acts on D x G via g, then it is easily seen by an averaging argument that

Dx.GY = (D)x,G.
Applying all of the above to A®C(G), we find that
(A®BY® = (A®(C(G)x ,G)®"
=~ ((A®C(G) X i, G)® = ((A®C(G)*®)®;g;G -

Now A®C(G) can be naturally identified with the space of A-valued functions
on G, and under this identification (4® C(G))*®¢ corresponds to the space of
functions f satisfying

fles™h) = a,(f(1)

for all s, t € G. But such functions are determined by their values at the
identity element of G, so that (4® C(G))*®¢ can be naturally identified with A.
Under this identification i®4 is easily seen to correspond to a. Thus the last
crossed product written above is seen to be naturally isomorphic to 4 x,G.

5. Liminal and T,.

We recall that a C*-algebra is said to be liminal (or CCR) if its image under
every irreducible *-representation consists of exactly the compact operators
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[3]. The purpose of this section is to prove two related theorems, the first of
which is:

5.1. THEOREM. Let the finite group G act on the C*-algebra A. Then the
following are equivalent:

1. Ag is liminal.
2. A is liminal.
3. Ax,G is liminal.

Now it is well-known [3] that an algebra is liminal if and only if it is of type
I and every primitive ideal is maximal, that is, the topology of its primitive ideal
space is T,. In view of Theorem 4.1, the above theorem follows from:

5.2. THEOREM. Let the finite group G act on the C*-algebra A. Then the
following are equivalent:

1. (A% is T,.
2. A is T,.
3. (Ax,G) is T,.

In the purely algebraic situation the corresponding result was obtained by
Lorenz [18], even for crossed products defined with cocycles. Some related
results for prime ideals are discussed by Fisher and Osterburg in [10]. The
proof given below that 1) implies 2) in Theorem 5.2 was suggested by half of the
proof of Theorem 2.7 of [18], while the proof that 2) implies 1) was partly
motivated by the proof of Theorem 4.2 of [10]. The techniques of Section 1 are
not used in the proof of Theorem 5.2, though they are, of course, then used in
the proof of Theorem 5.1 in the form of Theorem 4.1.

There is presumably some relation between Theorem 5.2 and Theorem 2 of
Poguntke’s paper [27]. In particular, these two theorems should have some
common generalization to the setting of Fell’s C*-algebraic bundles over finite
groups [6, 7, 8].

ProoF oF THEOREM 5.2. The fact that 3) implies 1) follows immediately from
Proposition 3.4 and the fact that Morita equivalence preserves the T, property
(Corollary 3.3 of [31]).

We show next that 2) implies 1), with an eye to then invoking Proposition
4.3 to obtain the fact that 2) implies 3). Suppose now that J € A™. From the fact
that any irreducible representation of a subalgebra is a subrepresentation of
the restriction to the subalgebra of an irreducible representation of the
containing algebra (2.10.2 of [3]), we can find I € A such that IN AS<J. Let
K=N{tl : t € G}. Since by assumption I is maximal, A/K will be a finite sum
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of simple algebras by the arguments preceeding Proposition 2.1. Now G acts
on A/K, and so by Corollary 3.5, (4/K)® will be a finite sum of simple algebras.
But

(4/K)°® = A%/(KN A9,

and (KN A%<, so that J/(K N A%) is a primitive ideal of (4/K)® which must
then be maximal. It follows that J is maximal, as was to be shown.

Now let B be the finite dimensional C*-algebra of operators on L*(G), as in
Proposition 4.3. If A" is T,, then it is easily seen that (A®B) is also. From
Proposition 4.3 and the fact that 2) implies 1), it follows that (4 x LG) is T,.
Thus 2) implies 3).

It remains to show that 1) implies 2). The proof which we give is close to half
of the proof of Theorem 2.7 of [18]. To carry it out we first need some facts
about lengths of modules. We will say that a Hermitian module (i.e. the Hilbert
space of a non-degenerate *-representation) is of finite length if it is the direct
sum of a finite number of simple (i.e. irreducible) modules. If V is a Hermitian
A-module, we will let Vg denote V viewed as an A%-module, while we will let
Gy denote the corresponding induced (A x , G)-module [34]. That is, V=
(A x,G)® 4V, which is the direct sum of the |G| copies, t®V for t € G, of
the Hilbert space V.

5.3. PROPOSITION. Let V be a Hermitian A-module. Then the following are
equivalent

1. Vis of finite length.
2. OV is of finite length.
3. Vi is of finite length.

PRroor. It is clear that 3) implies 1). From the description of ®V it is also
easily seen that 1) implies 2). It thus remains to show that 2) implies 3). Our
proof is motivated by the proof of Lemma 2.4 of [18]. Let p denote the
idempotent of Proposition 3.4, and let W=p(°V), which is a module over D
=p(A4 x,G)p. Now it is easily seen that the mapping

v— |GI7' Y {t®v : te G}

is an isometry of ¥V onto W. From the fact that the isomorphism in Proposition
3.4 of A® with D is given by

a—|GI™'Y {t®a: teG},

it is easily seen that the above isometry respects the algebra actions. Thus it
suffices to show that W is of finite length. But if U is a D-submodule of W, and
if Z is the A x , G-submodule of °V generated by U, then it is easily seen that Z
=U@®(1—-p)Z. From this it follows that distinct D-submodules of W generate
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distinct A x , G-submodule of “V. Since “V is assumed to be of finite length, it
follows that W, hence V;;, must be also.

5.4. COROLLARY. Let the finite group G act on the C*-algebra A, and let 1 € A"
Then 1N AC is the intersection of only a finite number of elements of (A%)".

Proor. This follows from the fact that if V is a simple Hermitian A-module
with kernel I, then Vj; has finite length.

We now show that 1) implies 2) in Theorem 5.2. Let I € A, let K
=N {tl : t € G},and let B= A/K. Then G acts on B, I/K € B, and (I/K)N (BS)
= (0). We wish to show that I is maximal in A, and to do this it suffices to
show that I/K is maximal in B. Now B¢=A%/(K N A%, and since we are
assuming that (4°) is T,, so will be (B%) . Thus we see that we have reduced
the situation to that in which 1N A% =0. But then 0 will be the intersection of a
finite number of elements of (B®)". Since (B) is T,, it follows that B is the
direct sum of a finite number of simple algebras. Then from Proposition 3.6
it follows that B will be also, so that I/K is maximal.

ADDED IN PROOF. An analysis which is quite close to that of section 2 of this
paper, but for actions on von Neumann algebras, is contained in [37, 38].
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